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ABSTRACT In this paper, we propose a method that removes raindrops with light field image using image
inpainting. We first use the depth map generated from light field image to detect raindrop regions which are
then expressed as a binary mask. The original image with raindrops is improved by refocusing on the far
regions and filtering by a high-pass filter. With the binary mask and the enhanced image, image inpainting is
then utilized to eliminate raindrops from the original image. We compare pre-trained models of several deep
learning based image inpainting methods. A light field raindrop dataset is released to verify our method.
Image quality analysis is performed to evaluate the proposed image restoration method. The recovered
images are further applied to object detection and visual localization tasks.

INDEX TERMS Raindrop removal, light field, image inpainting.

I. INTRODUCTION
Object detection and self-localization are the fundamental
tasks in autonomous driving as well as mobile robotics.
In recent years, thanks to the rapid development of deep
learning, vision-based perception and localization [1]–[3]
have been greatly improved in both accuracy and reliability.
Deep learning based approaches also show good generaliza-
tion ability under the deep neural network structure and the
support of a large amount of training data. Facing complex
environments in practical applications, more and more work
has been initiated to focus on edge cases, including adverse
weather conditions.

Raindrops falling on vehicle windows (in case of built-in
camera) or camera lenses (in case of external camera) on
a rainy day are one of them. They typically cause vision
sensors to produce blurry images which in turn interfere
with high-level environmental perception tasks. To allevi-
ate this problem, recently, Qian et al. [4] collected image
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pairs with and without raindrops and trained a Generative
Adversarial Network (GAN) [5] in supervised learning
paradigm to remove raindrops, that can recover test images
effectively. However, due to the relatively small dataset for
neural network training, we found that there is still room for
improvement ofmodel generalization ability, especiallywhen
inputting non-homologous images. Although a direct way in
this matter is to increase the model capacity by feeding more
training examples, it is very challenging to collect image pairs
with and without raindrops in different lighting conditions,
scenes, and environments.

As an emerging device, light field cameras not only retain
light intensity information, but also direction information of
the ray. A typical light field imaging system is a camera array.
Adelson and Wang [6] pioneeringly designed a plenoptic
camera that consists of a main lens, a microlens array, and
an imaging sensor. Later on, Ng et al. [7] redesigned it in
order to have a handheld light field camera based on a con-
ventional device. Along with the development of hardware,
considerable work has emerged in recent years focusing on
depth estimation [8], [9] based on light field image.
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Although the handheld light field camera cannot obtain
accurate depth maps over longer distances due to the short
baseline, it can well distinguish the far and near areas of
the scene, which makes it straightforward to detect raindrops
on the glass or window in front of camera. Different from
the single image raindrop removal methods, which have the
limitations on generalization capabilities, the image pairs,
which are used to train the image inpainting task in a super-
vised learning paradigm, can be easily generated. It makes
deep learning based image inpaintingmethods [10], [11] have
million-level training datasets and work well even on the
non-homologous images with pre-trained models. We there-
fore believe that the combination of light field image and
image inpainting is helpful for raindrop removal task in gen-
eral scenarios.

In this paper, we propose a method that can effectively
remove raindrops from the images captured by a handheld
light field camera using image inpainting. Since a light field
image is equivalent to an image array captured by a camera
array, we use the central one as the original image. Examples
with raindrops are shown on the left side of Fig. 1. We use the
estimated depthmap to detect raindrop regions which are sub-
sequently expressed as a binary mask. The original image is
first improved by refocusing on the far regions and high-pass
filtering. With the binary mask and enhanced image, image
inpainting is then applied to eliminate raindrops. Examples of
recovered images are shown on the right side of Fig. 1. We
compare several deep learning based image inpainting meth-
ods and directly use the pre-trained models. Image quality
analysis is used to evaluate the image restoration. The recov-
ered images are finally applied to the object detection and
self-localization tasks.

FIGURE 1. Left: The central images in the image arrays captured by the
light field camera. Right: The recovered images which eliminate raindrops
by binary masks, enhanced images, and image inpainting.

The contributions of this paper are threefold:
• We propose a novel raindrop removal method with light
field image using image inpainting.

• We release a new dataset which contains light field
images with raindrops collected in different scenarios,
publicly available at https://github.com/cavayangtao/
light-field-raindrop-dataset.

• We comparatively evaluate our method in different sce-
narios using image quality analysis and apply the recov-
ered images to object detection and self-localization
tasks. The experimental results show that the use
of recovered images can help improve system
performance.

This paper is organized as follows: in Section II, we give
the related work of light field imaging, image inpainting, and
raindrop removal methods; Section III describes in detail our
proposed method; Section IV first introduces the dataset of
light field images with raindrops and then shows the experi-
mental results and analysis; Section V summarizes the paper
and prospects future work.

II. BACKGROUND
A. LIGHT FIELD IMAGING
According to the light field rendering theory proposed by
Levoy and Hanrahan [12], the arbitrary ray can be repre-
sented by a radiation function. The light field is all the rays
in space. The four-dimensional direction information in ray
space can be parameterized by two parallel planes which are
shown as coordinates of lens and sensor in Fig. 2. Based
on this principle, Wilburn et al. [13] captured light field by
an array with different numbers of cameras. Similar to the
camera array, Georgiev and Intwala [14] designed a light
field acquisition method that placed the lens array in front
of the camera lens. Liang et al. [15] added a programmable
liquid crystal filter in front of the lens to sample sub-aperture
images bymultiple exposures, which directly transformed the
conventional camera into a light field one with high image
resolution. However, multiple exposures require longer time
and larger amount of data storage space. Ng et al. [7] therefore
simplified the design of a plenoptic camera and made a
handheld light field camera based on a conventional camera.

The device we used for dataset collection was the first
generation Lytro camera. It is actually a plenoptic camera
consisting of a microlens array inserted in front of the sensor

FIGURE 2. The ray going from the position (u, v ) of the lens to the
position (x, y ) of the sensor, where F is the distance between the lens
and sensor, can be represented by a four-dimensional light field function
LF (x, y, u, v ) [7]. The light field is all the rays in space.
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FIGURE 3. Left: Schematic diagram of a plenoptic camera. Right: The
circular spots imaged by the microlens array are called macro pixels. The
position of a pixel in the macro pixel corresponds to the coordinates of
(u, v ), while the position of a macro pixel on the sensor corresponds to
the coordinates of (x, y ).

(see Fig. 3). This light field camera has a refocusing function
because it is capable of capturing multi-viewpoint images [7].
Unlike current refocusing methods applied to smartphones
(i.e. blurring the background according to the depth map),
refocusing by a light field camera is equivalent to an optical
lens. When refocusing on a distant region, small objects
nearby can be eliminated [16]. Considerable work has been
focused on estimating the depth map from the light field
image. Dansereau and Bruton [17] applied 2D gradient oper-
ators to Epipolar Plane Image (EPI) slides from the light
field to estimate the depth map. Tao et al. [18] first esti-
mated depth combining defocus and correspondence cues,
then proposed a method [19] estimating local shape from
defocus and correspondence cues to further refine the depth.
With the development of deep learning technology in the field
of image processing, Convolutional Neural Networks (CNN)
were applied to light field images for depth estimation [8]
and materials recognition [20]. Lately, Mildenhall et al. [21]
presented a CNN-based method for light field synthesis from
a set of input images captured by a handheld camera.

B. IMAGE INPAINTING
Image inpainting, also referred as image completion, aims
to fill missing areas of an image. It is an important task
in computer vision and image editing. The applications
include damaged image restoration, object removal andmore.
Traditional approaches can be divided into diffusion-based
method and patch-based method. The former propagates
information from surrounding regions of missing areas [22],
while the later fills in missing regions by getting information
of the similar regions [23], [24]. However, these methods suf-
fer from challenging situations such as urban traffic scenes,
as they rely solely on texture features without semantic
information.

Recently, deep learning based methods have made remark-
able improvements in image inpainting by learning data

distribution combining the texture and semantic information
with CNN and GAN. Pathak et al. [25] implemented image
inpainting using an encoder-decoder CNN architecture.
Yang et al. [26] jointly optimized image content and tex-
ture constraints through a multi-scale optimization approach,
which improved the output of the context-encoder at the
cost of high demand of computing time and storage. GAN
models the distribution of data by adversarial training [5].
Isola et al. [27] proposed a conditional GAN framework
for image-to-image translation problems, which is widely
used for image synthesis. Yeh et al. [28] employed GAN for
image inpainting task with uncorrupted data. Iizuka et al. [29]
addressed blurriness problems using global and local con-
text discriminators to distinguish the generated images from
real ones relying on DCGAN loss [30]. Yu et al. [31]
used an attention mechanism to refine image inpainting
results with a modified version of WGAN-GP loss [32].
Nazeri et al. [10] proposed a two-stage adversarial model
that synthesizes edges of missing regions by an edge
generator, then inputs predicted edges and incomplete color
image to another generator for final inpainting. Moreover,
Hong et al. [11] recently achieved good performance of image
completion using a U-Net architecture embedded with fusion
blocks to the last few decoder layers.

C. RAINDROP REMOVAL
Unfortunately, there are few works on the detection and
removal of raindrops in images. Roser and Geiger [33]
detected raindrop in a single image based on a photomet-
ric raindrop model and fused multiple frames into a single
frame to restore the image. To further, Wu et al. [34] ana-
lyzed the color, texture, and shape features to propose rain-
drop candidates, and then reduced false detections through a
learning-based algorithm. The regions occupied by raindrops
are finally filled with image inpainting. Kang et al. [35]
removed raindrops using morphological component analy-
sis based image decomposition. Besides using a monocular
camera, Yamashita et al. detected and removed raindropswith
a stereo system [36] and image sequences [37], respectively.
However, since these methods do not benefit from the lat-
est progress in deep learning, the image restoration is not
satisfactory. Eigen et al. [38] first used CNN to restore
the raindrop image by end-to-end training. Qian et al. [4]
improved the raindrop removal and image recovery quality
by GAN and attention mechanism. However, limited to the
size of the training set, the generalization ability of neural
network methods needs to be further improved. In summary,
to the best of our knowledge, removing raindrops in light
field image by deep learning based image inpainting and the
light field raindrop dataset are proposed for the first time in
this paper.

III. PROPOSED METHOD
The overall flowchart of our method is shown in Fig. 4.
We first estimate the depthmapD from the light field image I ,
and a binarymaskM showing the raindrop regions is obtained
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FIGURE 4. The overview flowchart of the proposed method. A binary mask showing the raindrop regions is generated using the depth map. In parallel,
the image refocusing on the far regions is enhanced by a high-pass filter. Finally, a deep learning based image inpainting method is used to restore the
masked raindrop image.

using the depth map. Then, the image refocusing on the far
regions (Ir ) is enhanced by a high-pass filter, while the fil-
tered image is expressed as If . Finally, we utilize deep learn-
ing based image inpainting algorithm to restore the masked
raindrop image. The recovered image can be further used for
tasks such as object detection and self-localization.

A. MASKING REFOCUSED IMAGE
For the light field function LF (x, y, u, v) representing the ray
in space, by fixing the parameters of (u, v) as 2D slices of the
4D light field function, we can then get a sub-aperture image,
which is equivalent to the one obtained from the viewpoint
(u, v) as expressed by:

I (u,v)(x, y) = L(u,v)F (x, y) (1)

Fig. 5 shows the sub-aperture image array obtained by
rearranging the original light field image, in which the
coordinates of (u, v) represent angular resolution, while the
coordinates of (x, y) expresses spatial resolution.
The disparity between each sub-aperture can be used to

calculate the depth map D. A common method to do so is
to estimate the slopes of lines in EPI slices from the light
field image [17]. To analyze the orientation of patterns in
EPI, Johannsen et al. [39] built a dictionary with atoms
of fixed disparity and used sparse coding representation to
find which elements in the dictionary can best describe the
patch. Jeon et al. [40] estimated correspondences from the
light field based on EPI with sub-pixel accuracy using the
cost volume. Tao et al. [41] developed a method for local
shape estimation based on defocus and correspondence cues,
and then used shading to further refine the depth. However,
the Lytro software (associated with the camera) we used
can directly provide competitive depth output, which can
effectively lightweight our system on the one hand, and also
conducive to system reuse on the other. As shown on the left
side of Fig. 6, the raindrops are well distinguished in the depth
map generated by the software. Furthermore, we convert
the depth map D to a binary image M for subsequent image

FIGURE 5. Sub-aperture image array obtained by rearranging the original
light field image.

completion. In order to have M that completely covers the
raindrops, we first use the close and open operators to elim-
inate the noise on the original binary image, and then use
the erosion operator to enlarge the raindrop ranges. The final
binary image is shown in right part of Fig. 6.
The refocusing of the light field image is achieved by

assuming a virtual imaging plane. For a light field imaging
system with a distance F between the lens and the imaging
plane (c.f. Fig. 2), we assume that the imaging plane moves
to a new distance F ′. The ray, which passes through the
positions (u, v) and (x, y), has a new position (x ′, y′) on the
virtual imaging plane. With simple triangular geometry [7],
we can use the light field function of the original imaging
plane to obtain a new light field function for the same ray as
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FIGURE 6. Left: The depth map generated by the Lytro light field
software. Right: The binary mask processed by image morphology.

expressed in:

LF ′
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normalization coefficient.
To highlight the background and weaken the influence

of raindrops, we refocus on the far regions (Ir ). Then,
a high-pass filter H is further used to enhance image details
as:

H =

 0 −1 0
−1 5 −1
0 −1 1

 (4)

The binary maskM , which indicates the regions of raindrops,
is applied to the filtered image If for further image
restoration. Fig. 7 shows the original sub-aperture image,
enhanced image, and masked image, respectively.

FIGURE 7. Left: the original sub-aperture image. Center: the refocused
image processed by a high-pass filter. Right: the masked image.

B. RAINDROP REMOVAL
To eliminate raindrops, image inpainting is used to get a clear
image with the enhanced image and binary mask. We have
tried several state-of-the-art methods, including:

FIGURE 8. Raindrop removal with three different deep learning based
methods. Left: Contextual Attention. Center: Edge Connect. Right: DFNet.

FIGURE 9. The last 50 images of our dataset was collected with the UTBM
robocar. The Lytro camera was held in the car by the author, and the
corresponding GPS information was also recorded. As shown on the right
side in the figure, the route of data collection is the same as the EU
long-term dataset [43].

• Contextual Attention [31] is a two-stage coarse-to-fine
network architecture. The first stage is a dilated convo-
lutional network with reconstruction loss to get rough
completion contents. The second stage uses the rough
image inpainting result as input with two Wasserstein
GAN losses, where one looks at the global image and the
other looks at themissing regions. A contextual attention
mechanism is integrated into the second stage to borrow
feature information from the known background to gen-
erate missing patches.

• Edge Connect [10] is a two-stage processing method.
Different from Contextual Attention, the first stage is
an edge generator, while the second stage is an image
completion network which uses the masked image and
edges generated from the first stage as input. Each stage
consists of a generator/discriminator pair. The two-stage
generators are first trained separately using Canny edges
then fine-tuned end-to-end. This approach is inspired by
how artists work and is able to recover high and low
frequency information of the missing regions.

• DFNet [11] is a U-Net architecture embedded with
fusion blocks to several layers of decoder. The fusion
block extracts raw completion from feature maps and
predicts a composition mask, which is the missing
region but has smoother weights on the boundary
regions. The final output is generated combining the
information of the raw completion, composition map,
as well as scaled input image. Instead of usingGAN loss,
a total loss combining structural loss and texture loss is
used for training.
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FIGURE 10. From left to right in each row: original sub-aperture image, enhanced image, masked image, recovered image with Edge Connect, recovered
image with DFNet, recovered image with DeRaindrop [4].

As the Contextual Attention approach tries to find similar
content from the background to fill the missing pixels, but
neglects the structural information, it does not show competi-
tive performance. In contrast, Edge Connect and DFNet show
interesting results, since they consider both structural and
texture information as important features, and are therefore
integrated into our method. We use the models pre-trained
on Places2 Dataset [42], which contains 10 million scene
photographs, for our raindrop removal task. Fig. 8 shows
examples of the results obtained.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
A. LIGHT FIELD RAINDROP DATASET
We evaluated the proposed method on a new dataset collected
with the first generation Lytro camera. The dataset contains
90 light field raindrop images that cover different camera

angles and scenes. For each image, we provide the light field
source file, reference image, and reference depth map given
by the Lytro software. The light field source file can be easily
decoded by the light field toolbox.1 We collected raindrop
images with glass plate, window of train, and window of
car. The camera is placed 10 to 15 cm in front of the glass
plate and windows. The first 40 images in our dataset cover
different situations evenly, which are used for image quality
analysis and object detection task. Using the EU long-term
dataset [43] as reference, the last 50 images are applied to
self-localization task. For the latter, we drove on a rainy
day to collect data following the same path as the previ-
ous dataset (see Fig. 9). Table 1 gives a summary of our
dataset.

1https://github.com/doda42/LFToolbox
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TABLE 1. An overview of the light field raindrop dataset.

TABLE 2. Average image quality scores.

B. IMAGE QUALITY ANALYSIS
Image quality assessment measures image degradations such
as noise, blur, etc. It can be categorized into full-reference
and no-reference approaches. The former needs an ideal
reference image to calculate image quality metrics, while
the latter predicts image quality using statistical model.
We use the no-reference CNN based image quality predic-
tor that relies on the state-of-the-art deep object recogni-
tion networks, which is end-to-end trained on the dataset
of image quality assessment [44]. We measured the
Image Quality Scores (IQS) of the original sub-aperture
image, raindrop-removed image using Edge Connect, and
raindrop-removed image using DFNet, respectively. In addi-
tion, we also give the results when disabling different compo-
nents in our method. The average IQS of the first 40 images
of each type are calculated as shown in Table 2, where ‘‘I’’ is
the original image; ‘‘R1’’ is the recovered image with Edge
Connect; ‘‘R2’’ is the recovered image with DFNet; ‘‘R1 - A’’
is the output without image inpainting, which is equivalent to
the enhanced image If ; ‘‘R1 - B’’ is the recovered image with
Edge Connect but disabling the refocusing module; ‘‘R1 - C’’
is the recovered image with Edge Connect but disabling the
high-pass filter.

It can be seen that the quality of the enhanced images is
improved compared to the central sub-aperture images for
two reasons. First, the background is strengthened by refo-
cusing and high-pass filter, while the raindrops that interfere
with the image quality are weakened. Second, the refocused
image is the integration of light field, thus it has a higher
signal-to-noise ratio than a single sub-aperture image. It is
intuitive that the images with raindrops removal have the
highest average quality scores. Moreover, DFNet performs
best, as it considers both the structure and texture information
of the image to produce more accurate image details, rather
than two steps like Edge Connect.

When the refocusing module is disabled, the IQS is
decreased because the signal-to-noise ratio of the original

FIGURE 11. The original sub-aperture images, enhanced images, and
raindrop-removed images have positive detections of 120, 133, 139 and
negative detections of 20, 16, 7, respectively.

image is relatively low, and only using a high-pass filter to
strength the high-frequency information also increases noise.
When the high-pass filter module is disabled, the image
quality is greatly reduced, even lower than the original image.
The reason is that although refocusing weakens the raindrops
in the foreground, the background becomesmore blurred than
the original image, as the sub-aperture has a deeper depth
of field. Meanwhile, the weakening of high-frequency infor-
mation is not conducive to the extraction of image structure
information in image inpainting.

Fig. 10 shows some examples of image recovery using
our method. We can see that if the raindrops detection is
correct, image inpainting methods are able to remove the
raindrops and restore the clear image well. Although DFNet
can produce images with higher quality scores, there is no
significant difference between the results and those of Edge
Connect from the perspective of human eyes.

In Fig. 10,We also show the results of directly applying the
single image raindrop removal method, i.e. DeRaindrop [4],
on the original sub-aperture images. There is a slight effect
on the first image. On the second one, only raindrops in the
upper half are detected and removed. It has little effect on
other images, and we find this method doesn’t work well in
most of the images we have collected.

C. OBJECT DETECTION
In order to evaluate the usefulness of our method for object
detection, we input the original images, enhanced images, and
the images after raindrop removal, respectively into Google
Vision API2 for comparative analysis. As Edge Connect
keeps the original image resolution at 360 × 360, while
DFNet forces to output an image with a magnified resolution

2http:/cloud.google.com/vision/
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FIGURE 12. The object detection results of the original sub-aperture images, enhanced images, and recovered images, from left to right of each scenario.

of 512× 512, we use therefore the raindrop-removed images
output from Edge Connect for testing for fair comparison.
The experimental results are shown in Fig. 11. We count the
numbers of positive detections and negative detections, and
it can be seen that the recovered images outperform those
without raindrop removal.

Fig. 12 gives some intuitive examples of the object detec-
tion results. It can be seen that negative detections may appear
under the interference of raindrops. For example, in the first
row of Fig. 12, the background mountain is detected as a
building, and the animals are erroneously detected. Compared
with the original sub-aperture images, the enhanced images
bring improvements to the object detection task, and the
recovered images without raindrops provide the best perfor-
mance. As evidence, on the right side of the second row and
the left side of the third row of Fig. 12, only the images
without raindrops output the bounding boxes of the buildings
successfully.

D. SELF-LOCALIZATION
Finally, we perform self-localization tasks using light field
images from number 41 to 90. The reference images are
extracted from the data ‘‘2018-07-20’’ of the EU long-term
dataset [43] by one-tenth of the original sampling rate of
the front central camera. The localization is implemented by
image retrieval, where we calculate the similarities between a
processed light field image and all the reference images, then
use the reference image with the maximal similarity as our
localization result. The similarity score is calculated by DEep
Local Feature (DEFL) [3], which is based on CNN trained
on a large landmark image dataset to identify semantic local

FIGURE 13. The accuracies of visual localization of the original
sub-aperture images, enhanced images, and raindrop-removed images.

features for image retrieval. Instead of using extracted fea-
tures directly, an attention mechanism is designed in DELF
for keypoint selection. At the end, the number of inlier match-
ing keypoints selected by the geometric verification is used as
the similarity score.

Fig. 13 shows the accuracies of visual localization of the
original sub-aperture images, enhanced images, and raindrop

VOLUME 8, 2020 58423



T. Yang et al.: Raindrop Removal With Light Field Image Using Image Inpainting

FIGURE 14. From left to right are the examples of visual localization results of sub-aperture images, enhanced images, and recovered images,
respectively. Green color means the positive retrieval and red color indicates the negative retrieval.

removed images, which are 80%, 82%, 86% respectively. The
results are consistent with image quality analysis and object
detection results. The raindrop-removed images achieve the
best result, followed by the enhanced images.

Fig. 14 gives some examples of visual results. Although
deep learning features have strong robustness, raindrops still
causes interference to some pictures like the first and second
rows in Fig. 14. For very similar scenarios such as the
third row, it leads to wrong matching for all the images.
As consequence, improving image quality by refocusing
and removing raindrops results in better visual localization
performance.

E. DISCUSSION
By image quality analysis, it can be seen that the images
without raindrops have higher IQS, which is intuitive.
Meanwhile, every component in our framework contributes
to the final image quality improvement. Compared to the
existing single image raindrop removal method, our method
is effective for more general scenarios and also able to remove
the snowflakes on the window in front of camera. These are

mainly due to the geometric information based depth map
construction from light field image and the great generaliza-
tion ability of deep learning based image inpainting.

When applying the recovered images to high-level per-
ception tasks such as object detection and self-localization,
there is a significant performance improvement over images
with raindrops. Unlike the camera array, the handheld light
field camera doesn’t require a complex signal synchroniza-
tion system. Since the depth map is important to guide the
raindrop removal, our method is more suitable for light or
moderate raining conditions. In summary, it’s important to
benefit from both the rich ray information of light field image
and current progress in deep learning based image processing
for the perception tasks under adverse weather conditions.

V. CONCLUSION
In this paper, we proposed a method that removes rain-
drops with light field image using image inpainting. The
depth map generated from the light field image was used
to detect raindrop regions, which were then expressed as a
binary mask. In parallel, the original image was improved
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by refocusing on the far regions and filtering by a high-pass
filter. Image inpainting was finally utilized to eliminate rain-
drops with the binary mask and enhanced image. A new
publicly available dataset of light field raindrop images cov-
ering different camera angles and scenes was built to eval-
uate our method. Image quality analysis, object detection,
and vision-based self-localization were performed to prove
the raindrop removal enhancement with light field images.
It should be noted that our method still has many steps
which makes it difficult to run in real-time. It’s interesting to
make raindrop removal with light field image an end-to-end
paradigm in the future. Moreover, combining use of our light
field dataset with the EU long-term dataset for long-term
autonomy of vehicles is also a point of our future attention.
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