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ABSTRACT Nowadays, public transportation junctions (PTJs) such as metro stations and railway stations
can involve up to half of urban traffic and account for a large portion of energy usage in urban areas. The
tremendous traffic and energy flows in PTJs have induced severe problems in safety and efficiency. Thus,
in this paper, we present a comprehensive edge computing enabled navigation framework to aid the emergent
evacuation processes within PTJs with respect to energy and safety restrictions. From the energy-saving
aspect, due to the resource restraints of the on-site Internet of Things (IoT) based environmental monitoring
system, a queueing network model is utilised to balance the energy utilisation and reduce the congestion of
the sensing and navigation process during emergency. From the safety aspect, three edge computing aided
cooperative strategies are proposed to dynamically assign evacuees into several groups to adapt their course
of action with regard to their physical conditions and immediate environments. Simulation results show
that the use of the queueing network model can reduce and balance the energy utilisation of the on-site
IoT network. Experiments also show that the use of cooperative strategies to adjust the evacuees’ category
and the associated routing algorithm can achieve higher survival rates.

INDEX TERMS Cognitive packet network, cooperative strategies, edge computing, emergency navigation,
energy-efficiency, G-network.

I. INTRODUCTION
With the rapid progress in urbanisation, informatisation,
as well as the large-scale construction of transportation infras-
tructures [1], public transportation junctions are gradually
becoming the nexus of energy flows, information flows and
traffic flows. The necessity of energy flows to support the
electrified transportation systems and the concentration of
traffic flows have brought new challenges to emergency nav-
igation (also known as evacuation path planning) in both
system optimisation and evacuee behaviour management per-
spectives.

From the system optimisation aspect, the advancement in
sensing, computing, information and communications tech-
nologies has greatly improved the efficiency of emergency
navigation systems. However, the huge amount of generated
sensory data could also aggravate the burden on real-time
computation and has led to the continuous evolution in
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computing paradigms, including desktop computing,
client/server computing, networks computing, cluster com-
puting, grid computing and eventually cloud computing [2].
In the recent years, the prosperity of Internet of Things (IoT)
and the rich cloud services has spawned a new computing
paradigm—edge computing. Compared to cloud comput-
ing which pulls all the computations to the remote cloud
servers, edge computing is able to perform computation [3],
caching [4], data storage, relay and resource allocation [5]
at the edge of the network, which is nearer to IoT data
sources [6]. Thus, edge computing has become a promising
technology since it can efficiently shorten task response time,
reduce network burden, prolong IoT battery life time, and
improve data safety and privacy [7]. In this paper, we take
advantage of these features, and propose an edge computing
enabled system framework to reduce the energy usage of an
emergency navigation system.

From the evacuee behaviour management aspect, conges-
tion or stampede of passengers in transportation junctions
during disasters or huge public events, can be a significant
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threat to public safety. Destructive crowd behaviours such
as clogging, pushing and trampling may block evacuees
and induce unnecessary fatalities and injuries. Recent stud-
ies related to crowd behaviour modelling indicate that
cooperative collective behaviours can mitigate the aforemen-
tioned harmful behaviours and benefit an evacuation pro-
cess. For instance, by employing a cellular automata model
to mimic grouping behaviours, the work in [8] shows that
the evacuation time decreases with the increasing numbers
of groups. Similarly, the work in [9] employs a cellular
automata model to investigate the emergence of cooper-
ative behaviours during emergency with an evolutionary
game approach; the experiments indicate that the coop-
eration level of evacuees and evacuation efficiency will
grow with the increase in escape aspiration level. However,
although various cellular automata and agent based mod-
els have been designed to mimic the empirical collective
behaviours of human beings in emergency, little work has
been conducted to apply some of these ideas to the field
of emergency navigation, which aims to compute proper
paths.

Most of the previous emergency navigation algo-
rithms [10] use a single metric to select paths for all evacuees
without considering their characteristics in terms of age,
mobility, level of resistance to hazard etc., and therefore, may
require diverse services during an emergency. For instance,
evacuees such as sick people or aged people need to choose
the safest paths that will be well ahead of the spreading
hazard while for others may prefer the quickest paths without
hazard. Although our previous work [11], [12] have proposed
a routing algorithm to guide diverse evacuees with respect
to their requirements and capabilities, this algorithm sticks
to a single routing algorithm during an entire evacuation
process and are insensitive to sudden changes in the hazard
environment such as abrupt congestion or injury of civilians.
The subsequent work in [13] presents a health-aware dynamic
grouping strategy and suggests that the adaptation of groups
as well as the associated routing metric with respect to the
on-going health conditions and mobility of evacuees can
improve the efficiency of an evacuation process. In this paper,
we extend the previous work and develop three dynamic
grouping mechanisms to adjust the behaviours of evacuees in
terms of their on-going physical condition and surrounding
environment. We borrow the concept of the cognitive packet
networks (CPN) [14], [15] to customise escape paths for the
diverse evacuees in a building based on the time-oriented and
safety-oriented metrics in [12]. Since cognitive packets play a
vital role in route discovery and information collection of the
CPN framework [16] and their behaviours contribute signifi-
cantly to the efficiency of path-finding as well as the energy
usage. A G-network model [17] based optimisation algo-
rithm, which is deployed in the off-site edge computing cen-
ter, is utilised to manage the dropping probability of cognitive
packets when traffic is under overload conditions. Specifi-
cally, the main contributions of this paper are summarized as
follows.

• We present an edge computing enabled queueing net-
work model for the energy and delay optimisation in
a given IoT environment which is utilised to provide
emergency navigation services for civilians. This com-
prehensive model takes the packet-routing behaviours of
the IoT network as well as interactions between the IoT
and the back-end edge computing center into consider-
ations. The model gradually optimises the IoT network
by dynamically tuning the dropping probability of pack-
ets at each node of the IoT network. Since the tuning
process is computationally-intensive, it is offloaded to
the remote edge computing center. Hence, the on-site
IoT network can be energy and latency efficient by only
updating the dropping probability periodically.

• We present three edge computing enabled cooperative
strategies to aid the on-site path-finding algorithm to
optimise egress paths for evacuees, which is innova-
tive in the research field of emergency management.
The first strategy enhances the ‘‘sensitivity’’ of the
path-finding algorithm by shifting path type of evacuees
with respect to their physical attributes. The second strat-
egy enhances the ‘‘congestion-adaptation’’ of the the
path-finding algorithm by distributing evacuees to alter-
native paths when sudden congestion occurs. The third
strategy enhances ‘‘resilience’’ of the path-finding algo-
rithm to the initial distribution of evacuees by assigning
them to specific staircases and exits. It is shown that
these cooperative strategies can significantly improve
the survival rate of the evacuees.

The remainder of this paper is organised as follows. In the
next section we review the literature relevant to our work.
Section III presents the fundamental theories underlying
our research problem and formulates the system model.
In Section IV, the optimal packet-dropping probability is
obtained by minimising the proposed compound cost func-
tion via a gradient descent algorithm. Next, we propose sev-
eral cooperative strategies for crowd movement optimisation
in Section V. The simulation models and assumptions are
then described in Section VI. The experimental results and
discussions are presented in Section VII. Finally, we draw
conclusions in Section VIII.

II. LITERATURE REVIEW
In accordance with the aforementioned contributions of this
paper, we review literature from both system optimisation and
emergency cooperative strategies aspects.

A. SYSTEM OPTIMISATION IN EMERGENCY NAVIGATION
Due to their long term monitoring ability, wireless sensor
network (WSNs) have been involved in a number of security
related applications such as emergency navigation, intrusion
detection, medical care and criminal hunting. Since WSNs
are generally formed by battery-powered devices, various
protocols are designed to improve the energy efficiency in
information acquisition and transmission. Many routing pro-
tocols that are specifically designed for WSNs have been
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presented due to power constraints and unattended opera-
tions in life time of WSNs. Data delivery models play a
vital role in WSNs related protocols and can be divided into
continuous models, event-driven models and query-driven
models [18]. In continuous models, sensor nodes transmit
data periodically while in the latter two models data are sent
when a trigger event is generated. This review focuses on
literature related to continuous models in which data rate or
packet life time has a significant impact on reducing traffic
or saving energy. By taking imperfect channel conditions into
account, the work in [19] presents an adaptive rate selection
algorithm to adjust the throughput to the closest nominal data
rate options; each sensor node chooses the highest data rate
based on the pilot signal-to-noise ratio and improved overall
throughput are observed in simulations. The study in [20]
considers the Quality of Service (QoS) of video or imaging
sensors and categorises data packets into real-time traffic and
non-real-time traffic; each node maintains one queue for each
type of traffic and a queueing model [21] is employed to
estimate the delay; the bandwidth ratio between two types
of traffic is dynamically adapted to satisfy the time latency
requirements for both categories of data. By separating data
packets into routine packets and unusual packets, the research
in [22] presents a Randomized Re-routing (RRR) mechanism
to divert routine data to secondary routes and keep the high
QoS paths for unusual data; the occurrence of unusual events
is determined by monitoring the significant changes in traffic
flows; the experiments which are performed in the ns-2 net-
work simulator show that this algorithm provides remark-
ably improvements on the QoS of unusual data while fulfills
the QoS requirements of routine data. A Brownian motion
model [23], [24] is presented in [25] to evaluate the effect
of time-out to the average packet travel time in a wireless
network where packets search the destination without the aid
of routing table; common phenomena such as packet loss are
considered and the results indicate that a judicious choice
can effectively minimise the average packet travel time. The
major drawback of the WSN based emergency navigation
systems is the limited computing and battery capacity. Hence,
some emergency navigation systems have integrated cloud
computing technologies that are accessible via on-site WSN,
to offload intensive computations to remote cloud servers. For
instance, the research in [26] proposes a route recommen-
dation system to provide safe and less-congested paths for
vehicles and evacuees during a disaster; the system is com-
posed of a front-end intelligent transportation system (ITS)
and a back-end cloud-based parallel computing cluster; the
ITS is responsible for real-time traffic load monitoring while
the cloud computing cluster is utilised to compute the routes
with the shortest potential time to destination; when a road
segment is occupied by emergency vehicles, the cloud clus-
ter will provide secondary routes for evacuee vehicles to
avoid possible congestion. With the recent prosperity of IoT
and mobile computing techniques, in [27], an evacuation
path planning system is designed to calculate safety-oriented
evacuation paths for civilians to appropriate shelters with

a relationship-sensitive artificial potential field algorithm;
evacuees with relationships can be guided to the same shelter;
the path planning system consists of an IoT enabled software
application to gather location data of evacuees and a cloud
service center to perform route planning.

B. COOPERATIVE STRATEGIES IN EMERGENCY
NAVIGATION
Crowd management issues, which are likely to arise in con-
gested sites of modern urbanised societies, has aroused a
new interest in recent decades due to their interactive effect
on evacuations. Destructive crowd behaviours such as stam-
pede, which can prolong the clearance time of an evacu-
ation process, may lead to serious fatalities [28]. Hence,
in order to optimise the design of crowded sites and esti-
mate the evacuation time, much work has been dedicated
to investigate and design crowd behaviour models such
as cellular automata models [8], social force models [29],
fluid-dynamic models [30] and agent-based models [31]
to simulate the crowd movements in reality and prevent
destructive crowd behaviours from occurring by improving
the design of built environments, which are also known
as off-line emergency navigation algorithms [32]. Although
much research on multi-agent systems [33], robotic sys-
tems [34] and autonomous systems [35], [36] has shown the
benefits of cooperative grouping behaviours in improving the
system performance, little work has been done in the field
of real-time emergency navigation. The work in [37], [38]
present a resilient emergency support system (ESS) to dis-
seminate emergency messages among evacuees with the aid
of opportunistic communication; evacuees choose the short-
est paths to exits and exchange hazard information to evac-
uees in proximity; the impact of ‘‘passive’’ cooperation of
information-sharing among evacuees is evaluated with dif-
ferent communication ranges. The research in [39] proposes
an infrastructure-less emergency navigation system to guide
evacuees with the aid of smart handsets and cloud servers; to
balance the remaining battery power among portable devices,
evacuees are organised in loose groups to increase the pos-
sibility of multi-hop relaying. The study in [40] presents an
emergency rescue evacuation support system (ERESS) with
specific mobile terminals that can maintain communication
with the aid of a mobile ad hoc network during disasters; an
ERESS holder and the surrounding non-holders can form a
group and follow the evacuation route with the shortest time
to exit; the moving speed of a group is predicted based on the
number of evacuees in the group. Since the evacuation effi-
ciency can be considerably affected by the actions of evacuee
leaders, the work in [41] designs a leader-following strategy
to evacuate evacuees in an urban railway transit station; a
bi-level optimisation model is utilised to optimise the number
and initial locations of leaders, as well as the their routes with
a variant of A* algorithm and a multi-leader coordination
mechanism. The research in [42] proposes a dynamic group-
ing mechanism to improve the evacuation efficiency during
building evacuation, evacuees are grouped with respect to the
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TABLE 1. Comparison with existing relevant contributions in emergency
management. EBM: evacuee behaviour modelling, EPP: evacuation path
planning, WSN: wireless sensor networks, PD: Portable devices.

selected exits and the distance to other evacuees; an artificial
bee colony algorithm is employed to calculate desired paths
for each group.

In conclusion, as shown in Table 1, most of the previ-
ous emergency management research that has considered
heterogeneous evacuee categories or cooperative strategies
concentrates on designing proper crowd behaviour mod-
els to mimic real emergency situations rather than design-
ing navigation algorithms to provide appropriate evacuation
routes. Although several emergency navigation algorithms
have introduced cooperative strategies, these cooperative
strategies are limited to provide resilient communications,
leader-following or grouping adjacent evacuees with respect
to their desired destinations. Additionally, to the best of our
knowledge, few cloud or edge computing aided emergency
navigation systems have considered the energy optimisation
problem of the on-site WSN or IoT network.

III. PROBLEM FORMULATION AND SYSTEM MODEL
This section firstly presents the descriptions and assump-
tions of the investigated fire-related evacuation navigation
problem, which focuses on developing navigation algorithms
and cooperative strategies to direct evacuees out of a con-
fined built environment safely and efficiently when a disaster
occurs. Secondly, based on the realistic evacuation scenario,
a bi-level system approximation model is abstracted and for-
mulated based on a lower level CPN model and a upper level
G-network model, respectively. The CPN model is utilised
to search appropriate evacuation paths for evacuees while
the G-network model is employed to balance the energy
consumption and reduce the packet network congestion of
the IoT network. A list of notations used in this section is
summarised in Table 2.

A. PROBLEM DESCRIPTIONS AND ASSUMPTIONS
To provide appropriate egress routes for evacuees, we assume
that an edge computing enabled two-tier emergency response
system is deployed in a transportation junction as shown

TABLE 2. List of notations used in Section III.

FIGURE 1. A schematic diagram illustrating the layout of the
Nanluoguxiang transportation junction.

in Figure 1. The system is composed of an on-site IoT net-
work and an off-site edge computing center as illustrated
in Figure 2. The IoT network is utilised to search paths
for evacuees via performing CPN operations while the edge
computing center is employed to conduct intensive compu-
tations including the algorithms in Section IV and V. The
IoT network is pre-deployed in the built environment and
consists of edge nodes (ENs) and sensor nodes (SNs). ENs,
which employ the edge-computing concept and function as
CPN nodes, emit SPs to search and measure paths to exits and
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FIGURE 2. The framework of the proposed edge computing enabled
emergency navigation system.

provide appropriate paths for evacuees in proximity. Hence,
ENs form a CPN and act in a cooperative manner via learning
others’ experience, although each EN possesses limited com-
puting power, they together can solve desired paths rapidly
and adaptively. Real-time decisions can be sent to evacuees
via transmitting suggested paths to portable devices carried
by the evacuees. ENs also work as relay nodes to exchange
information among evacuees and the remote edge computing
center, while providing distributed and lightweight comput-
ing services. SNs are employed to monitor the situation of the
surrounding area and gather hazard information. To calculate
the desired paths for evacuees, our algorithm requires the
estimated number of evacuees nearby and the severity level
of the hazard as input parameters. To count the number of
evacuees in themonitored area, various sensors such asWI-FI
probe [43] can be used to sniff the presence of mobile devices
carried by evacuees via capturing the features of the mobile
devices such as MAC address and strength of the signal.
To detect the severity level of the hazard, visual sensors
such as camera can be used as a general way to detect the
hazard type and severity level. For a specific hazard such as a
fire hazard, temperature sensors can also be implementable.
ENs and SNs are deployed at the significant locations such as
junctions of two or more paths.

We have divided evacuees into two categories and
customise one specific type of paths for each category of
evacuees under the CPN framework. Class 1 evacuees rep-
resent prime-aged evacuees with high mobility and physical
strength. Class 2 evacuees represent evacueeswith lowmobil-
ity and weaker physical conditions, such as children, aged
people or sick people. As shown in Figure 2, the CPN frame-
work can distribute packets including smart packets (SPs) and
acknowledgements (ACKs) among ENs to search paths for
evacuees. Each class of evacuees is associated with a type
of packets. We have used type 1 packets with time-oriented
routing metric to search paths with the shortest time to exit

and type 2 packets with safety-oriented metric to search
safest-shortest paths for Class 1 and Class 2 evacuees,
respectively.

B. MODEL FORMULATION
To direct evacuees out of the hazardous areas efficiently,
we utilise an adaptation of the widely tested network routing
protocol, namely the Cognitive Packet Network [44], [45].
The routing operations of CPN and its variations for Evacuee
Routing Problems can be found in [12]. The time metric
and safety metric we used to search paths for evacuees are
derived from the previous work [12]. The routing metrics
are the quality of service (QoS) goals that are pursued by
SPs and optimised by the random neural networks (RNN)
algorithm [46].When a SP reaches an exit, it will be converted
into an ACK and bring back the discovered path as well as all
the collected sensory data. After an ACK backtrack to an EN,
collected information will be extracted and then measured by
routing metrics, the result will be used as the input of RNNs.

On the other hand, since the IoT network suffers from
limited battery power, the battery of the ENs, especially
the nodes on the backbone, may be drained rapidly due to
excessive communication and computation demand. Hence,
in this paper, we propose a packet discard mechanism to
‘‘drop’’ certain SPs to reduce the burden of the network.
Instead of continuing to search the network, a ‘‘dropped’’
SP is abandoned at the EN, which can introduce two benefits
to the CPN: (1) it can increase the ‘‘sensitivity’’ of the CPN
by avoiding the RNN from over-training; (2) it can reduce
the energy consumption and network congestion caused by
the redundant packets. A G-network model [47] with addi-
tional control capabilities (e.g. positive customers, triggers
and negative customers) is utilised to capture the dynam-
ics of this behaviour and reduce the energy utilisation as
well as congestion of the IoT network. In our treatment,
positive customers and triggers represent network packets
(SPs and ACKs) and re-routing decisions of packets, respec-
tively. Negative customers are not employed since they have
no practical interpretation in the model. Since the CPN-based
emergency navigation algorithm is a multi-path routing algo-
rithm, we introduce several types of SPs to search paths
for the associated categories of evacuees with respect to the
pre-defined goal functions. When a fire breaks out, ENs start
to generate and emit SPs of type k at the rate (known as
external arrival rate in the G-network model) 3ni,k , and also
relay SPs and ACKs from other ENs. A packet of type k that
is departing an EN will either be relayed to another linked
EN nj with probability P(ni, nj, k) or be dropped at ni with
probability Pedni,k

, where Pedni,k
+
∑N

j=1[P(ni, nj, k)] = 1.
Term Pedni,k

and P(ni, nj, k) equals either 1 or 0 since all
packets of a specific type only travel over a bench of deter-
ministic paths at a given time. For instance, for a given path
π (n1, n2, n3, n4) from EN n1 to EN n4 for packets of type k
in Figure 2, we can describe it by setting P(n1, n2, k) = 1,
P(n2, n3, k) = 1,P(n3, n4, k) = 1. Since EN n4 is an exit,
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term Pedn4,k
is also set to 1 to describe the fact that EN n4 is

the destination for all the packets traversing along the path.
Term N is the number of ENs in the network. Additionally,
in the context of CPN, a departing packet of class k heads
to a connected EN nj with the probability Q(ni, nj, k) under
the impact of re-routing decisions from the edge computing
center or the local RNN, where

∑N
j=1Q(ni, nj, k) = 1. Under

these assumptions, the probability that an EN ni has one or
more packets of class k can be derived from [17].

qni,k =
λ+ni,k

rni,k + λ
−

ni,k

(1)

where λ+ni,k is the total arrival rate of packet class k
to EN ni, including the SPs that are initially generated at ni
and the SPs and ACKs that are arrived from other ENs.
Term rni,k represents the service rate of the EN ni to the
packet class k . We assume that packets of different classes are
processed in a first-come-first-served order. Term λ−ni,k is the
arrival rate of re-routing decisions of packet class k , which is
equivalent to the arrival rate of control signals from the edge
computing center in our treatment. Because qni,k is related to
all the other qnj,k in the network and also (1) is a nonlinear
equation, therefore we can solve it numerically.

The total arrival rate of packet class k to EN ni is given by:

λ+ni,k=3ni,k+

N∑
j=1

qnj,k [rnj,kP(nj, ni, k)+ λ
−

nj,kQ(nj, ni, k)]

(2)

The probability that EN ni has one or more packets is given
by:

qni =
∑
k∈K

qni,k (3)

where term K stands for the number of types of SPs. This
probability can be derived under the assumption that the
average service rates rni,k of different types of packets at a
given EN are equal. This is reasonable because the packets
are served at the same EN and only the routing metrics are
different for different types of packets. Since the packets are
processed in a first-come-first-served order, and the average
arrival rate of re-routing decisions λ−ni,k are also equal, then

we have qni =
∑

k∈K λ
+

ni,k

rni,k+λ
−

ni,k
=
∑

k∈K qni,k .

Hence, the average number of packets at each EN ni is
given by:

Nni =
qni

1− qni
(4)

The probabilistic choice Q(nj, ni, k) of a packet of class k
sends from EN nj to EN ni can be calculated by:

Q(nj, ni, k) =
1

λsnj + λ
a
nj

[
λsnjQs(nj, ni, k)(1− Pdnj,k )

+ λanjQs(ni, nj, k)
]

(5)

FIGURE 3. G-network model representation of packet flows of type k at
EN n1 in the proposed system shown in Figure 2. Positive customers and
triggers in the G-network model represent network packets (SPs and
ACKs) and re-routing decisions of packets, respectively. Term
QR (nj ,ni ,k) =

1
λs
nj

+λa
nj

[
λs

nj
Qs(nj ,ni ,k) + λa

nj
Qs(ni ,nj ,k)

]
represents

the probability for a packet of type k to traverse from EN nj to EN ni .
Term QD(nj ,ni ,k) =

1
λs
nj

+λa
nj

[
λs

nj
Qs(nj ,ni ,k)Pdnj ,k

]
represents the

probability for a packet of type k that tends to traverse from EN nj
to EN ni to be dropped at EN nj .

where term λsnj represents the arrival rate of SPs at EN nj,
and term λanj represents the arrival rate of ACKs at EN nj.
These two values can be measured by the EN. Term Pdnj,k
represent the probability that a SP of type k to be dropped at
nj to relieve the network burden. Term Qs(nj, ni, k) stands for
the probabilistic choice of a SP of class k at EN nj towards
EN nj, which is determined by the ‘‘drift’’ parameter of the
CPN as shown in (6). The equation above is derived based
on the assumption that only SPs can be dropped. This is
because it is relatively costly to generate ACKs which carry
discovered route and environmental information. Besides,
dropping SPs can naturally reduce the number of ACKs since
only the SPs that reach the destination can generate ACKs.
A schematic diagram of the G-network model based packet
flow representation of EN n1 is shown in Figure 3.
The ‘‘drift’’ parameter is defined as an SP’s probability to

choose the next hop at random over the RNN’s advice.

Qs(ni, nj, k) =


1− Pd +

Pd
N a
n − 1

if nj = nr

Pd
N a
n − 1

if nj 6= nr or np

0 if nj = np

(6)

where term Pd stands for the drift parameter. Term N a
n repre-

sents the number of neighbouring nodes of EN ni. Term nr is
the RNN’s advice on the EN ni, and np stands for the previous
hop of this packet before reaching ni.
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TABLE 3. List of notations used in Section IV.

IV. GRADIENT OPTIMISATION FOR PACKET FLOWS
To balance the energy consumption and reduce congestion
in the IoT network, we propose a gradient based algorithm
to select the appropriate dropping probability Pdni,k , a list of
notations used in this section is shown in Table 3. To achieve
energy and delay efficiency while maintaining an accept-
able level of path-finding probability, we define a compound
objective function that contains energy balancing Et , network
delay Dt and the path-finding ratio Rt . This path-finding
ratio Rt of an EN is simply defined as the number of traversed
SPs (including SPs generated at the EN and SPs that passed
through the EN) that have successfully discovered a path over
the number of SPs generated at this EN.

Ft = Et + εDt +
ψ

Rt
(7)

where ε and ψ are constants that determine the relative
importance of the three metrics. The above objective function
is derived from the G-network representation of the network,
and is optimised periodically during the routing operations of
the CPN by using a gradient descent algorithm that performs
on the edge computing center.

The energy balancing function can be expressed as:

Et =
N∑
i=1

(Enin − E
ni
c − En)

2 (8)

where term Enin represents the current remaining battery
power of EN ni and En is the mean remaining battery power
of all ENs in the network. Term Enic represents the energy
consumption during each dropping probability update inter-
val tcu during which the latest dropping probabilities Pdni,k of
ENs are determined and returned from the edge computing
center.

E ic =
{
Es +

K∑
k=1

[
elλ
+

ni,k + ebrni,kB[qni,k < 1]

+ ebλ
+

ni,kB[qni,k ≥ 1]
]}
tcu (9)

where Es is the static power consumption of an EN and
eb = ecda + et , the detailed energy utilisation model of ENs
can be found in Table 5. B[X ] is a function that takes the value
zero if X is true or 1 if X is false, respectively. If qni,k < 1,
it means packets of class k is not buffered at this EN.
Hence, the throughput is determined by the packet arrival
rate λ+ni,k . Otherwise, the throughput is determined by the
service rate rni,k .

To estimate the average delay for a packet experienced in
the network, we consider the network as a whole and utilise
the Little’s formula.

Dt =

∑N
i=1 Nni∑N
i=13ni

(10)

where the numerator is the total average number of packets
in the network, and denominator is the total rate at which
packets (SPs) join the network.

On the other hand, the path-finding ratio Rt can be
expressed as:

Rt =

∑N
i=1 λ

s
niNniP

s
ni∑N

i=13ni (λsni + λ
a
ni )

(11)

where Psni is the empirical probability for a SP that traverses
through EN ni to discover an egress path.
By substituting (8), (10) and (11) with (2), (3), (5) and

into (7), we can express (7) as a function of qni,k :

Ft (qni,k ) =
N∑
i=1

(Enin −
K∑
k=1

Ẽnic (qni,k )− En)
2

+ ε

N∑
i=1

Ñ a
ni (qni,k )+

ψ∑N
i=1 Ñ

b
ni (qni,k )

(12)

where term Ẽnic (qni,k ) =
{ 1
K Es +

[
elλ
+

ni,k + ebrni,kB[qni,k <
1] + ebλ

+

ni,kB[qni,k ≥ 1]
]}
tcu, term Ñ a

ni (qni,k ) =∑K
k=1 qni,k

(1−
∑K

k=1 qni,k )
∑N

i=13ni
and term Ñ b

ni (qni,k ) =

λsni
Psni

∑K
k=1 qni,k

(1−
∑K

k=1 qni,k )
∑N

i=13ni (λ
s
ni
+λani

)
.

Since qni,k can be expressed by a function of Pdni,k , by util-
ising the chain rule, taking the partial derivative of the above
expression (12) with respect to a specific dnx ,y(x ∈ N , y ∈ K )
yields:

∂Ft
∂Pdnx ,y

=

N∑
i=1

K∑
k=1

∂Ft
∂qni,k

∂qni,k
∂Pdnx ,y

(13)

Finally, we can calculate Pdni,k by using the following
iterations:

Pn+1dni,k
= Pndni,k

− η
∂Ft
∂Pndni,k

(14)

where η > 0 is the learning rate.
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V. COOPERATIVE STRATEGIES FOR EVACUEE FLOW
Although much research has demonstrated that cooperative
strategies can benefit cyber-physical systems, most studies
focus on large-scale robotic systems [34]–[36] and few has
been directed to the field of emergency navigation. Due to the
complexity and diversity of hazard environments, an overall
well-performed algorithm which normally integrates several
metrics may be insensitive to sudden local changes such as
abrupt congestion. Hence, in this section, we present three
dynamic grouping mechanisms to assist the emergency navi-
gation algorithms to optimise the crowd behaviour.

A. HEALTH-AWARE GROUPING
To the best of our knowledge, most of the previous stud-
ies in emergency navigation persist on a single decision
algorithm during the whole evacuation process and do not
adjust in accordance with individuals’ physical conditions
and their immediate environments. Although we have pro-
posed a health-aware grouping in previous research [13] to
adapt injured evacuees to safer paths, we believe it is more
beneficial for evacuees to be able to switch back and forth
between groups during an evacuation when certain conditions
are triggered. For instance, when an individual which belongs
to the ‘‘Class 1 group’’ gets injured or get exhausted, it should
be adapted to the safer ‘‘Class 2 group’’ due to the reduced
mobility and injury. On the other hand, if its virtual health
value has exceeded a certain threshold of the mean health
value of the overall population, it should be switched back
to the ‘‘Class 1 group’’.

This health-aware grouping mechanism enables evacuees
to change groups and the associated algorithms rather than
sticking to the pre-defined groups: any evacuee in the first
category whose health level has dropped below a certain
threshold of the mean health value will be immediately
considered as a Class 2 evacuee. Similarly, any evacuee in
the second category whose virtual health level has exceeded
a certain threshold of the mean health value will be immedi-
ately considered as a Class 1 evacuee. The detailed process
of the mechanism is shown in Pseudocode 1 and a list of
symbols used is summarised in Table 4. The health value
of an evacuee is affected by the exposure to the hazard and
the traveled distance. In reality, it can be calculated by a
portable device carried by evacuees. The impact of hazard can
be evaluated by the hazard intensity of the adjacent sensor,
which can be updated when reaching an EN. The mean health
value is calculated by the back-end edge computing center in
accordance with the uploaded individual health values.

B. CONGESTION-AWARE GROUPING
The second mechanism is proposed based on the observa-
tion that certain vertices located in broad areas such as a
hall can still have a long queue and the connected paths
are not sufficiently used. These vertices are normally linked
with ‘‘bottlenecks’’ such as staircases where stampede or
continuous congestion may occur. Although both the time

TABLE 4. List of symbols used in the Pseudocode 1, 2 and 3.

Pseudocode 1The Process of Switching an Evacuee Between
‘‘Class 1’’ and ‘‘Class 2’’. EN, Edge Node
1: When an evacuee reaches the vicinity of an EN, obtain
Gid of the evacuee

2: if Gid ∈ Gone then
3: gain the virtual health value Yc of the evacuee and the

mean health value Yc
4: if Yc < αYc then
5: Gid ← Gtwo
6: end if
7: else
8: if Yc > Yc

α
then

9: Gid ← Gone
10: end if
11: end if

metric and safety metric take predicted congestion level of
a route into consideration, the effect of other factors in the
metrics such as ‘‘effective length’’ may induce evacuees at
a vertex to choose an identical path. To exclude the influ-
ence of other factors, we consider the potential number of
congestion encountered on a path as a secondary QoS metric
and propose a congestion-alleviate mechanism to balance the
main QoS requirement and the secondary QoS need. This
congestion-ease policy makes use of the mailbox of CPN
nodes and chooses a less congested path with acceptable main
QoS value (safety level or egress time) rather than the top
ranked path when the congestion level is high. The process
of the mechanism is shown in Pseudocode 2 and the symbols
used are also listed in Table 4.
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Pseudocode 2 The Process of Switching From ‘‘Class 1’’ or
‘‘Class 2’’ Group to the Congestion-Ease Group. EN, Edge
Node
1: When an evacuee reaches a vertex in the vicinity of an

EN
2: Examine Gid of the evacuee
3: if Gid /∈ Gcon then
4: Set Bu← False
5: if Vn > Vt then
6: Sense the total number of evacuees Ne in proxim-

ity.
7: /* If the queue length at a vertex is larger than or

equals to a certain valueNt , then switch the newly arrived
evacuee to congestion-ease group. */

8: if Ne > Nt then
9: Gid ← Gcon

10: Access Ro in the mailbox of the EN
11: Obtain the QoS value Qt of the top ranked

path in Ro
12: Re-rank Ro with respect to the potential con-

gestion level of routes
13: for each item Rio in Ro do
14: Obtain the QoS value Qi of Rio
15: if Qi 6 βQt then
16: Set Bu← True
17: Break;
18: end if
19: end for
20: end if
21: end if
22: /* If a suitable path exists */
23: if Bu = True then
24: Choose the path associated with Qi as the deci-

sion
25: else
26: Choose the original top ranked path associated

with Qt as the decision
27: end if
28: else
29: if N c

hop = Mt then
30: Re-assign the evacuee to its original group
31: end if
32: end if

C. TRAFFIC-BALANCE-AWARE GROUPING
Although distributed emergency navigation systems are more
robust in hazard environments in comparison with cen-
tralised counterparts, they may not lead to a global opti-
mum in terms of load-balancing by pursuing individuals’
goal and may induce unexpected stampede or congestion.
Furthermore, when a disaster occurs, no matter what metrics
(e.g. distance, congestion level, safety level) are involved,
emergency navigation algorithms tend to provide paths with
the shortest distance to exits in the beginning. This is because
destructive crowd behaviours have not yet been generated and

FIGURE 4. Queueing model of the building. Each server represents a
staircase or exit. Server A and B represent two exits on the ground floor,
server C, D, E and F represent the four staircases that connect the ground
floor to the basement one, server G, H and I represent the three
staircases that connect the basement one to the basement two.

FIGURE 5. The graph model of the NANLUOGUXIANG public traffic
junction.

the initial intensity of the hazard is low. Hence, initial distri-
bution of evacuees has a significant impact on the result of an
evacuation process. Inspired by ‘‘uniformity principle’’ [48],
we present a load-balancing grouping mechanism to disperse
evacuees among staircases or exits when a hazard occurs.
This mechanism can be used during the whole evacuation
process but currently we only employ it in the initial stage.

As is stated in the ‘‘uniformity principle’’, in order to
achieve minimal building evacuation time, all evacuation
routes should be saturated and clear their last evacuee at the
same time. Hence, the number of evacuees to each evacuation
route should be assigned in proportional to the flow rate of
the evacuation route. Since staircases where evacuees may
congregate due to reduced speed can be considered as the
bottlenecks, we simplify the graph representation of the PTJ
as shown in Figure 5 (This junction contains two exits on the
ground floor, four staircases that connect the ground floor
to the basement one, and three staircases that connect the
basement one to the basement two) and establish a queueing
model as shown in Fig. 4 based on the following assumptions:

1) The evacuees on lower floors do not affect the clearance
time of evacuees on upper floors;

2) The staircases or exits will be operated at near-full
capacity before civilians on this floor have all
evacuated.

The above assumptions can match the realistic situation:
for instance, an evacuee Ex3 on the basement two has low
likelihood to pass or disturb an evacuee Ey2 on the basement
one, on the contrary, Ey2 may affect Ex3 as it may be involved
in congestion and block Ex3 ; For the second assumption,
as staircases are bottlenecks owing to the reduced speed
and limited space, evacuees will soon congregate at these
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locations when a disaster occurs. Hence, we can consider
each bottleneck as a ‘‘server’’ and calculate the clearance time
for N evacuees to traverse an evacuation path π using the
algorithm introduced in [49].

T πc (N ) = L(π )+
N
µ(π )

(15)

where Tc(N ) represents the time to evacuate N evacuees
from an evacuation path π . Term L(π ) depicts the shortest
time for an evacuee to traverse path π (which also refers as
‘‘lead time’’). On the basement one or basement two, L(π ) is
the transmission time for an evacuee to traverse the shortest
route from the staircase to the nearest exit, whereas on the
ground floor, L(π ) is zero. Term µ(π ) represents the service
rate of the bottleneck on path π , which is the capacity of
bottlenecks such as staircases.

According to the ‘‘uniformity principle’’, all evacuation
paths should have the same clearance time to achieve the
shortest building evacuation time. Hence, the number of evac-
uees assigned to each staircase or exit can be solved by using
equation set (16).{

T πc (Nb(i)) = T πc (Nb(j)) ∀b(i), b(j) ∈ B∑|B|

i=1
Nb(i) = Nt

(16)

where b(i) represents the i-th staircase or exit. Term B rep-
resents the set of staircases or exits on a floor while |B|
depicts the number of staircases or exits. Term Nt represents
the total number of evacuees on a floor and Nb(i) depicts the
number of evacuees assigned to the i-th staircase or exit. Since
Nb(i) represents the number of evacuees, rounding operation
is required to obtain closest integer to Nb(i). If Nb(i) is smaller
than zero, this means that no evacuees will be assigned to this
bottleneck. Hence, Nb(i) will be set to zero and a re-assigning
process will be performed to allocate evacuees to other
bottlenecks.

The next step after determining the number of evacuees to
each staircase or exit is to assign each evacuee to a specific
staircase or exit. Because the employed model assume that
each staircase or exit are operated at near-full capacity, evac-
uees should be assigned in a way that the overall distance to
staircases or exits is minimised while fulfilling the number
restrictions to each staircase or exit solved in (16). This
problem is similar to the NP-hard ‘‘knapsack problem’’ but
is even more complex. The formulation of this problem is
shown in (17).

minimize Da =
Nt∑
i=1

|B|∑
j=1

K e(i)
b(j)D(e(i), b(j))

subject to:
Nt∑
i=1

K e(i)
b(j) = Nb(j)

Nt∑
i=1

|B|∑
j=1

K e(i)
b(j) = Nt (17)

where Da denotes the overall distance from evacuees to
staircases or exits. Term K e(i)

b(j) ∈ {0, 1}, if evacuee e(i) uses

staircase or exit b(j), K e(i)
b(j) = 1, otherwise, K e(i)

b(j) = 0.
Since assigning evacuees to staircases or exits while ful-

filling the above conditions is a NP-hard problem, we pro-
pose a greedy algorithm to approximate the near-optimal
solution. Because most of parameters involved in the algo-
rithm can be calculated in advance, the algorithm can be
performed efficiently. The details of the mechanism are
shown in Pseudocode 3 and the symbols used are listed
in Table 4. We assume that the computations of this algorithm
is offloaded to the remote edge computing center, which
can rapidly return the results in the preliminary stage of the
evacuation process.

Pseudocode 3 The Process of Assigning Evacuees on One
Floor to Each Staircase or Exit (Bottleneck) When a Disaster
Occurs
1: When a disaster breaks out, send the location of evacuees

on the floor to the appointed edge node
2: Retrieval the shortest paths D(e(i), b(j)) from each evac-

uee e(i) to each bottleneck b(j)
3: Generate a row vector Db(j) =

[D(e(1), b(j)),D(e(2), b(j)), . . . ](i = 1 . . .Nt ) for
each bottleneck b(j)

4: for all the evacuees e(i) on the floor do
5: Find the shortestD(e(i), b(j)) and label the associated

evacuee e(i)
6: end for
7: for all the bottlenecks b(j) on the floor do
8: Compare the number of labeled evacuee Lb(j) in row

vector Db(j) with Nb(j)
9: if Lb(j) > Nb(j) then
10: Label the associated row vector Db(j)
11: else
12: Continue
13: end if
14: end for
15: for all the labeled row vectors do
16: for all the labeled evacuees do
17: /* Retrieval the associatedD(e(i), b(j)) and minus

the corresponding value in the unlabeled row vector */
18: Dabsolute(e(i), b(j)) = |Dlabeled (e(i), b(j)) −

Dunlabeled (e(i), b(j))|
19: end for
20: end for
21: Sort all the Dabsolute(e(i), b(j)) in ascending order
22: Replace the bottlenecks in Dlabeled (e(i), b(j)) with the

bottlenecks in Dunlabeled (e(i), b(j)) until the number of
evacuees to each bottleneck reaches the desired value

After assigning each evacuee to a specific bottleneck,
rather than using the top-ranked path, ENs will choose the
best path that contains the specific bottleneck for the evacuee.
If no such path is discovered, the edge computing center will
perform the Dijkstra’s shortest path algorithm to calculate a
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route (from the source node to the specific bottleneck) for the
evacuee. Evacuees will stick to the given paths until satisfying
the restriction of movement depth.

VI. SIMULATION MODEL AND ASSUMPTIONS
We employ a Python based simulation tool, namely the
smart environment simulator (SES), which is inspired by
the Distributed Building Evacuation Simulator (DBES)
[50], [51], to evaluate the effectiveness of the proposed
algorithm in fire-related scenarios. It can simulate different
aspects of emergency scenarios in PTJs and evaluate diverse
courses of actions such as running, walking and stopping.
The SES works as a client to send control commands to
the open-source simulation platform ‘‘Simulation of Urban
MObility’’ (SUMO) [52]. As a multi-agent simulator, each
entity in the SES is represented by an intelligent agent
to interact with the SUMO platform. For instance, evac-
uees are modelled as pedestrians to realise self-observation,
inter-competition and cooperation; fire agent is responsible
for simulating the breakout and spreading of fire; floor agents,
which depict floors of a building, act as containers for pedes-
trians as well as maintain the environment data.

A. BUILDING MODEL
The building model in our experiments simulates the three
floors of the NANLUOGUXIANG public transportation
junction in Beijing. The basement one and basement two have
a dimension of 210 m by 50 m while the ground floor has
identical dimension of 180 m by 50 m. The height between
each floor is approximately 12 m. Fig. 5 shows the graph
model of this transportation junction.

B. CIVILIANS MODEL
In this paper, initially, simulated evacuees are considered
under two categories based on their diverse mobility and
resistance to hazard: (1) the Class 1 evacuees represent
prime-aged healthy people with high mobility and resistance
to hazard; (2) the Class 2 evacuees represent evacuees with
low mobility and resistance to hazard, including aged peo-
ple, children, or people may have been impaired during the
disaster.

The health level of each evacuee is initialized to a value
of 100 and decreased based on exposure to the hazard. Each
category of evacuees is characterized by their speed and
their resistance to the hazard. In the simulations we set the
probability of a created civilian agent belonging to either
of the two categories to 0.5. A civilian agent is randomly
initialized at a particular location on the building graph.

C. ENERGY CONSUMPTION MODEL
To validate the proposed energy-saving mechanism, we con-
struct an energy usage model of the IoT network, which
consists of SNs and ENs. The energy consumption of SNs
are omitted under the assumption that SNs will periodi-
cally sniff and gather sensory data in a fixed rate. Hence,
no matter with or without the energy-saving mechanism,
the energy consumption of SNs will stay constant. On the
other hand, the energy usage model of ENs considers the

TABLE 5. The energy utilisation model of ENs which is reconstructed
from [53] and [39].

energy consumption in communication and computation. The
energy consumption during communication processes is fur-
ther divided into (a) the energy utilisation of data transmission
and reception among the on-site ENs, and (b) the energy
utilisation of uploading and downloading data to and from the
edge computing center. The energy model for (a) is borrowed
from [53] while energy model for (b) is borrowed from [39]
under the assumption that ENs can communicate with the
edge computing center through 3G wireless technology at a
data rate of 2 MB/s. The detailed parameters in the energy
model of ENs is shown in Table 5.

The energy consumption of ENs in computation is cal-
culated by an analogy of the code-transformation algorithm
introduced in [54], which can simulate the number of CPU
cycles executed by each EN. By using this algorithm, we can
then obtain the CPU active time of an EN by dividing the
recorded total CPU cycles of the EN during the simulation
by the CPU frequency. Finally, the energy consumption of
the EN can be calculated by multiplying the CPU active time
by the CPU power, which equals voltage times current. In our
simulation, we presume that the current consumption of CPU
in active mode and idle mode is 8.0 mA and 3.2 mA, respec-
tively. The CPU frequency is set to 16 MHz and the power
supply is set to 3.0 V . The Instructions per cycle (IPC) of the
CPU is set to 1. The detailed procedures of this algorithm is
as follows:

1) Convert operations of each EN (modelled by computer
code) to simple CPU instructions;

2) Convert involved decimal numbers in the operations to
binary numbers;
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3) Perform bitwise operations and sum the number of
instructions used in computation;

4) Transform the number of instructions to CPU cycles
counts in accordance with the Instructions per Cycle;

5) Convert CPU cycles counts to CPU active time with
regard to CPU frequency;

6) Calculate energy consumption of CPU with respect to
time cost on each power state.

7) Sum the energy consumption of CPU in each EN to
obtain the total energy consumption of the IoT network
in computation.

VII. EXPERIMENTS, RESULTS AND DISCUSSION
We conduct three experiments to investigate the performance
of the proposed routing algorithms. In the first experiment,
we evaluate the performance of the packet-dropping mech-
anism by observing the energy consumption and average
delay of the ENs. To avoid unnecessary interferences, we run
the emergency response system for 5 minutes without intro-
ducing evacuees. For latter two experiments, we run 20
simulations each under different levels of occupancy in the
aforementioned PTJ model to represent light (100 and 500
evacuees), medium (1000 and 2000 evacuees) and heavy
(5000 and 6000 evacuees) traffic load. In the second experi-
ment, we compare three scenarios under the same conditions:
in the first two scenarios we use a single metric to guide all
the evacuees and do not employ the cooperative strategies;
while in the third scenario, we use two metrics, one for
each category of evacuees and the three cooperative strategies
are employed. In the third experiment, we concentrate on
evaluating the effect of the proposed cooperative strategies
by comparing with scenarios without these strategies.

Our results are averages over the 20 simulations and are
presented as bar charts with error bars, which indicate the
average over 20 simulations and the maximum/minimum
value in any of the 20 simulations, respectively.

A. THE PERFORMANCE OF THE PACKET-DROPPING
MECHANISM
We assume that 300 ENs are deployed in the given PTJ.
ENs exchange necessary information with the edge com-
puting center in every 2 seconds. The uploaded infor-
mation includes actual number of packets at each EN,
the steady-state probability that an EN has one or more type-k
packet qni,k , the remaining battery power of each EN E in,
the arrival rate of SPs at each EN λsni , the arrival rate of ACKs
at each EN λani , number of evacuees at each EN, the hazard
value at each EN, the probability that SPs of class k that travel
fromEN ni to EN nj P(ni, nj, k). The downloaded information
is the dropping probability of SPs at each EN.We also assume
that the data rate between ENs are 25mbits/s and the size of
the address of each EN is kept at 16 bits.

As can be seen from Fig. 6, the use of the packet-dropping
mechanism can remarkably reduce the CPU cycles in the EN.
This is because a SP involves in information-updating at each
traversed EN. In addition, the ACK generated by a SP after

FIGURE 6. The total number of CPU cycles of all the ENs in the IoT
network with and without the edge computing aided packet dropping
mechanism in a 5 minutes simulation run.

FIGURE 7. The total energy consumption of all the ENs in the IoT network
with and without the edge computing aided packet dropping mechanism
in a 5 minutes simulation run.

reaching the destination will trigger the training process of
the RNN at each EN along the reverse route. Fig. 7 shows
the total energy usage during a 5 minutes long simulation
when using the original CPN and the edge computing aided
packet-droppingmechanism. As can be seen clearly, although
the updates of information with the edge computing center
can cost extra 600 Joules of energy, the introducing of the
packet-droppingmechanism can significantly reduce the total
energy usage.

By comparing Fig. 9 with Fig. 8, it is clearly shown that the
proposed packet-dropping mechanism (PDM) can remark-
ably reduce the delay at each EN in the network, especially at
backbone nodes. The horizontal planes of the two figures rep-
resent the geographical locations of ENs deployed on the
ground floor of the network. Since the two exits are also on
this floor, the ENs on the ground floor not only have to handle
the generated packets from the same storey, but also packets
from basement one and two.

B. THE PERFORMANCE OF THE COOPERATIVE
STRATEGIES
1) AVERAGE SURVIVAL RATE
As shown in Figure 10, for low levels of occupancy (100 and
500 evacuees), the time metric (TM) achieves better per-
formance than the safety metric (SM), which gives the
worst performance overall. This is because unlike TM that
distributes evacuees among various available paths, and
sometimes even may take the risk to traverse potential haz-
ard areas, SM are congestion-insensitive and tends to guide
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FIGURE 8. The average delay in seconds of each EN on the ground floor
without the packet-dropping mechanism in a 5 minutes simulation run.

FIGURE 9. The average delay in seconds of each EN on the ground floor
with aid of the packet-dropping mechanism in a 5 minutes simulation run.

FIGURE 10. The average percentage of survivors for each of the decision
algorithms. The results are the average of 20 randomized simulation runs,
and error bars show the min/max result in any of the 20 simulation runs.

all the evacuees to the safest paths. However, some evac-
uees may perish due to the long evacuation time caused
by congestion. The combined metrics without the dynamic
grouping mechanisms (CMNODG) and combined metrics
the with the dynamic groupingmechanisms (CMDG) achieve
the equally-best performance because they can naturally ease
congestion by generating separate channels for two categories
of evacuees. Moreover, for CMDG, rather than sticking to the
quickest path with higher risk, injured evacuees can switch to
the safest path due to the benefit of dynamic grouping and
therefore reduce fatalities.

It is more apparent in scenarios with medium and heavy
population densities (1000, 2000, 5000 and 6000 evacuees),
CMDG apparently achieves the best performance among
all the algorithms. This is because the congestion level
has a considerable impact on the system performance in

FIGURE 11. The average count of congestion for each of the decision
algorithms. The results are the average of 20 randomized simulation runs,
and error bars show the min/max result in any of the 20 simulation runs.
‘‘Count of congestion’’ is defined as the number of congestion
encountered by evacuees during an entire evacuation process.
Congestion is considered to occur when an evacuee reaches a node
where one or more evacuees have queued up for service. In other words,
an evacuee is considered to encounter congestion when it reaches a node
with a non-zero queue.

densely-populated scenarios. Because CMDG can assign
evacuees to a third group when severe congestion occurs
(queue length > 5) and suggest a less congested path with
an acceptable QoS level, paths in broad areas are more suffi-
ciently used and evacuees can reach exits with less latency.
Moreover, the traffic-balance-aware grouping mechanism
that initially distributes evacuees to staircases or exits can
significantly reduce the likelihood for a path to be overused.
Additionally, at this stage, TM can be seen to perform remark-
ably better than SM. This is because TM can alleviate conges-
tion more efficiently in comparison with SM.

In summary, CMDG gains better results than other
algorithms because of customising different evacuees with
desirable paths as well as the use of dynamic groupingmecha-
nisms. Towards comparison algorithms, SM gains acceptable
performance under light traffic load but bad performance
under medium and heavy traffic load. This is because in order
to keep all the evacuees far away from the hazard, SM only
directs evacuees to safest paths and has the potential to cause
jamming. When the population is low, this issue is negligible
but can induce continuous congestion in densely-populated
scenarios. Conversely, TM achieves gradually worse perfor-
mancewith the increase of occupancy rates. This is due to fact
that the quickest paths tend to traverse areas with potential
risks and evacuees with low health level may perish owing
to the fast spreading of the hazard as well as significantly
reduced mobility. In high population densities, the embed-
ded congestion ease mechanism of TM is less effective
because injured evacuees with significantly reduced mobility
become ‘‘obstacles’’ for other civilians and induce continuous
congestion.

2) AVERAGE COUNT OF CONGESTION
Figure 11 presents the average count of congestion in each
scenario. As expected, CMDG gains the least average count
of congestion in all scenarios. This is due to fact that by
dispersing evacuees with respect to their physical condition
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FIGURE 12. The average percentage of survivors for different dynamic
grouping mechanisms. The results are the average of 20 randomized
simulation runs, and error bars show the min/max result in any of the
20 simulation runs.

especially mobility, evacuees can be assigned to differ-
ent paths and reduce congestion. Moreover, the use of
the congestion-aware grouping and the traffic-balance-aware
grouping can also reduce congestion. SM achieves the high-
est congestion level during the evacuation processes as it
tends to congregate all the evacuees to the safest path and
cause continuous congestion. TM, on the other hand, achieves
lower congestion level than SM because of the embedded
congestion-ease mechanism.

C. THE EFFECT OF DYNAMIC GROUPING
Figure 12 shows the average percentage of survivors for CM
with different dynamic grouping mechanisms. As can be seen
clearly, compared with CMNODG, the use of each individual
mechanism can significantly improve the survival rates under
medium population densities. However, under the heavy traf-
fic load, since congestion becomes the dominating factor
for evacuation efficiency, CMDG with only health-aware
grouping mechanism malfunctions due to the quick forma-
tion of bottlenecks at the staircases and exits mainly caused
by Class 2 evacuees. On the other hand, CMDG with only
congestion-aware grouping and CMDG with only traffic-
balance-aware grouping mechanism are more efficient in
using the interior space and can ease the formation of bottle-
necks. Among the three scenarios of using only one group-
ing mechanism, the traffic-balance-aware grouping gains the
best performance, because it is the most efficient in easing
the formation of bottlenecks at the staircases and exits. The
results also indicate that integrating the three mechanisms can
achieve better results than only using one single mechanism.

VIII. CONCLUSION AND FUTURE WORK
In this paper, we propose an edge computing enabled emer-
gency navigation system that can direct evacuees out of a
confined built environment in a cooperative manner while
fulfilling the energy consumption and latency requirements
of the on-site IoT network. Two cooperative strategies which
adjust the type and the associated decision algorithm of evac-
uees are presented with regard to evacuees’ physical condi-
tions and surrounding environments. Furthermore, since the
congestion-ease mechanisms do not function at the beginning
of an evacuation process owing to the fact that the evacuees

have not congregated yet, a load-balancing strategy is pro-
posed to distribute evacuees among all the staircases and exits
to ease congestion. In addition, a packet discardmechanism is
employed in combination with a G-network model to balance
the energy consumption and network latency of the IoT net-
work. The results indicated that this QoS driven routing algo-
rithmwith the use of cooperative strategies can achieve higher
survival rates. The simulation results also imply that the pro-
posed packet discard mechanism can significantly improve
the performance of the IoT network by reducing energy con-
sumption and latency. Since mobile agents can migrate seam-
lessly through multiple clouds, different portable devices and
the edge of the cellular network [55], future research will be
directed to design a mobile agent-based emergency response
system that has the potential to reduce communication costs
and ease network congestion in large-scale emergency evac-
uations by dynamically optimising the locations of mobile
agents and using the mobile edge computing technologies.
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