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ABSTRACT The safety and efficiency of hard rock roadway excavation are the two sides of a coin limiting
the implementation of roadway construction. It is an effective way to improve the performance in hard rock
tunneling to effectively release the internal stress in rock mass by arranging pre-prepared boreholes in rock
section. In order to improve the rock breaking performance and tunneling efficiency, we analyze the borehole
positioning accuracy and explore boreholes sequence planning problem in hard rock excavation simulatively
and experimentally. The kinematics model of drilling mechanism is established based on the D-H method.
RBF neural network algorithm is adopted to accurately position borehole. The results show that accuracy
of simulated borehole positioning is controlled at 1.5% while the accuracy is 5.6% of experiment. The Ant
Colony Algorithm (ACA) is employed to optimize the sequence planning of drilling boreholes with the
optimization goals of minimum moving distance and minimum swing angle separately. Simulation results
show that rock-drilling with the minimum swing angle produces smaller positioning deviation and higher

efficiency, which is a practical automatic roadway borehole drilling method.

INDEX TERMS
algorithm (ACA).

I. INTRODUCTION

Drilling-blasting method, comprehensive mechanized exca-
vation and TBM (Tunnel Boring Machine) method are the
three main methods for roadway excavation in underground
coal mining [1]. TBM method has a higher cost and longer
preparation time, and comprehensive mechanized excava-
tion cannot excavate hard rock (f>8) effectively, while
the drilling-blasting method has a superior adaptability to
different rock region and hardness. With the increase of
mining depth in tunnels and roadways, rock hardness gener-
ally exceeds the economic cutting capability (100 MPa) of
mechanical tools [2], [3]. Drilling-blasting method can be
used to excavate hard roadways, but the roadway section and
the safety are poorly controlled. Thus, non-blasting mining
methods, including water jet and drilling-fracturing, have
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Borehole positioning, RBF neural network, sequence planning, ant colony

been investigated and tested [4]-[7]. In 1965, the British
Farmer, I. W. et al. studied the impact erosion effects on
the non-igneous rock fracture by pure water jets experi-
mentally and analyzed the rock-breaking mechanism [8].
Scholars at home and abroad have conducted a thorough
study on rock breaking by water jet from the aspects of
jet type, nozzle structure, rock-breaking mechanism, crack
propagation, specific energy consumption [9]-[12]. These
combined the applications of water jet in hard rock excavation
points out the feasibility of water jet method. Hard rock
(>100MPa) water jet excavation requires excellent sealing
performance of equipment, large amount of water supply
and power-matching resulting in huge energy loss [13]. The
drilling-fracturing method is a new method which combines
traditional drilling-blasting and with fracturing technology.
Prefabricated boreholes are arranged on the working face
by rock drill, and the rock is broken under the fractur-
ing force. According to the advantages of controllability of
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roadway formation and high excavation efficiency, the feasi-
bility and effectiveness of drilling-fracturing method has been
proved [4], [14]-[17]. In the process of hard rock roadway
drilling and excavating, the unloading effect is generated due
to the transient release of high natural geostress. Rock disinte-
gration with uncertain lumpiness is produced after explosive
blasting [18]. The roadway will be seriously over-excavated
or under-excavated resulting in the roadway section shape
can not meet the construction requirements [19]. Subse-
quent separate grouting support and roadway repair work is
needed and affects the construction progress [20]. Therefore,
positioning accuracy of borehole directly determines crack
propagation direction and roadway section flatness, while
reasonable borehole sequence can effectively reduce energy
consumption and improve roadway excavation efficiency.
Therefore, it is necessary to investigate and control borehole
positioning and sequence planning [21]. For boreholes posi-
tioning technology, Wu proposed a novel positioning method
based on binocular stereoscopic vision and calculated the
three-dimensional position of boreholes by the triangulation
method [22]. The positioning error was within 25mm by
experiment. Zhang et al. [23], Pirinen et al. [24] all adopted
the PID method to control the drilling jumbos and established
motion model of drilling-rod by rotation theory. Compared
with manual control, the automatic positioning method can
control the position error within 6.5 cm, and short the posi-
tioning time greatly. For boreholes sequence planning tech-
nology, Andersson K carried out simulation research with
the load as an optimization objective [25]. Wu Wan Rong
simplified the drilling sequence planning to a 3-TSP problem,
established the optimization function of minimum moving
distance, and then solved the TSP problem by using the adap-
tive genetic algorithm [26]. In addition, RBF is mostly used
for parameter setting of motion controller and smooth control
of robot motion path [27]-[32]. ACA (ACO) is used for path
optimization and obstacle avoidance planning for robots or
UAVs [33]-[39]. Variants of ACA reduce the computing costs
and training speeds [28], [40], [41].

At present, manual estimation has not been replaced by
automatic drilling positioning and borehole sequence plan-
ning in mining drilling equipment. The positioning error of
drilling-rod can not be effectively simulated and controlled
without the effective inverse kinematics of drilling jumbo
mechanism. Reasonable optimization targets and mature
optimization methods of borehole positioning and sequence
planning have not been summarized in the existing investi-
gations on in hard rock excavation. Based on the kinematic
model of drilling-rod, the borehole positioning and sequence
planning in hard rock roadway is realized by RBF neural
network algorithm and ant colony algorithm. In order to
precisely positioning hole and improve drilling efficiency,
the authors cooperated with enterprise to explore the appli-
cation of RBF and ACA in hard rock drilling positioning and
hole sequence planning and field experiment were carried out
subsequent. Simulated and experimental research were car-
ried out to verify the technological feasibility in engineering
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application. Both laboratory and field experiments showed
that it is feasible using RBF and ACA to improve drilling
positioning and efficiency compared with manual drilling.

II. KINEMATICS MODEL

A. MECHANICAL STRUCTURE

The physical diagram of drilling mechanism in drilling jumbo
is illustrated in Figure 1. Kinematic pairs of the drilling mech-
anism consist of a slip compensation pair and five rotating
pairs including drilling-rod swing mechanism, drilling-rod
swing compensation mechanism, drilling-rod lifting mecha-
nism, drilling-rod lifting compensation mechanism and over-
turning mechanism, with six degrees of freedom. The slip,
lifting and swinging of drilling mechanism are driven by
hydraulic cylinders, while the overturning motion is realized
by worm gear and worm mechanism. The swing mechanism
and overturning mechanism compensate each other to ensure
the drilling-rod perpendicular to the working section.

Swing ion | Propulsion compensation
mechanism cylinder

FIGURE 1. Physical diagram of drilling mechanism with 6 degrees of
freedom.

B. SPATIAL PARAMETRIC MODEL

The spatial model and parametric coordinate system is
abstracted established by D-H (Denavit-Hartenberg) method,
as shown in Figure 2.
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FIGURE 2. Spatial model of the drilling mechanism.

Model parameters can be defined sequentially from the
definition method of D-H coordinate system as follows, and
presented in Table 1.

Bi is the rotation angle around the x;_; axis;

a; is the moving distance along the x;_ axis;

d; is the moving distance along the z;_1 axis;

0; is the rotation angle around the z;_; axis.
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Therefore, the pose transformation matrix between any
adjacent parametric coordinate systems i and i + 1 can be
expressed as

i1 —sOipicaipr  sOipisaiyr  aip1ctip
i = | sbir1 cOiprcipr —cOipisip aip186ip
i+1 Sy catiy diy1
0 0 0 1
(H
where c6, s, co, sa denote cosf, sinf, cosa, Ssina,
respectively.

The general pose transformation matrix of drilling mech-
anism from the initial coordinate system ogxpypzo to the
terminal coordinate system o0ex6y6Zz6 s expressed as

or =9rir3TiTiriT 2

Substituting the parameters in TABLE 1 into (1) and (2),
the following result is obtained

ny Ox ax  Px
Op=|™ O dy Dy (3)
n; 0z dz Ppg
0 0 0 1
where n = [ngy, ney , ”6z]Ta 0 = [06x, Oy Oﬁz]T, a =
[asy, asy , aGZ]T are the direction vectors projected from the
terminal coordinate system oexy6Ze to the initial coordinate
system 0gxoyozo, respectively. p = [pex, Pey » pe:l’ is the
position vector projected from oexsysze to 0pxoyozo. The
specific calculation formulas of the parameters above are as
follows.

ny = —cO5(5601504 + cO4(cO1562503 — cO1cHrc03))

—5605(cO1cHr503 + cO1cO356»)

ny = cts5(c01504 — cO4(s01502503 — s01c62¢03))

—5605(501c0503 + 561502563)

n, = $05(cOyc03 — s025603) + cO4c05(cHy503 + cO356>)

0y = 594(cO1502503 — cO1cOrc03) — cBy501

0y = 0104 + 504(s01502503 — 501c0>c03)

0, = —504(cthrs63 + cO356>)

ay = s65(s01504 + cO4(cO1562503 — cO1cHrc03))

—cO5(cO1cbrcO3 + cO1cH350;)

ay = —565(c01504 — cO4(s015025603 — s601562¢03))

—c0O5(561cHr503 + s01c0350;)

a; = cOs5(cOrcH3 — $s62503) — cO1505(cOr503 + cO3562)

Px =350c601 +dg(s95(561 504 4 cO4(cO1 502503 — cO1c0c63))

—cB5(cO1c02c03 41 c03502))+2200c61 02 450064561
—500s94(091s92s93 — 6‘916‘926‘93) - 115C91592S93

+115c61cOyc03 — 543¢01cOr503 — 543¢01 356>

Py =350501 +de(s95(c615604 — cO4(501 5025603 — 561 cO1c03))

+cO5(501 0503 + s61c035602)) + 2200c61 cOy — 500ch4c6;
—500s04(s01 5625603 — 5601 cbrc03) — 115501562563

+115501cHrc63 — 5435601 cOr503 — 5435601 cO356>

Pz = 3505601 + dg(cO5(cOrc03 — s62563)

—04505(cOr503 + cO3502)) + cO5(s01cOr5603 + s61cH350>))

42200560, + 500564(c6r563 — s62¢63) + 115¢0,503

+115562¢603 + 543¢Hc03 — 543560350,

“
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TABLE 1. Parameters and their scopes of drilling mechanism.

Coordinate Swing angle Parameters

system 0 Max/°  Min/®  B/° a/mm  d/mm
X1)121 91 45 -45 90 350 /
Xoa2Zp 6, 56 -16 90 2200 /
X3)3Z3 03 =75 —135 -90 1 ]5 /
X4VaZ4 04 180 -180 90 / 543
XssZs 0Os 90 -90 -90 / 500
X6V6Z6 de 2100 1500 0 / ds

lll. METHODOLOGY
A. DRILLING-ROD POSITIONING CONTROL
Accurate positioning of drilling-rod is the basis of adap-
tive rock drilling control in roadway excavation. Based on
the known borehole position and the spatial model of the
drilling mechanism, we proposed a variable value optimiza-
tion method to inversely calculate the optimal value of every
joint variable based on RBF neural network, the so called
inverse kinematics solution of the rock drilling mechanism.
RBF neural network is a three-layer neural network, which
includes input layer, hidden layer and output layer. The trans-
formation from the input layer to the hidden layer space is
nonlinear, while linearization is applied in the transformation
from the hidden layer space to the output layer space. In this
paper, joint variables, expressed as follows, are regarded as
the output layer.

T =164, 6, 03, 04, 05, de] (5)

gT, the determined general pose transformation matrix of
drilling mechanism, is treated as the input layer of RBF neural
network by bring the offered borehole coordinates into (3).
It is difficult to ensure the 12 parameters in the general pose
transformation matrix to be orthogonal strictly. Hence, Euler
transform RPY is employed to propose a new input matrix
reducing the required variables.

PT = [vapyvpzv «, 137 7/] (6)

The corresponding transformation formula is presented as
follows.

a = atan2(ny, ny)

B = atan2(—ng, n, coso + ny sina) 7

y = atan2(ay sino — a, cos @, —oy sina + 0y cos o)

The input data are linearized and projected into the [0, 1] by
Min-Max Normalization method avoiding the singular value

and the linear conversion function is shown below.

;o Prlil —minPrl[i]
Prlil = max Pr[i] — min Pr[i] ®)

where P’T [i] is the normalized input matrix.

The kinematic inverse solution of the drill mechanism is
obtained based on the mechanism model parameters and RBF
network, and the correctness and practicability is verified
by simulation and experiment. The main process of drilling
positioning control parameters determined by RBF neural
network is shown in the Figure 3 below.
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Initialization
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Kinematic model of
mechanism and
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v
RBF network structure
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v
Communication establishment
v
RBF network training
and testing
Inverse kinematic solution
. <
of the mechanism
Communication
transmission

Solenoid valve
operation by controller

hether the
drilling rod is in
position

Precise
movement of
mechanism

FIGURE 3. Main process of drilling positioning control parameters
determined by RBF neural network.

B. ACA-BASED DRILLING BOREHOLES SEQUENCE
PLANNING

According to mine construction regulations, a series of bore-
holes should be arrange in roadway section in a certain
way. The optimal drilling sequence is of great significance
to improve the tunneling efficiency and reduce the energy
consumption. Boreholes sequence planning methods based
on minimum moving distance and minimum swing angle
were proposed and compared. Equation (9) and equation (10)
represent the optimization objectives of the two methods,
respectively.

n—1
S=Y"6 (=12 ,n-1) ©)
i=1

where S denotes the total moving distance of drilling-rod,
l; denotes the distance between two adjacent holes, and n is
the number of boreholes.
n—1
T=Y"16— 611 (10)
j=1
where J is the sum of all joint angles.

At present, algorithms commonly used in robot path
planning mainly include A* algorithm, Dijkstra algorithm,
Theta* algorithm and other complete algorithms with large
complexity, as well as sampling-based planning algorithms
such as RRT algorithm, RRT-connect algorithm and rolling
online RRT algorithm (with wide application in high dimen-
sions). In addition, there are artificial potential field method,
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BUG algorithm and incremental heuristic algorithm (LPA*
algorithm, D* Lite algorithm), which are mainly used for
motion control in high dynamic environment. The basic ant
colony algorithm has high computational complexity and
high cost of solving time and initializes a lot of parameters
determined empirically.

Simple and reliable optimization algorithms is required
for the path planning of drilling machines in mines. Based
on comprehensive consideration of other path planning algo-
rithms and the positioning characteristics of mining machin-
ery, good communication between IPC (Industrial Personal
Computer) and PLC ensures the application of ACA to
control mining equipment. Ant colony algorithm (ACA) is
adopted for arrayed boreholes sequence planning owing to
its fast convergence and small cumulative error. ACA-based
borehole sequence planning procedure is shown in Figure 4.
Borehole sequence planning problem is expressed as a
digraph with N points of G = (N,A). Where N =
{1,2,...,n}and A = {(p, ¢@)|p, g € N}.

Initialization
v
¥

Randomly arrange ants

Record of ants' paths

v

Select the position of next borehole
v

at the next position

Return to initial borehole

v
Update the pheromone matrix
and the pheromones
concentrations in per path

Run through No
all boreholes

Yes y

Output the

optimal borehole
sequence path

FIGURE 4. Borehole sequence planning procedure based on ACA.

The variable (distance or angle) between two holes is
described as (dpg)nxn and the objective function can be
expressed as

fon) = "di i, (11)
i=1

where w = (ky, kp, ..., k,) is a sequence of boreholes plan-
ning and k; means the i-th borehole after sequence planning.

Random probability of boreholes selection and pheromone
are the key parameters in ACA. Taking a borehole-positions
as the initial point, the borehole sequence is stored by memory
vector, and the next borehole is selected according to the
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random probability, which is expressed in

[50]" x [n3()]"
Pg-(t) Yo [t®I% x ()]

ké¢allowedy,
0 otherwise

5 J € allowedy,
12)

where 7;(t) is the pheromone concentration between the
initial point i and the termination point j, with the initial
moment 7;(t) = Const; n; = 1/d;; is volatile function indi-
cating the pheromone visibility between two points; allowed
is a collection of unvisited points at time #, « and B are
the pheromone inspired factor and the self-inspired factor
characterizing the importance of pheromone concentration to
the individual selection path of ants and the importance of
visibility respectively.

As presented in (13), the pheromones on all paths will
evaporate at a certain rate after each iteration.

!

(1) = (1 — p)rjj + Y _ ATf

r=1 (13)
(C)~' Antrfromito;

Afl-]’- =
0 others

where f is the number of ants, p is the volatility coefficient
of pheromone, Ari; is the pheromone left in the path from
point i to point j of ant r, C, is the total path traveled by ant r.

Based on the above theories, the specific ACA for drilling
sequence planning was constructed. The computational com-
plexity of the ACA model used in this article is shown in
TABLE 2. Compared with basic ACA, it significantly reduces
the calculation of path distance (or angle) and the complexity
of parameter initialization.

TABLE 2. The computational complexity of the proposed model.

The basic The ACA variant proposed
ACA in this article

Parameter initialization O(n*+m) O(n?)
Starting point selection O(m) O(m)

Path selection O(mn?) O(mn?)

Path distance calculation O(mn?) O(mn)

Pheromone updating O(n?) O(n*+mn)

Clar gl leand oy o)
Result outputing o(1) o(1)

IV. SIMULATION AND ANALYZATION

A. DRILLING-ROD POSITIONING SIMULATION

5400 groups of data are randomly generated in MATLAB
toolbox for model training, and 600 groups were used for
test. The true-value of each joint variable is obtained by RBF
neural network. Errors shown in Figure 5 are obtained by
comparing the test result and the true-value of each joint
variable acquired by RBF neural network. It is easy to know
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FIGURE 5. Prediction errors of joint variables.

that the maximum angle error does not exceed 0.01° (0.6%)
while the maximum moving error is no more than 0.5mm.
25 boreholes were designed and arranged in a roadway
section of 3m x 3.2m to test the borehole positioning sim-
ulation. Joint variables obtained by the RBF neural network
algorithm are brought into the space model (8) to acquire the
actual positions of drilling-rod shown in Figure 6. Position
deviations of boreholes are shown in Figure 7 indicating that
predicted borehole positions are basically coincident with the
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FIGURE 6. Simulation results of borehole positioning in roadway section.
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FIGURE 7. Error distributions of borehole positioning.

target position. In the simulation of 25 boreholes, the average
error in x direction is 8.76mm while that is 10.72mm of
y direction, and the general error is regulated below 1.1%.
It is proved that the proposed borehole positioning method is
feasible.

By the way, the error distribution also shows that the
drilling mechanism easily produces over-damping control in
the vertical direction, and the vertical-directional damping
weight should be reduced in practical application.

B. BOREHOLES SEQUENCE PLANNING SIMULATION

1) PARAMETER OPTIMIZATION OF ACA

The efficiency and accuracy of boreholes sequence opti-
mization are directly determined by the parameters of ACA,
including the pheromone inspired factor «, the self-inspired
factor B, and the volatilization factor p. The pheromone
inspired factor « is set as 1, the self-inspired factor 8 is an
integer selected at the range of 1 to 6, the volatilization factor
p is a decimal number less than 1, respectively. The influence
of different coefficients on minimum moving distance opti-
mization results is explored and the envelope diagram of the
optimal results under different parameters by interpolation is
presented in Figure 8.
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FIGURE 8. The envelope diagram under different parameters.

Best boreholes sequence planning optimization result
appears at the pheromone volatilization factor p of 0.55 and
the self-inspired factor B of 2.5.

2) SIMULATION RESULTS UNDER DIFFERENT OPTIMIZATION
TARGETS

Based on optimal parameters obtained above, boreholes
sequence planning simulation results under different opti-
mization targets of minimum moving distance and minimum
swing angle are shown in Figure 9.

In the simulation with the minimum moving distance as
the optimization target, the total moving distance of the
drilling-rod is 15900.32 mm, and the swing angle of the
mechanism is 16.12 rad. In the optimization simulation aim-
ing at the minimum swing angle, the total rotation angle of the
mechanism is 15.25 rad (reduced by 5.4%), while the general
moving distance is 16440.26 mm (increased by 3.4%). The
ACA optimization with the minimum rotation angle improves
the efficiency of drilling process and the convergence speed.
The proposed scheme is beneficial to the control system of
the drilling mechanism without the conversion of system
parameters.

The iterations and running time of the optimizations
of shortest moving distance and minimum swing angle
of drilling rod are compared and analyzed, as shown in
Figure 10 below. It can be found that the optimization of
minimum swing angle increases the operating efficiency of
the mechanism by 5.4% at the cost of 0.13% in running
time.
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FIGURE 9. Boreholes sequence planning simulation results under
different optimization targets.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. EXPERIMENTAL BENCH

To verify the accuracy and feasibility of borehole positioning
and sequence planning, experimental researches were carried
out. Shown in Figure 11, drilling system, hydraulic control
system, data processing system and data optimization center
are the four parts of the experimental bench.

The test system consists of two PLC (CP1H) and six
sensors, including five rotary encoders and one displacement
sensor arranged in every joint. The hydraulic system is con-
trolled by the slave PLC and directly drives the drilling-rod
through the solenoid valves. Data optimization center is com-
posed of OPC toolbox in Simulink and Kingview system,
which realizes automatic real-time feedback control between
MATLAB and PLC. The drilling system includes drilling
jumbos, simulated roadway, sensors, and spraying mecha-
nism. Ignoring the drilling time and the attitude adjusting
process of drilling jumbos, a spraying mechanism was fixed
to replace drilling-bit at the end of drilling-rod to research the
drilling positioning technology.

The field test is a comprehensive environment with strong
noise interference, which mainly includes machine vibra-
tion, electrostatic interference, magnetic interference and
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FIGURE 11. Experimental bench.

high-frequency electromagnetic interference. Firstly, all sen-
sors are grounded, signals are transmitted by electrostatic
shielded cables, and unnecessary cable connections (shown
in Figure 12) are avoided. All the controllers are packed
into a metal control cabinet to shield against high-frequency
electromagnetic interference and remain isolated from the
drilling jumbo to against vibration.

B. DRILLING-ROD POSITIONING TEST
In order to verify the accuracy of the drilling-rod position-
ing control algorithm, 10 boreholes were arranged in the
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simulated roadway section before the experiments. The posi-
tioning of drilling-rod was simulated on the drilling test
system based on RBF neural network. Results of borehole
positioning test are shown in Figure 13 and the positioning
error analysis of the test is shown in Figure 14.

It can be seen that borehole 1 and borehole 2 have higher
positioning accuracy while the general positioning errors
become large at the top of roadway section (borehole 6 and
borehole 7). Boreholes drilling on the left and right sides

VOLUME 8, 2020

y+ | —O0— Target drilling sequence
= | O Actual diilling sequence
3000

Roadway

2000

1000

Vertical direction {mm)

n 1 i i 1 1
=2000 -1000 (] 1000 2000
Horizontal direction (mm)

(a) Non-optimization

y | o Tarzet drilling sequence
-0 Actual drilling sequence
3000 F

Roadway

2000

1000 |

Vertical direction (mm)

i 1 s 1
2000 -1000 ] 1000 2000
Horizontal direction (mm)

(b) Minimum moving distance

y | —o— Target driling sequence
=0 Actual drilling sequence
3000

Roadway

2000

Vertical direction (mm)

i 1 L 1
-2000 -1000 o 1000 2000
Horizontal direction (mm)

(c) Minimum swing angle

FIGURE 15. Boreholes sequence planning test results with different
optimization targets.

of roadway section exceed the planned position, it is due to
the assembly error of test equipment and the underdamping
phenomenon appears in the adjustment in horizontal direc-
tion. In addition, the positioning error of the whole boreholes
basically satisfies the normal distribution. As the statistics
shows, the maximum positioning error is 5.6%, and the aver-
age positioning accuracy is 3.2%. The experiment indicates
that RBF neural network can effectively achieve borehole
drilling compensation with high precision.

C. BOREHOLES SEQUENCE PLANNING TEST

Reducing the movement path and time of drilling mechanism
is one of the effective methods to improve the efficiency
of drilling jumbo. The experimental researches were carried
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TABLE 3. Drilling time statistics of different borehol e planning
methods.

Test 1(s) Test 2(s) Test 3(s) Test4(s) Mean value (s)

Non-optimization 782 814 794 774.5 781.8
Minimum moving ¢ 796 785 7755 771.7
distance

Minimum swing — ce 691 6865 675 6778
angle

out with the optimization targets of non-optimization, mini-
mum moving distance, and minimum swing angle. Driving
cylinders of the drilling mechanism were set at constant
speeds. Drilling time was selected as an indicator of the
optimization result. Multiple tests were performed to prevent
random errors from affecting the experimental results. Mean-
while, the experiment simulates the drilling operation only
rather than actual drilling to avoid the influence of drilling
time. Boreholes sequence planning test results are shown
in Figure 15.

The conventional borehole drilling without optimization is
more inclined to the horizontal and vertical drilling sequence.
Drilling time statistical analysis was carried out to measure
the efficiency of different borehole sequence planning meth-
ods and shown in TABLE 3 and Figure 16.

Obviously, boreholes sequence planning scheme with opti-
mization target of minimum swing angle takes the least
amount of total time. Due to the few number of boreholes
in the test and relatively simple sequence planning, there
is little difference in the consumed time between the non-
optimization and the minimum distance optimization scheme.
As shown in figure 12, the mean values of drilling time
under non-optimization and minimum distance optimization
are 16.3% and 15.1% larger than that of minimum swing
angle optimization target, so as to the standard deviations,
which indicates weakness in time-consuming of the two
schemes. Therefore, aiming at the drilling sequence plan-
ning of multi-freedom mechanical arm driven by hydraulic
cylinder, the minimum swing angle optimization scheme
can reduce the traversal time and improve the traversal
efficiency.
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VI. CONCLUSION

In order to realize rapid tunneling in the hard-rock roadway,
drilling-rod positioning and drilling sequence planning were
investigated based on RBF neural network and ACA.

RBF neural network is used to control the positioning
of drilling-rod. The simulation demonstrates that most of
the predicted drilling-rod positioning are coincident with the
target borehole positioning basically. The maximum error in
horizontal direction is 22 mm while that is 18 mm in vertical
direction, and the general error is controlled within 1.5%. And
the experiment result indicates that the biggest position error
ratio is 5.6% and the average positioning error of all holes is
104mm with error ratio of 3.2%. The computer simulation
results are in good agreement with the experiment, which
indicates the correctness of the method, and the overall error
is basically controlled within the acceptable range of the
project.

Ant colony algorithm (ACA) is adopted for drilling
boreholes sequence planning and minimum swing angle
optimization scheme for the manipulator is presented.
It improves borehole traversal efficiency by 13.3% than that
of non-optimization drilling method. Path planning with opti-
mization target of minimum swing angle through Ant Colony
Algorithm is a potential approach improving drilling effi-
ciency of drilling mechanism.
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