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ABSTRACT Localization is one of the most fundamental problems for mobile robot. Aiming at the
phenomenon that robot is prone to be lost in navigation under severe occlusion, a robust localization system
combining vision and lidar is proposed in this paper. The system is split into off-line stage and online stage.
In the off-line stage, this paper introduces a method of actively detecting and recording visual landmarks,
and an off-line visual bag-of-words is generated from the recorded landmarks training. In the online stage,
the prediction and update phase of AdaptiveMonte Carlo Localization (AMCL) are improved respectively to
enhance the performance of localization. The prediction phase generates the proposal distribution according
to the prior information obtained through retrieving visual landmarks, and the newly proposed measurement
model that selects reliable beams of lidar as the observation is to update the prediction. Experiments is carried
out under strict conditions, that is 60% of the lidar is occluded, 1/12 of the beams are regarded as observation,
and only 300 particles were adopted at most, it is shown that, no matter in the global localization or pose
tracking, the localization system proposed in this paper performs much better than the state of art localization
algorithm AMCL.

INDEX TERMS Robot localization, severe occlusion, proposal distribution, measurement model.

I. INTRODUCTION
Localization against a global map, including global localiza-
tion and pose tracking, is a prerequisite for any robotics task
where a robot must know where it is. In the past, a variety of
approaches in fusion of multi-sensors for mobile robot local-
ization have been developed [1]–[5]. TheMarkov localization
method requires excessive computational overhead and a pri-
ority commitment to the size and resolution of the state space
[6], which is difficult to meet the real-time requirements; The
localization efficiency based on Kalman filter (KF) is high,
but the Kalman filter is based on the assumption of linear
Gaussian model, and it is difficult to describe the motion
model and observation model accurately with linear model;
On this basis, extended Kalman filter (EKF) and unscented
Kalman filter algorithm are introduced [7], [8], these two
methods solve the state transfer by linearizing the non-linear
model of the original system near the operating point by
first-order Jacobian approximation [9]. These two methods
perform well in the pose estimation of the robot under certain
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conditions, but will get worse estimation results in the posi-
tion with poor linear conditions. Consequently, particle filter
is introduced to solve this problem because it can approximate
any complex multimode probability distribution [10]. In the
prediction step, one sensor, for an example encoder, is used
to transfer the prior state of motion, and the other sensor is
used as observation model to update the prior state to realize
correction step. On the basis of particle filter, Thrun et al. [6]
introduced AMCL algorithm, Kullback-leibler Divergence
(KLD) sampling makes the localization more efficient [11],
so the AMCL is the most widely used approach in robot
navigation. As the state-of-art localization method base on
lidar, the AMCL has obvious advantages in efficiency, sta-
bility and accuracy, but it does not perform well in global
localization. Meanwhile, the it is easy to introduce erroneous
observations under severe occlusion conditions leading to
failure of localization.

In this paper, an integrated localization system is pro-
posed to solve the problem that lidar-based method is prone
to failure in localization under severe occlusion. In order
to automatically obtain valid landmarks, Rao-Blackwellized
Particle Filters (RBPF) [12] is combined with orb-based
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visual tracking methods is firstly proposed to actively detect
and record valid landmarks, and the recorded landmarks are
trained through kmeans++ to generate an off-line visual
database of bag-of-words (DBoW) [13], [14]. In prediction
phase of global localization, the visual DBoW is used to
search first to obtain the most similar landmark used as
reliable prior to generate proposal distribution, while the
encoder is to provide prior in prediction phase of pose track-
ing. Moreover, a newly proposed lidar-based measurement
model is used in correction phase of both global localization
and pose tracking, which select the mostly reliable beams
as observation to update state of particles. The advantage
of this model is that it can avoid introducing both dynamic
and static obstacle information into observation model to the
greatest extent. Due to the improvement of the prediction
step and correction step, the performance of localization for
robot under severe occlusion is greatly promoted. The main
contributions are as follows.

1. An active landmark detection and recording method is
proposed, and the concept of matching rate is introduced
as an evaluation criterion, which solves the problem of
artificial setting of the landmarks.

2. DBoW based visual retrieval method provides a reliable
prior for global localization to generate proposal distri-
bution instead of randomly selecting an initial position
in prediction step of global localization;

3. A new lidar-based measurement model is proposed
to update the proposal distribution which realizes
the refine matching under severe occlusion in cor-
rection step in both global localization and pose
tracking.

This paper is organized as follows. After discussing related
work in the following section we introduce the theoretical
basis. Then the localization system is described in detail,
which presents the techniques of the landmark retrieval used
to provide proposal distribution, and the newly proposed
lidar-based measurement model used to estimate weight of
particles; In Section V, various experiments are presented
to illustrate the robustness of the system; Finally, we draw
conclusions based on theoretical analysis and experimental
results.

II. RELATED WORK
Compared to range sensors, cameras are low-cost sensors
that provide a huge amount of information, so that vision-
based navigation systems do not suffer from the interferences
often observed when using light-based proximity sensors.
Moreover, if robots are deployed in populated environments,
it makes sense to base the perceptional skills used for local-
ization on vision like humans do. Compared with vision,
lidar is unparalleled in accuracy and efficiency in scale infor-
mation, and it can serve as both observation information in
localization and obstacle detection of navigation. As a result,
the localization system based on vision and lidar fusion has
been widely utilized.

A. LIDAR-BASED LOCALIZATION
Fox et al. proposed the Monte Carlo Localization [15], which
applies sampling-based methods for approximating proba-
bility distributions. The number of samples is adapted on-
line, thereby invoking large sample sets only when necessary,
so it keeps the real-time and accuracy of pose tracking. Sev-
eral methods for restoring global positioning are proposed
for Monte Carlo Localization (MCL) failure in fatal state
by Ueda et al. [16], where it is widely used to uniformly
distribute particles throughout the space and then resample
until convergence; The extended Kalman filter (EKF) was
also used to localize the mobile robot with a laser range finder
(LRF) sensor [17], dealing with the problem of estimating
the output-noise covariance matrix that is involved in the
localization of a mobile robot; Blanco et al. [18] enable
the usage of the optimal proposal to estimate the true pos-
terior density of a non-parametric dynamic system, which
has greatly improved the efficiency of particle convergence;
Geometrical FLIRT phrases (GFPs) was introduced as a novel
retrieval method for efficient and precise place recognition
[19], [20], they perform approximate 2D range data matching
with low computational cost. However, opposed to visual
information, in the environment of a single structure, geo-
metric information retrieval relying on two-dimensional point
clouds is still insufficient. Soonyong Park presented a coarse-
to-fine global localization approach based on place learning
with a 2-D range scan [21], coarse localization of the SVM-
based place recognition selects candidate places where the
robot may be located, and fine localization computes the
relative poses to the candidate places with fast spectral scan
matching and estimates the correct robot pose with a particle
filter algorithm.

B. VISUAL-BASED LOCALIZATION
Wolf et al. [22] integrates an image retrieval system with
Monte-Carlo localization, the image retrieval process is based
on features that are invariant with respect to image transla-
tions and limited scale and then fine localization by lidar, and
the system performs well in global localization and abduction
recovery; Junqiu Wang et al. present a novel coarse-to-fine
global localization approach inspired by object recognition
and text retrieval techniques [23]. Harris–Laplace interest
points characterized by scale-invariant transformation feature
descriptors are used as natural landmarks, and epipolar geom-
etry is used to refine localization. Nitsche presents a com-
bination of a teach-and-replay visual navigation and Monte
Carlo localization methods [24], robot can be started from at
any point in the map and can deal with the ‘kidnapped robot’
problem. A coarse-to-fine strategy for global localization was
suggested by [25], the coarse pose is estimated by means of
object recognition and SVD-based point cloud fitting, and
then is refined by stochastic scan matching; Naseer et al.
[26] propose to use Markov localization-based temporal fil-
tering over the similarity matrix to exploit the sequential
information, but Markov-based visual positioning can only
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provide relatively rough poses and cannot complete local
refine matching; A method based on neural network-based
visual retrieval and Monte Carlo localization is proposed
[27]. It still uses the idea of coarse-to-fine, that is, coarse
positioning through visual retrieval and fine matching with
lidar.

The techniques described above either utilize visual-based
landmark techniques or rely on simple features and use proba-
bilistic state estimation to localize the robot, all achieved good
localization results under ideal conditions. However, there
is no solution for the localization failure caused by serious
occlusion. What’s more, any paper proposes a way to actively
detect and record effective visual landmarks. The goal of this
paper is to illustrate an approach by combining an image
retrieval system with improved state estimation technique
insensitive to severely occlusive environment. We describe
how to actively record available landmarks and retrieve visual
landmark via DBoW, and the improved lidar-based measure-
ment model is applied to update the proposal distribution,
finally the fine localization in the event of severe occlusion is
completed. In practical experiments, we demonstrate that our
approach is able to globally localize the robot and to reliably
keep track of it when the lidar is seriously blocked.

III. THEORETICAL BASIS
Robot localization problems mainly include global localiza-
tion and pose tracking. With subtle differences, the solutions
to localization problems include the estimation of the prior
of the robot poses up to the current instant of time given the
whole history of available data. Let x t =

{
x1, ..., x t

}
denote

the sequence of robot poses up to time step t .
In the case of global localization, we are just interested in

the current robot pose instead of the whole path following the
rule in (1), where υ t is the observation of camera which will
provide prior information, and zt represent the observation of
lidar which will update the prior.

p
(
x t |zt , υ t

)
∝

Observation likelihood︷ ︸︸ ︷
p
(
zt |x t , υ t

) Prior︷ ︸︸ ︷
p
(
x t |υ t

)
(1)

In the case of pose tracking, the posterior of the robot pose
can be computed sequentially by applying the Bayes rule
in (2), where theztand theut represent the sequences of robot
observations and actions.

p
(
x t |zt , ut

)
∝

Observation likelihood︷ ︸︸ ︷
p
(
zt |x t , ut

) Prior︷ ︸︸ ︷
p
(
x t |zt−1, ut

)
(2)

The belief of robot’s posture is represented by a set of
random samples, and the Monte Carlo Localization is imple-
mented to update the belief. As shown in Algorithm 1,
we denote χt−1,χt as particle sets at different time, S is the
number of particles. In prediction phase, the robot performs
sampling based on the prior information provided by the
sample_motion_model to generate a proposal distribution,
where µt represent the transition caused by motion control;
In correction phase, the weight of particles is updated based

Algorithm 1MCL
Input: (χt−1, µt , zt ,m)
1: for s = 1 to S do
2: x[s]t = sample_motion_model(µt , x

[s]
t−1)

3: ω
[s]
t = measurement_model(zt , x

[s]
t ,m)

4: χ̄t = χ̄t +
〈
x[s]t , ω

[s]
t

〉
5: end for
6: for s = 1 to S do
7: draw s with probability ∝ ω[s]

t
8: add x[s]t to χt
9: end for
10: return χt

on measurement_model, where zt represents the observation
model of the ranging sensor, m represents the grid map infor-
mation. Resampling performed from line 6 to line 9 is to avoid
particle degradation.

In this paper, the prediction step and correction step are
improved respectively. When the robot is in global local-
ization, the prediction step generates a proposal distribution
based on the prior information provided by visual retrieval
following the (1). The correction step is performed using
the lidar-based measurement model proposed in this paper.
Instead of the traditional measurement_model that the laser
beams are used at equal intervals for particle weight evalua-
tion, the improvedmeasurement_model use the same number
of laser beams with maximum weight to update the parti-
cles, because the larger the weight of beam is, the higher
confidence the observation information is. This prevents the
disturbed laser beams from updating the particles as observa-
tion, thereby ensuring the localization robustness of the robot
under severe occlusion. During the pose tracking, odometer
motion model is utilized to generate the proposal distribution
following the (2), and the improved measurement_model is
used for correction step.

IV. SYSTEM OVERVIEW AND METHODOLOGY
A. SYSTEM OVERVIEW
On the basis of theory in section III, a new robot localization
system is designed. Firstly, a map with a visual landmark
library was built. Then the visual information searched from
the landmark library was used for proposal distribution, and
finally, the improved lidar-based measurement model per-
forms local refine matching. The entire system is divided into
two parts, the off-line stage and the online stage, as shown
in Figure 1.

The off-line stage mainly constructs map with visual land-
marks and generates off-line visual DBoW. Simultaneous
SLAM localization and mapping (SLAM) based on RBPF
is adopted to map and pose estimation, and the Oriented
FAST and Rotated BRIEF (ORB) features are extracted from
obtained pictures for matching, and the matching rate pro-
posed in this paper is regarded as the criterion to select the
valid landmarks, at the same time, pose information estimated
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FIGURE 1. System overview.

by SLAM associated with the landmarks is also recorded
(Where the robot sees the landmarks). Finally, the ORB
features are extracted from the recorded landmarks, and
kmeans++ training is used to generate an off-line DBoW to
prepare for the landmarks retrieval in the online stage.

The online stage is divided into two phases of prediction
and correction. In prediction phase of global localization,
the DBoW based search algorithm is adopted to obtain the
closest to the current scene, and the robot’s rough pose
information corresponding to the most similar landmark is
to generate proposal distribution of particle set, while the
prediction phase of pose tracking use odometer from encoder
as the prior information. In correction stage of both global
localization and pose tracking, the newly proposed lidar-
based measurement model is applied to update particles to
complete refine localization.

B. OFF-LINE STAGE
The mapping process in this paper uses the SLAM algo-
rithm based on RBPF, which uses the odometer model as the
prior information to generate the proposal distribution, scan
matching process are carried out to maximum the likelihood
function by a Gaussian to update robot proposal distribution.
While mapping, the ORB feature is used to detect and match
key points of the image, and key frames are selected and
recorded according to certain rules. The robot continuously
publishes pose information during the mapping process, and
the landmark detection system records valid landmarks with
the pose information of the robot. The process is shown
in Figure 2.

Landmarks should have the following characteristics:(a)
the pictures should have enough feature information, and
the feature extraction process should be of highly real-
time performance, which is convenient for fast matching;
(b)we should make a trade-off between amount of spatial

FIGURE 2. Active landmark system.

information and number of landmarks, and use as few land-
marks as possible to represent the densest spatial location
information; (c) we should avoid interruption of the record-
ing system due to tracking lost. In summary, the landmark
recording process in this paper is carried out according to the
following rules:

(1) Landmark detection performs every 5 frames;
(2) ORB features are extracted for each frame, and the

frames with more than 200 key points are selected as
the key frame according to experience value;

(3) The matching rate between the current frame with the
previous key frame is in a threshold range, and the
empirical value is 0.1 ∼ 0.55;

(4) If the matching rate of key frames for 4 consecutive
frames is not within the threshold, it is considered to be
tracking lost, and then the process continues after the
current landmark is recorded.

Rule (1) and rule (3) meet the requirement of (b), avoiding
repeated recording of landmarks when stationary or exces-
sively overlapping landmarks recorded during movement,
and as much as possible to ensure a trade-off between feature
information and the number of landmarks. ORB is rotation
invariant and resistant to noise, ORB is at two orders of mag-
nitude faster than Scale-invariant feature transform (SIFT)
[28]. Therefore, the ORB is used to extract the visual features,
and the rule (2) is used to meet the requirement (a). At the
same time, the concept of matching rate is proposed to assist
in the selection of effective landmarks, avoiding excessive
overlapping of landmarks, causing database explosion, and
the matching rate is calculated as formula (3) shown, where
ε represents the matching rate, α is the number of matching
key points between the prior frame and the current frame, λk
and λk−1 respectively indicate the number of key points of
the current key frame and the previous key frame.

ε = 2× α/(λk + λk−1) (3)

The matching result within the threshold of matching rate
is shown in Figure 3; Tracking loss is easy to occur when
the robot performs landmark detection and recording during
the movement. As shown in Figure 4, the direct cause of
tracking loss is the sharp increase in the number of key
points of mismatches, which causes the matching rate beyond
the threshold consecutively. In order to avoid the situation
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FIGURE 3. Tracking successful (ε = 0.428).

FIGURE 4. Tracking lost (ε = 0.825).

that the recording system break off due to tracking lost,
in rule (3), the robot determines whether it is in the tracking
lost state according to the matching rate. Once in the lost
state, it records the current frame and continues tracking and
recording to ensure the continuity of recording system, which
meets the requirement of (c).

According to the above method, a probability grid map as
shown in Figure 5 is generated, and the position distribution
of the recorded landmarks is shown in Figure 6. It can be seen
that the landmarks cover almost the entire grid map, which
represents relatively dense space information with sparse
visual features. Then the recorded landmarks are trained to
generate a DBoW. The DBoW is a technique that allows to
convert with a visual vocabulary a set of local features coming
from an image into a sparse numerical vector, allowing to
manage big sets of images [13]. In order to retrieval similar
landmark we use an image database composed of a hierarchi-
cal bag of words, and direct and inverse indexes. The visual
vocabulary is created by discretizing the descriptor space
into several visual words. We discretize a binary descriptor
space by ORB, creating a more compact vocabulary. The
vocabulary tree is built by kmeans++ algorithm as proposed
in [29]. Every word or leaf node maintained an inverse index,
it stores a list of images where the word present. We weight
eachwordwith its inverse document frequency (idf ), where is
the number of training images, and the number of occurrences
of word in these images.

idf (i) = log
N
ni

(4)

When querying the similar landmarks, image I is converted
into a bag-of-words vector υ = {ω1,ω2,....,ωm}, the binary
descriptors of its m features traverse the tree from the root
to the leaves, by selecting at each level the intermediate
nodes that minimize the Hamming distance. This allows us to

FIGURE 5. Grid map.

FIGURE 6. Landmark location in grid map.

calculate the term frequency (tf ) of each word in this image.

f (i, I ) =
niI
nI

(5)

niI stands for the number of occurrences of word ηi in
image I , and nI for the number of words in I . The i-th entry of
υ is finally given the value ηit = tf (i, It) × idf (i), obtaining
the tf−idf weight. Thewords corresponding to the key points
of each image constitute the bag-of-words vector ν of this
image:

ν = {(ω1,η1), (ω2,η2),...., (ωm,ηm)} (6)

To measure the similarity between two landmarks νA and νB,
we can calculate a L1-score s (νA − νB), when the database
is queried, all the matches are ranked by their scores and the
best picture will be selected.

s (νA − νB) = 2
m∑
i=1

∣∣νAi ∣∣+ ∣∣νBi ∣∣− ∣∣νAi − νBi ∣∣ (7)

C. ONLINE STAGE
In general, Monte Carlo-based global localization uses the
random selection of an initial position on map to uniformly
distribute a large number of particles on the map to generate
the proposal distribution [16]. The weight of particles con-
tinuously updates according to the lidar-based measurement
model until it converges to the exact position in correction
phase. Once the initial position is far away from the actual
position, it is of great possibility to cause localization failure.
In the correction phase, the probability of effective obser-
vation is equal to that of invalid or even harmful observa-
tion, because the lidar measurement model samples the laser
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FIGURE 7. Retrieval result by DBoW: in the red box are pictures observed
by the robot at different positions, in the blue box are landmarks, and in
the green box are each observation picture and the corresponding three
most similar pictures (for interpretation of the references to color in this
figure legend, the reader is refered to the web version of this article).

beams uniformly. Once the lidar is obscured severely, it is not
possible to make full use of effective measurements to update
the particles and resulting in localization failure.

In this paper, both the prediction phase and correction
phase are improved respectively as discussed in section III.
In the prediction phase of global localization, the proposal
distribution is determined according to the error model of
visual retrieval, while the odometer provides a reliable priori
in the prediction phase of pose tracking. The improved lidar-
based measurement model that the laser beams with high
confidence are selected as the observation is adopted in the
correction step of both global localization and pose tracking
for fine localization.

Prediction phase: DBoW generated in off-line stage is
applied to retrieve the most similar landmark, the robot
determines the particle distribution according to the position
information and the error model of themost similar landmark.
Search results shown in Fig. 7 indicate that the retrieved land-
mark via DBoW under occlusion can also find corresponding
landmarks. The highest-scoring landmark is to provide prior
information to generate proposal distribution of particles.

In order to further determine the particle distribution of
the initial position, the error model of the retrieved land-
mark is analyzed. Landmarks are clustered according to
matching rate firstly, as shown in Algorithm 2. We denote
C = C0,C1, . . . ,CL as the set of landmark classes, Cl =
Pn,Pn+1, . . .(l ∈ (0,L)) represents the landmark class, L
is the number of classes, and it can only be determined
after clustering has been completed, Pn is denoted as land-
mark, N is the maximum number of landmarks, threshold ∈
[0.1, 0.55] based on experience. When the matching rate
between the current picture Pn and the next picture Pn+1 is
within the threshold range, Pn+1 will be added to the class of
the current picture, otherwise, a new class will be created and
Pn+1 will be added to the new class until all the pictures are
traversed to complete the clustering.

After the clustering is completed, the mean values of the
positions and postures associated with various landmarks

Algorithm 2 Landmark Clustering
1: C = ∅,Cl = ∅, l = 0
2: for all landmarks Pn = P0 to PN do
3: if match(Pn,Pn+1) ∈ threshold then
4: Cl = Cl ∪ Pn,Pn+1
5: else
6: C = C ∪ Cl
7: l ++ (create new Cl)
8: n++
9: end if

10: end for
11: return C

FIGURE 8. Error distribution, mean and variance of adjacent classes in X.

belong to the classes are taken as the poses of the landmark
classes. Owing to the error range between the landmarks is
smaller than the error range between the landmarks, it is fea-
sible to analyze the rough distribution of the robot’s proposal
distribution of global position using the error model between
the landmarks. According to Figure 8–10, the variance σxx ,
σyy, σzz of adjacent landmark classes in different dimensions
of x, y, and z (yaw) can be obtained. When the robot retrieves
a picture from the landmark database that is most similar to
the current scene, the particles representing the robot’s pose
should obey the Gaussian distribution with the position of
the landmark class where the picture is located as the mean
and 6 as the covariance matrix, as shown in formula (8),
where µ=p(x, y, z) is location of class that the most similar
landmark belong to, 6= diag

(
σxx , σyy, σzz

)
.

N (p|µ,6) =
1

(2π )D/2
1
|6|1/2

× exp
{
−
1
2
(p− µ)T6−1(p− µ)

}
(8)

In order to maximize the confidence of the particle dis-
tribution range, according to the 36 rule in formula (9),
covariance matrix of the particle distribution is set as
6= diag

(
σ ′xx , σ

′
yy, σ

′
zz

)
, where σ ′xx = (

√
σxx × 3)2, σ ′yy =

(√σyy × 3)2, σ ′zz = (
√
σzz × 3)2.

Pr(µ− 3σ ≤ X ≤ µ+ 3σ ) ≈ 0.997 (9)

In this paper, 6= diag (7.02, 3.42, 1.08).
Correction phase: The measurement model proposed in

this paper selects the laser beams with high confidence
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FIGURE 9. Error distribution, mean and variance of adjacent classes in Y.

FIGURE 10. Error distribution, mean and variance of adjacent classes in Z
(yaw).

Algorithm 3Measurement Model
Input: (zt , xt ,m)
1: for s = 1 to S do
2: for (k = 0; k < laser_count; k+ = step) do
3: p = zhit · phit (zkt |xt ,m) + zshort · pshort (zkt |xt ,m) +

zmax · pmax(zkt |xt ,m)+ zrand · prand (z
k
t |xt ,m)

4: weight .push_back(p∗)
5: end for
6: sort the elements of weight from big to small
7: for (i = 0; i < using_laser_count; i++) do
8: p+ = weight(i)
9: end for

10: ω
[s]
t = ω

[s]
t × p

11: total_weight+ = ω[s]
t

12: end for
13: return total_weight

as the observation to evaluate the weight of particles.
The measurement_model is shown in Algorithm 3, where
laser_count is the total number of laser beams of lidar, step
represents sampling step of laser beams, using_laser_count
is denoted as the number of laser beams for observation, and
the following conditions need to be met.

laser_count/step ≥ using_laser_count (10)

We denote zt= {z1t , z
2
t , · · · , z

k
t } as the measurement of all

beams, xt is the pose state, p is the observation likelihood of
each beam, ω[s]

t is weight for each particle, the total_weight
is the total weight of the particles, which is used to normalize
the particle weights in resampling process.

The algorithm from line 2 to line 6 is to cal-
culate the likelihood of each laser beam, and the

using_laser_count beams with the highest confidence are
selected. Observation_likelihood in line 3 is represented by
beam_model [6], which incorporates four types of measure-
ment errors, all of which are essential to making this model
work: small measurement noise phit (zkt |xt ,m), errors due to
unexpected objects pshort (zkt |xt ,m), errors due to failures to
detect objects pmax(zkt |xt ,m), this four different distributions
are weighted by 4 parameters to calculate the lidar’s observa-
tional likelihood on themap, and zhit+zshort+zmax+zrand = 1
as is shown in formula (11).

p(zkt |xt ,m) = zhitphit + zshortpshort + zmaxpmax

+zrandprand (11)

Instead of the traditional algorithm that the laser beams
are selected by uniformly-spaced sampling, the laser beams
with highest confidence are selected as observation to update
weight of particles and the confidence levels of the laser
beams are sorted according to the observation likelihood (line
6). In this way, when the lidar is blocked by a large area,
both static and dynamic obstacle information, as long as the
obstacle information is unreliable, they can avoid being intro-
duced to update particles, so as to use observation information
with high confidence to update the proposal distribution, and
the robustness localization is enhanced in the case of serious
occlusion. With this method, although the number of laser
beams per sampling is higher than that of the traditional
method, the improvedmeasurement model makes the number
of iterations and particles in the process of particle filter
greatly reduced, which improves the efficiency and accuracy
of localization.

V. RESULTS AND ANALYSIS
Experiments are conducted for global localization and pose
tracking under severe occlusion. Since the global localization
process has been improved from the prediction phase and
the correction phase respectively, four groups of experiments
based on the idea of control variables are carried out as
follows to verify the superiority of the localization system in
this paper, and all experiments are carried out under the rel-
atively harsh conditions, which is that the maximum number
of particles is 300, the number of 1/12 laser beams is used
as observation, and 60% excitation is under the occlusion
condition. FL in the following figure refers to the fake lidar
data returned by the occluded lidar, CL refers to the correct
lidar value, AP refers to the actual position of the robot (the
Green Point), EP is the robot estimated position according
to the localization algorithm (yellow point), and the blue
point represents the particles. When AP and EP coincide,
the robot localization is successful and the particles converge
to the distribution range near the actual position, otherwise,
the localization failed. In pose tracking process, the odometer
is used as the prior information in the prediction phase, and
the measurement model proposed in this paper is used in
the correction phase. The trajectory of the odometer and
the trajectory calibrated by two localization algorithms are
recorded for comparison.
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FIGURE 11. Global localization process without occlusion of traditional
prediction model and measurement model, the particle filter iterates
194 times and costs 7.1s.

FIGURE 12. Global localization process under occlusion of traditional
prediction model and measurement model, the particle filter iterates
51 times and costs 1.7s.

A. GLOBAL LOCALIZATION
The prediction model and measurement model of global
localization are both improved. The initial position is ran-
domly drawn in grid map in traditional prediction model, but
the improved prediction model provide the distribution of ini-
tial position by visual retrieval. The traditional measurement
model does not distinguish between reliable and unreliable
observation, while the improved measurement model will
select reliable lidar beams as observation.

1) TRADITIONAL PREDICTION MODEL + TRADITIONAL
MEASUREMENT MODEL
In the traditional AMCL global localization process, the ini-
tial position is set randomly and the particles are distributed
evenly for iterative calculation. Particles converges to the
wrong position under both normal and severe occlusion con-
ditions, resulting in positioning failure, as is shown in Fig-
ure 11 and Figure 12.

2) TRADITIONAL PREDICTION MODEL + IMPROVED
MEASUREMENT MODEL
By using the improved measurement model, the particles
are evenly distributed in the global environment for iterative
calculation. It can be seen that when the lidar is not occluded,
the robot converges to the correct position as is shown in Fig-
ure 13, so it can be proved that the improved measurement
model is better than the original measurement model; when
the lidar is seriously occluded, the robot converges to the
wrong position as is shown in Figure 14, which indicates that

FIGURE 13. Global localization without occlusion of improved
measurement model and traditional prediction, the particle filter iterates
44 times and costs 6.4s.

FIGURE 14. Global localization without occlusion of improved
measurement model and traditional prediction, the particle filter iterates
41 times and costs 6.2s.

there are some limitations in the global localization by lidar
alone.

3) IMPROVED PREDICTION MODEL+ TRADITIONAL
MEASUREMENT MODEL
When using the improved prediction method and traditional
measurement model for global localization, due to the sit-
uation that the predicted position is far from the real posi-
tion (0.2 m in x direction, 6 m in y direction, 0.3 rad in z
direction), and the results of erroneous convergence occur
in both occluded and non-occluded cases as shown in Fig-
ure 15 and Figure 16, so it proves that the traditional AMCL
is still not strong enough when weak prior information is
provided.

4) IMPROVED PREDICTION MODEL+ IMPROVED
MEASUREMENT MODEL
After adopting improved prediction model and improved
measurement model, the robot can converge to an accu-
rate position with or without occlusion as shown in Fig-
ure 17 and Figure 18, which proves the superiority of this
system.

B. POSE TRACKING
After completing the global localization, it is also necessary
to meet the real-time and accuracy of pose tracking during
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FIGURE 15. Global localization without occlusion of traditional
measurement model and improved prediction model, the particle filter
iterates 20 times and costs 1.1s.

FIGURE 16. Global localization with occlusion of traditional
measurement model and improved prediction model, the particle filter
iterates 52 times and costs 2.8s.

FIGURE 17. Global localization without occlusion of improved
measurement model and improved prediction model, the particle filter
iterates 21 times and costs 3.0s.

the robot’s continuous movement. In order to verify the
performance of the improved algorithm, during the experi-
ment, the robot with a lidar blocking 60% moves at a speed
of 1.2m/s, odometer trajectory and the tracking trajectory out-
put by the two localization algorithms are recorded. AMCL
still uses the original measurement model, and the algorithm
of this paper uses the improved measurement model.

As shown in Figure 19, the overall trajectory of the
odometer is deformed due to the accumulated error, and
the AMCL outputs a wrong trajectory because the lidar is
severely blocked. However, under the same motion scenario,
the improved AMCL with improved measurement model
corrects the odometer data in real time to ensure the accuracy
of robot positioning.

FIGURE 18. Global localization with occlusion of improved measurement
model and improved prediction model, the particle filter iterates 27 times
and costs 3.4.

FIGURE 19. Trajectories of odometer, AMCL and improved AMCL.

VI. CONCLUSION
In this paper, a robust localization system is designed to solve
the problem of robot location failure when lidar is blocked
seriously. Based on Monte Carlo positioning, the system
improves the prediction and correction of the robot. In the
prediction stage, the offline DBoW generated by training is
used to retrieve similar landmarks, and the proposal distri-
bution is generated according to the retrieved visual land-
marks; in the update stage, the measurement model of lidar
is improved, and the laser beams with higher confidence
are selected as the observation to update particles, which
avoids the observation noise caused by the occlusion of the
introduced pseudo data, and improves the robustness of posi-
tioning. Experimental results show that compared with the
state of art non parametric filtering algorithmAMCL, the sys-
tem has obvious advantages in global localization and pose
tracking. In future work, a landmark system incorporating
semantic information will be used to improve the accuracy
of visual retrieval in the case of drastic changes in lighting,
color, and occlusion, so as to provide a reliable priority for
the global localization of robot.
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