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ABSTRACT In recent years, the hazy weather in China occurs frequently, and image dehazing has gradually
become a research hotspot. To improve the dehazing effect of the hazy images, this paper has proposed a
multilevel image dehazing algorithm using conditional generative adversarial networks (CGAN). The hazy
image is used to generate the composed image K jointly estimated by a transmission map and atmospheric
light value through a generator network, and a dehazed image is calculated through an improved atmospheric
scattering model. The generator network and the joint discriminator network are subjected to adversarial
training and reconstruction constraints. The experimental results show that the proposed method achieved
good dehazing effect in synthetic hazy images and real hazy images, and is ahead of other advanced dehazing
methods in subjective evaluation and objective evaluation.

INDEX TERMS CGAN, jointly estimate, atmospheric scattering model, image dehazing.

I. INTRODUCTION
Hazy weather reduces the color saturation and contrast in
images, and many image details are lost. In addition, such
weather greatly affects the fields of satellite remote sens-
ing monitoring, target recognition and tracking, and traffic
monitoring. Therefore, image dehazing has very important
practical application value and research significance.

The purpose of image dehazing is to reduce or
remove the effect of haze for more effective subsequent
research. In recent years, there have been many studies on
image dehazing [1]–[6]. He et al. [7] proposed a dark channel
prior method, which achieved good dehazing effects, but the
soft matting method used had problems of low efficiency and
a large number of calculations. Subsequently, He et al. [8]
proposed using guided filtering instead of soft matting, which
not only increased the accuracy of transmission image esti-
mation but also improved the calculation efficiency. However,
the dehazed image is generally dark and prone to distortion
when there is a large area of sky. Ancuti and Ancuti [9]
proposed a fusion-based method that fuses two images with
enhanced contrast and white balance through a multiscale
Laplacian pyramid. This can preserve the long-range and
close-up information of the image, but it is also possible
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to fuse defects in the image, which affects the dehazing
results. Berman et al. [10] proposed a hazy line-basedmethod
to estimate the transmission map through the hazy line.
This method has high calculation efficiency, but when the
scene brightness is lower than the atmospheric light, it is
more difficult to detect the hazy line, which reduces the
estimation accuracy of the transmission map. Although the
effect of the traditional dehazing method has been greatly
improved, most methods rely too much on a priori informa-
tion, making the dehazing results less than ideal in actual
situations.

Due to the rapid development of deep learning, an increas-
ing number of researchers have applied deep learning meth-
ods to image dehazing, which can reduce dependence on
prior information. Cai et al. [11] used a convolutional neu-
ral network (CNN) to estimate transmission maps in image
dehazing, and extracted multiscale features by using filters
of different scales in the network structure, and obtained
better dehazing results. Ren et al. [12] proposed a multi-
level CNN for estimating transmission maps. This network
contains two subnetworks, one for estimating coarse-grained
transmission maps and the other for estimating fine-grained
transmission maps, so that more detailed transmission maps
can be obtained. However, since the abovementioned deep
learning-based dehazing methods use operations such as
maximum pooling, it is easy to lose some details when
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learning to generate a transmission map, thereby affecting the
result of image dehazing.

Because the above methods cause cumulative error when
estimating the intermediate parameters of the physical model
step by step, Li et al. [13] performed end-to-end image
dehazing through CGAN [14] and directly learned the map-
ping relationship between the hazy image and the dehazed
image. However, there are still cases where the image details
are lost, and the dehazing is incomplete. Engin et al. [15]
proposed using a cycle-consistent generation adversarial net-
work (CycleGAN) for end-to-end image dehazing, but there
are still considerable residual haze and low definition in the
dehazed image.

To reduce the cumulative error caused by multiple inter-
mediate parameters and increase the detailed information of
the image, this paper proposes a multilevel image dehaz-
ing algorithm using CGAN. First, the transmission map and
the atmospheric light value are jointly estimated; that is,
the transmission map and the atmospheric light value are
unified into the image K [16]. Second, using CGAN as a
training framework, a structural similarity index measure
(SSIM) [17] is added to the loss function of the generator
network to increase image detail. Finally, the hazy image
is generated into image K by the generator network, and
then the improved atmospheric scattering model is used to
obtain the dehazed image. The generator network and the
joint discriminator network are subjected to adversarial train-
ing and reconstruction constraints, and finally an end-to-end
dehazing model is obtained. Compared with other advanced
dehazing methods, the proposed method can obtain a better
dehazing effect.

The main contributions of this paper are as follows:
• We propose a new end-to-end dehazing network. This

network uses CGAN framework and atmospheric scattering
model.
• To generate better dehazed results, we use U-Net to

generate image K which is jointly estimated by transmis-
sion map and atmospheric light value. And dehazed image
is obtained by the improved atmospheric scattering model.
Besides, training the whole network through CGAN.
•This paper compares the synthetic hazy image test set and

the real hazy image test set with a variety of advanced image
dehazing methods to evaluate the performance. In addition,
an ablation study is conducted to demonstrate the influence
of k and loss functions on dehazing results.

II. RELATED WORK
A. ATMOSPHERIC SCATTERING MODEL
The purpose of image dehazing is to recover a clear dehazed
image from a hazy image. This process can be formulated
by [18], [19]

I (x) = J (x)t(x)+ A(1− t(x)) (1)

where I represents a hazy image, J represents a dehazed
image, A represents an atmospheric light value, t represents
a transmission map, and x represents index image pixels.

J (x)t (x) is the direct attenuation term, which represents
the part of the imaging system after the attenuation of the
reflected light transmission in the scene; and A(1 − t(x)) is
the atmospheric light term, which represents the effect of the
intensity of light received at the observation point with the
ambient light under the atmosphere. Assuming that the atmo-
sphere medium is homogeneous and uniform, the expression
of the transmission map is as follows:

t(x) = e−βd(x) (2)

where d represents the distance between the scene point
and the camera, and β represents the atmospheric scattering
coefficient.

The atmospheric scattering model is analyzed and derived,
and the atmospheric light value A and the transmission map t
in the model are unified into a variable K , and the expression
is as follows:

J (x) =
1
t(x)

I (x)− A
1
t(x)
+ A

= K (x)I (x)− K (x)+ b (3)

K (x) =
1
t(x) (I (x)− A)+ (A− b)

I (x)− 1
(4)

where b is a constant deviation with a default value of 1.

B. CONDITIONAL GENERATIVE ADVERSARIAL NETWORK
Conditional generative adversarial network (CGAN) is dif-
ferent from generative adversarial networks (GAN) [20]. It
carries the condition information y and introduces the condi-
tion information y into generator networkG and discriminator
network D. This condition information y can be based on
a variety of information, such as image information, label
information, or other modal data. In the generator network
G, random noise z and condition information y constitute a
new joint hidden layer representation. The objective function
of CGAN is a minimax game with conditional probability.
The objective function V (G, D) can be expressed as:

min
G

max
D

V (G,D) = Ex∼Pdata(x)[logD(x|y)]

+Ez∼Prose(x)[log(1− D(G(z|y)))] (5)

where Pdata(x) represents the distribution of real samples,
Pnoise(x) represents the distribution of random noise, and E
(·) represents the expected value of calculation.
Apply formula (5) to image dehazing, so that the random

noise z and the input hazy image I generate image K by
generator network G, and the dehazing image J obtained
by formula (3) is added to the input of joint discriminator
network Dj. This process can be formulated as

min
G

max
Dj

V
(
G,Dj

)
=EI ,Kr ,J

[
logDj (I ,Kr , Jr )

]
+EI ,z

[
log

(
1−Dj(I ,G(I , z), J )

)]
(6)

where G(I , z) represents the generated image K , Kr rep-
resents the label image of the generated image K , and
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FIGURE 1. Multilevel image dehazing using conditional generative adversarial networks.

FIGURE 2. Generator network structure.

Jr represents the label image of the generated dehazed
image J .

III. PROPOSED METHOD
The network structure used in this paper is shown in Figure 1.
First, the hazy image I generates an image K through a
generator network G, then the image K generates a dehazed
image J through an improved atmospheric scattering model,
and finally the discrimination is performed by a joint dis-
criminator network Dj. In this paper, CGAN is used as the
training framework, and SSIM is used as the loss function,
which improves the effect of image dehazing.

A. GENERATOR NETWORK
The function of the generator networkG is to convert the input
hazy image I into an image K . For such a specific image-
to-image conversion problem, there are a large number of
low-level features between the input image and the output
image. For example, the input and output images of this
generator network share the edge position and protruding
structure. This paper uses the U-Net structure [21]. This net-
work connects the encoder to the decoder through a residual
connection so that the decoder can better repair the details of
the target image. The function of each residual connection is

to connect all channels at the encoder layer i and the decoder
layer i, where i is the number of layers.

The structure of the generator network G is shown
in Figure 2, where ‘‘tanh’’ represents the tanh activation
function, ‘‘LReLU’’ represents the Leaky ReLU activation
function, ‘‘IN’’ represents instance normalization, ‘‘conv’’
represents convolution.

B. JOINT DISCRIMINATOR NETWORK
The input of the joint discriminator network Dj is different
from the input of the general discriminator network. It is
a joint input with condition information, in which the hazy
image I is its condition information. The input of the joint
discriminator network Dj is the combination of the gener-
ated image K , the dehazed image J , and the hazy image I ,
or the combination of the label image Kr , the label image Jr ,
and the hazy image I , which is similar to an image with
9 channels. The goal of the joint discriminant networkDj is to
separately identify these two parts, so that the probability of
the former output through the joint discriminator network Dj
approaches 0, and the probability of the latter output through
the joint discriminator network Dj approaches 1.

The structure of the joint discriminator network Dj is
shown in Figure 3. The first to fourth convolution layers are
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FIGURE 3. Joint discriminator network structure.

connected to IN layer and LReLU activation function layer,
and the last convolution layer is connected to the sigmoid
activation function. In addition, the sizes of the convolution
filters are all 4 × 4.

C. LOSS FUNCTION
The loss functions of the generator network G and the
joint discriminator network Dj are respectively introduced as
follows.

The loss function of the generator network G consists of
three losses. The first one is the adversarial loss La of the
joint discriminator network Dj. The second is LSSIM which
is the sum of the SSIM losses of the image K and its label
imageKr and the dehazed image J and its label image Jr . The
third is L1∗ which is the sum of the L1 losses of the image K
and its label image Kr and the dehazed image J and its label
image Jr .

The adversarial loss La is the most important loss in adver-
sarial learning. It comes from the discrimination result of
the joint discriminator network Dj. If the generated image K
and the dehazed image J are more different from their label
images, the discriminant accuracy of the joint discriminator
network Dj for its joint input is higher. It can be seen that
the judgment accuracy of the joint discriminator network Dj
for the joint input is opposite to the adversarial loss La. The
adversarial loss La can be expressed as:

La = log
(
1− Dj(I ,K , J )

)
(7)

The loss LSSIM is the sum of SSIM losses where SSIM is
similar to the human visual system (HVS). Using SSIM as a
loss function can increase image details. SSIM is defined as:

SSIM(x, y) =

(
2µxµy + C1

) (
σxy + C2

)(
µ2
x + µ

2
y + C1

) (
σ 2
x + σ

2
y + C2

) (8)

where µx represents the average of x, µy represents the
average of y, σx represents the standard deviation of x, σy
represents the standard deviation of y, and σxy represents the
covariance of x and y. C1 and C2 are constants set to avoid
the denominator being 0. Usually, C1 = (K1∗ T) 2 and
C2 = (K2∗ T)2. Generally, K1 = 0.01, K2 = 0.03, and T is
the dynamic range of pixel values.

DSSIM is a distance measure based on SSIM

DSSIM =
1− SSIM (x, y)

2
(9)

Therefore, LSSIM which is the sum of SSIM losses can be
expressed as:

LSSIM = DSSIM (K ,Kr)+ DSSIM (J , Jr) (10)

The loss L1∗ is the sum of L1 losses and can be expressed
as:

L1∗ = L1(K )+ L1(J )

= E
[
‖Kr − K‖1

]
+E

[
‖Jr − J‖1

]
(11)

Therefore, the overall loss function LG of the generator
network G can be expressed as:

LG = λ1La + λ2LSSIW + λ3L1∗ (12)

where λ1, λ2, and λ3 represent the proportion of each partial
loss function to the overall loss function.

The joint discriminator network Dj is essentially a classi-
fication network, and its loss function LD can be expressed
as:

LD = log
(
Dj (I ,Kr , Jr )

)
+ log

(
1− Dj(I ,K , J )

)
(13)

The overall optimization goal of the proposed method is to
minimize the loss function of the generator network G and
maximize the loss function of the joint discriminator network
Dj, which can give the dehazed image a better dehazing effect.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
This paper compares the synthetic hazy image test set and
the real hazy image test set with a variety of advanced image
dehazing methods to evaluate the performance. The methods
selected for comparison, includeing He method [8], Engin
method [15], Li method [13], and Li method [16], where
He method [8] is based on the dark channel prior, Engin
method [15] is based on the CycleGAN, Li method [13] is
based on the CGAN, and Li method [16] is based on the con-
volutional neural network (CNN). To compare the effects of
K and loss functions on the method, comparison experiments
on the synthetic hazy image test set are performed.
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FIGURE 4. Real hazy images for testing. (a) Traffic. (b) Winter. (c) Architecture. (d) Crowd. (e) Night. (f) Plant. (g) Beach.
(h) Street.

FIGURE 5. Dehazed results of the synthetic hazy image test set. (a) Inputs. (b) He method [8]. (c) Engin method [15]. (d) Li method [13]. (e) Li method [16].
(f) Proposed method. (g) Ground truth.

A. EXPERIMENTAL SETUP
Dataset: in this paper, 8,000 label image Kr - label image
Jr - hazy image I image pairs are training set. The label image
Jr in this training sets comes from the RESIDE data set [22]
and the Middlebuty data set [23]. The hazy image I and the
label image Kr are generated as follows: let each label image
Jr randomly set the atmospheric scattering coefficient β and
the global atmospheric light value A, where β ∈ [0.8,1.6],
A ∈ [0.8,1.0], and then calculate the hazy image I according
to formula (1) and formula (2), and then according to for-
mula (4), the label image Kr can be obtained. In addition,
another 800 synthetic hazy images are test set. Then, to test
the dehazing effect of the method on the real hazy image,
8 real hazy images are randomly selected as the real hazy

image test set to test the dehazing effect in different scenes,
including traffic, winter and buildings, as shown in Figure 4.

Parameter setting: this method is based on TensorFlow
1.8 deep learning framework, and uses a GPU to speed up
the operation. The optimization of the network adopts the
improved Adam algorithm. The size of the batch process-
ing is 4, the initial learning rate is set to 0.0002, the train-
ing round is 100, the learning rate of the first 50 rounds
remains unchanged, and the learning rate of the last 50 rounds
decreases linearly to 0.

B. SUBJECTIVE EVALUATION OF DEHAZING METHODS
As shown in Figure 5, for the synthetic hazy images, the over-
all color of the dehazed image obtained by He method [8]
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FIGURE 6. Dehazed results of real hazy image test set. (a) Inputs. (b) He method [8]. (c) Engin method [15]. (d) Li method [13]. (e) Li
method [16]. (f) Proposed method.

TABLE 1. Objective evaluation of dehazed results in synthetic hazy image test set.

TABLE 2. IE of different methods in real hazy images.

is darker, and there is color distortion in the sky area,
which is slightly excessive dehazing. Some areas of the
dehazed image obtained by Engin method [15] and Li
method [13] leave a certain amount of residual hazy, which
is not enough to dehaze. The dehazed image obtained

by Li method [16] is color distortion on the whole. The
dehazed image obtained by the proposed method looks
clearer and more natural overall, and has more details,
no color deviation and is more similar to the original
image.
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TABLE 3. AG of different methods in real hazy images.

FIGURE 7. Influence of k and loss functions on dehazing results. (a) PSNR. (b) SSIM. (c) IE. (d) AG.

As shown in Figure 6, for the real hazy images, the dehazed
image obtained by He method [8] is fuzzy and not obvious in
the details, and the color distortion still appears in the sky
area. The dehazed images obtained by Engin method [15]
and Li method [13] have more residual haze and dehaze

incompletely at a deeper depth of field, and the improvement
of image clarity and contrast is small. The dehazed image
obtained by Li method [16] is a little fuzzy on the whole.
The dehazed image obtained by the proposed method has
less haze and the image color is more natural. In addition,
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the enlarged patches of the dehazed results obtained by the
proposed method are clearer, the detail information is more
complete, and the dehazing is more thorough.

C. OBJECTIVE EVALUATION OF DAHAZING METHODS
To further verify the superiority of the proposed method,
for the synthetic hazy images, objective indicators such as
the peak-signal-to-noise-ratio (PSNR), SSIM, information
entropy (IE) and average gradient (AG) are used to evaluate
each method in synthetic hazy images. The larger the PSNR,
the smaller the difference between the two images. The larger
the SSIM, the higher the structural similarity between the two
images. The larger the IE, the more the average information
the image carries. The larger the AG, the higher the definition
of the image. For the real hazy images, since there is no
corresponding contrast image, only IE and AG of the dehazed
image are calculated.

As shown in Table 1, for synthetic hazy image test set, the
dehazing results of the proposed method achieve a certain
degree of lead in terms of PSNR, SSIM, IE andAG. As shown
in Table 2 and Table 3, for real hazy image test sets, the results
of the proposed method are improved in IE and AG. In addi-
tion, the improvement of IE is more obvious and the proposed
method has better generalization.

D. INFLUENCE OF K AND LOSS FUNCTIONS
To analyze the effects of K and loss functions on the image
dehazing results,K+La,K+La+L1∗,K+La+LSSIM+L1∗

and La+LSSIM+L1∗ in the network are compared in the syn-
thetic hazy image test set under different epochs. As shown
in Figure 7, when epoch ≥ 75 and K + La + LSSIM + L1∗ is
in the network, the final dehazing results are better than the
others in PSNR, SSIM, IE and AG.

V. CONCLUSION
In this paper, a new end-to-end dehazing network is proposed.
The network uses U-net to generate the composed image K
which is jointly estimated by transmission map t and atmo-
spheric light value A. Next, dehazed image is obtained by the
improved atmospheric scattering model. Besides, training the
whole network through CGAN. In addition, SSIM is added
to the loss function of the network to increase image details.
The dehazing results of the proposed method show good
performance in both subjective visual effects and objective
indicators. Moreover, it has good generalization. The exper-
imental results show that the proposed method can remove
haze better and retain more image details.
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