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ABSTRACT A Conservation Voltage Reduction (CVR) is an efficient method to manage the load demand
in distribution power systems. This paper proposes the utilization of the CVR method on Washington
EMC'’s power system and Georgia Transmission Corporation facilities. The utility’s peak power consumption
is reduced to determine the figures of wattage and money saved. The CVR technique is implemented
within the ANSI standards and with an efficient CVR, factor to maintain the efficient performance of
the system and satisfy the consumers’ needs. The principle of operation, concepts of modeling, and
substation CVR management are illustrated. The CVR methodology including utility circuit, smart meters’
data, management, savings, and analysis is presented. Then, experimental CVR scenarios, smart meters’
experimental CVR data, CVR steady-state analysis and experimental CVR management using SCADA are
investigated and analyzed. After that, a CVR dynamic prediction model is established using the Neural
Network (NN) and validated by means of comparisons with actual data and the Gaussian model. Power
saving, power demand, yearly money-saving real data from EMC utility, and real temperature data from
NOAA is used to create the CVR dynamic model with a minimum average error percentage of 0.22 % w.r.t
the real-data. Finally, a SCADA system operation is discussed along with the potential future improvements
and research directions.

INDEX TERMS Conservation voltage reduction, ANSI standards, consumer’s meter, distribution circuit,
dynamic load model, peak wattage consumption, predictive model, simulations, and voltage regulators

controllability.

I. INTRODUCTION

In a power grid, it is not very efficient to run all generators
at full capacity all the time. This is due to the fact that the
energy being generated is not being stored. Without stor-
age, the energy that is not simultaneously consumed is lost.
Typically, generation companies choose which generators to
run at specific points in time in order to meet consumer
needs without grossly generating more power than what is
demanded. With most peak demands being simultaneous,
there are drastic spikes in the demand that must be anticipated
and compensated by the generation companies. The transmis-
sion companies also have to have circuits with the capacity to
carry the peak loads and actively monitor load flow. Because
of the dynamic characteristic of this problem, transmission
companies add a demand charge.
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Conservation Voltage Reduction (CVR) is a reduction of
power consumption resulting from a reduction of voltage.
When implementing CVR, voltages will be reduced to the
lower end of the American National Standard Institute’s stan-
dard voltage band [1]. Care must be taken to ensure that all
consumers are receiving adequate voltage. Manipulating the
voltage can be accomplished by controlling the voltage regu-
lation at the substation [2]. Voltage received at the substation
has some degree of variance and must be regulated by the
distribution companies via voltage regulators. By optimizing
the voltage during peak demands, the peak consumption can
be reduced [3].

CVR has many noteworthy advantages such as the
energy consumption reduction, peak load decrease, and
losses’ reduction of the transformer and transmission line,
increase some domestic appliances’ lifecycles, operating cost
decrease, power factor improvement, and the reduction of
the greenhouse gas emission due to the fuel consumption
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decrease [4], [S]. CVR implementations could be achieved
mainly in two ways. The first basic technique is to reduce
the voltage by utilizing capacitors, line-drop-compensators,
and load-tap-changers, which is called the open-loop tech-
nique (no-voltage-feedback). The second advanced tech-
nique to decrease the voltage is to use Supervisory-control
and-data-acquisition system (SCADA) and the Advance
metering-infrastructure (AMI), which is called the closed
loop-voltage-feedback volt-var control [6], [7]. The voltage
profile which is the difference between the minimum and
maximum voltage through the feeder is desired to be as flat
as possible. The voltage profile could be flattened by placing
capacitors at different sites to enhance the power factor and
decrease power loss. However, the recent trend to reduce the
dependency on the grid is to integrate the distributed genera-
tion resources and CVR technique into the distribution power
system [8], [9]. The Demand Side Management (DSM) tech-
nique is considered as one of the efficient solutions for energy
consumption management. But the DSM technique may not
lead to energy consumption reduction. The CVR performance
assessment is paramount for its implementation. The main
four assessment methods are simulation-based, comparison-
based, synthesis based, and regression-based [4], [10]. There-
fore, accurate load modeling is vital to produce an accurate
assessment of CVR. Artificial Neural Networks (ANNS) are
utilized for load modeling by mapping the input data set
to the output [11], [12]. The load components are catego-
rized into two types, static (a function of the voltage and/or
frequency at a specific time), and dynamic (load with time
dependent characteristics) [13]. However, a modern strategy
is adopted to coordinate the operation of microgrids with
distributed generation resources in the application of Volt-
VAR optimization and CVR using a bi-level optimization
strategy [14].

Recently, the usefulness of voltage reduction regulation as
a degree to exploit utilities’ revenues is illustrated utilizing a
new approach of private environment and various regulation
studies [1]. A robust time-varying load modeling method is
proposed to precisely detect load-to-voltage (LTV) depen-
dency, using an enhanced CVR assessment scheme with a
robust iteratively re-weighted recursive least squares (RLS)
method [2]. Another smart CVR estimation approach for
energy savings in distribution systems has been utilized. This
approach has utilized deeper CVR PV system while limiting
the node voltages within adequate bounds and reactive power
control [3]. Conservation voltage reduction (CVR) technique
is investigated to identify real-time monitoring requirements
for distribution system grid with innovative volt-var control,
and sensitivity analyses [4].

A modern upgrade plan for a microgrid associated with dis-
tributed generation sources with CVR technique and capac-
itors placing is investigated. The CVR is used to minimize
the loss cost and has been examined on the IEEE 69 bus
system [5]. CVR is implemented to reduce peak demand
and save energy using a real 1666-bus real data for mesh
network [6]. However, a CVR approach with distributed
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generation and a droop-control are projected to coordi-
nate the process in an autonomous microgrid. A modern
centralized AC optimal power flow (OPF)-based
CVR device has been implemented to minimize energy con-
sumption by managing the voltage. The proposed method
is assessed using unbalanced U.K. residential MV-LV net-
work and load models (2,4004 customers) [8]. CVR with
a droop control method is utilized again for a PV stan-
dalone system and storage devices. The used technique
has reduced the number of charging/discharging processes
of storage devices and improve energy consumption with
more savings [9]. Two load models ZIP and exponen-
tial are compared to evaluate the CVR in a comprehen-
sive way utilizing real data from a 22.86 kV distribution
system [10].

In this paper, the use of CVR is investigated to reduce
peak power consumption for a utility and estimate the cost
savings while maintaining an efficient system. This is accom-
plished first by finding the ad-equate utility circuits that met
the criteria for applying CVR, and then: a) performing an
analysis of the circuit to ensure that each consumer’s meter
voltage would remain within the ANSI standards, b) testing
the circuit’s voltage regulators controllability, ¢) perform-
ing simulations and calculations, and d) creating a dynamic
prediction model for the system. The rest of the paper is
organized as follows. In section II, the CVR concepts are
introduced. In section III, the proposed approach is pre-
sented. In section IV, the CVR load management modeling
along with the results are discussed. Model validation, and
SCADA operation are illustrated in sections V, and VI. The
future directions and conclusion are presented in sections VII,
and VIII respectively.

Il. CONSERVATION VOLTAGE REDUCTION

A. PRINCIPLE OF OPERATION

CVR is considered as one of the efficient conservations of
energy methods by using voltage management to enhance
the power grid’s efficiency. Even though it was partially
employed in California in 1977, CVR has not been utilized
to its fullest potential. However, modern technologies of
smart grids and integrated volt-var control enable CVR to
be utilized efficiently. Conventionally, the substation voltage
is set to the maximum permitted voltage to ensure that each
customer has a base voltage level provided by the distribution
network. In future power systems, it will be conceivable to
control the voltage level along the transmission lines so as
to supply all customers with similar voltage level, to such an
extent that low-voltage substations can work near the base
voltage level. In the US, the substation distribution voltage
levels are regulated through American National Standards
Institute (ANSI). ANSI C84.1 standard sets the range for
voltages ages at the dissemination transformer secondary
terminals at 120 volts 5% which results in a voltage level
between 114 and 126 volts. Due to the transmission line volt-
age drop, power must be transmitted at a sufficiently higher
voltage. Therefore, power is regularly transmitted from the

VOLUME 8, 2020



A. El-Shahat et al.: CVR Case Study

IEEE Access

substation at 126V. US homes usually get a voltage level
of 122.5V, with around 90% of homes and businesses getting
more voltage than what they need. The target of CVR is
to have the customer’s voltage set to the least acceptable
level [15].

CVR normally presents the largest voltage reduction con-
ceivable to achieve the most energy savings within a spe-
cific season or even the entire year. The perpetual voltage
reduction can be either consistent in time or time-shifting
on a closed-loop control system. The CVR device is eval-
uated as far as the energy decrease it brings over a given
seasonally or yearly; which can likewise be communicated
utilizing measurements, for example, the notable CVR fac-
tor. This is solitary esteem that relates the perpetual voltage
decrease to the comparing energy variety over the given time
range. CVR efficiency is contingent on the load device’s
categories. CVR has been executed utilizing two various
methods, the first is “Line Drop Compensation™, and the
second is “Voltage Spread Reduction”. Utility designers will,
in general, be moderate and in light of changes from light
burden hours to overwhelming burden hours, the voltage data
transfer capacity settings on regulators are frequently made
in all respects minimalistically to guarantee that the endpoint
voltage never hangs underneath preset esteem. Moreover,
everyday changes in temperature, day-of-the-week, and so
forth can prompt burden changes that lessen the viability of
CVR settings. A decent procedure is to manage the voltage
at the client’s meter and the utility does not have to endeavor
to set controls for CVR. A disadvantage to this procedure is
that it relies upon the clients to introduce equipment on their
site and to pay the capital expenses. Furthermore, it doesn’t
have the advantage of less conveyance transformer iron loss
nor does it give very as much energy investment funds for
line loss. Another viable procedure is to utilize an Adaptive
Voltage Control (AVC) framework to actualize CVR. This
technique utilizes newly programmed control and commu-
nications tools that were inaccessible at the time of prior
CVR endeavors [1], [16].

The CVR factor is a proportion of how viable voltage
decrease is from energy and demand. It is essentially the
proportion between the percent demand (energy) and volt-
age. It is the term regularly used to allude to the proportion
between voltage decrease and energy load utilization for a
specific piece of a power distribution framework. It tends
to be changed over to figure energy investment funds or
reactive power reserve funds. CVR factor is additionally
every so often communicated as the adjustment in kilowatts
or kVAR partitioned by the adjustment in volts to demon-
strate a decrease in peak-demand. Components fluctuate
broadly from substation to substation, feeder to feeder, and
particularly burden to load. Commitments to the general
factor for a utility incorporate customers’ load blend, trans-
former and conductor qualities, and voltage control devices as
directed by voltage controllers, line drop compensators, and
exchanged capacitor banks. On account of the huge number
of parts included, CVR factors for feeders and substations

VOLUME 8, 2020

Q) z] 1] [P

FIGURE 1. The ZIP basic load model.

normally are estimated experimentally, not hypothetically
produced [1].

1) CVR LOAD MODELING

The four main loads categories are a resistive load without
a feedback-loop, a resistive load with a feedback-loop, a
constant-power load, and a constant-current load. To under-
stand it more, supposing that family-unit gadgets require
no reactive power, the impact of CVR on energy utilization
can be clarified as pursues. By Joule’s law, the power (P),
voltage (V) and current (I) in a resistive circuit fulfill
P =V x L It pursues from Ohm’s Law V = I x R that
bringing down the voltage level lessens the power when the
load comprises of pure resistances with steady opposition
R, in light of the fact P = V?/R. This is valid if loads
are constant-resistive such as fridge, incandescent lighting,
oven, and hot water system, however not if loads are steady
power such as TV, PC, and so on. Regarding steady power
loads, dropping the voltage will imply that the current needs
to increase, which prompts higher energy loss in the lines,
as per the power loss equation Ppju.s = I’Rpjnes. Likewise,
numerous constant-resistance gadgets have a feedback-loop
for the most part estimating the temperature that broadens
the working time, prompting consistent energy utilization.
Some lighting advancements keep the current constant. The
power utilization of these gadgets diminishes directly with
the voltage as per P = V x L. The reserve funds are in this
way littler than for constant resistance gadgets, for which the
power utilization is quadratic in V.

Loads’ behavior can be depicted by their proportion
of consistent power, impedance and current characteristics
(ZIP models). ZIP models can be developed from experi-
mental results on load response under changing voltage con-
ditions. Because of the multifaceted nature of end-use load
behavior, load models can be classified into loads with and
without thermal cycles. The customary strategy for display-
ing a load without a thermal cycle is to utilize a ZIP model.
The ZIP model is a load which is made out of time-invariant
steady impedance (Z), consistent current (I), and consistent
power (P) components [1], [4]. Figure 1 represents the ZIP
model circuit. The ZIP load consumed active and reactive
powers at a certain voltage are presented in Eqgs. 1 and 2
respectively. These equations have six constants to define

55385



IEEE Access

A. El-Shahat et al.: CVR Case Study

the behavior of the ZIP load voltage dependent and these
constants are constrained by Eq. 3.

V2 v,
— a a
P; = V—nz.S,,Z%.cos (Zy) + Vn -8, - Ig, - cos (Ip)
+ S, - Pg, - cos(Py) (1)
V2 1%
= % .8,7q -sin (Zg) + — - S, - Ig, - sin (Ip)
0i ya Sn % o)+ 5 S ln )
+ S, - Pg, - sin(Py) 2)
Zog +1g + Pg, = 1 3)

where Zj is the phase angle of the constant impedance; I is
the phase angle of the constant current; Py is the phase angle
of the constant power; P; is the real power consumption of the
irn load; Q; is the reactive power consumption of the iy, load,;
V. is the actual terminal voltage; V, is the nominal terminal
voltage; S, is the apparent power consumption at nominal
voltage; Z% is the fraction of load that is constant impedance;
1% 1is the fraction of load that is constant current; P % is the
fraction of load that is constant power.

CVR brings down the voltage at which electrical power
is conveyed and yields, all things considered, a 1% energy
reserve funds for each 1% in voltage decrease down
to 114V. Electrical hardware, including cooling, refrigeration,
apparatuses, and lighting is designed to work most profi-
ciently at 114V. If power is conveyed at a voltage higher
than 114V, energy is squandered. The higher essential voltage
additionally abbreviates the useful life of numerous kinds of
equipment, since the excess of energy is dissipated as heat.
Conveying voltages at the optimal stages lessen utilization,
improves administration quality and expands the life of the
hardware. Utilities and customers spare energy and lower
working expenses by lessening the need to create extra energy
at power plants. CVR likewise brings down ozone-harming
substance discharges; CVR is relied upon to have extensive
ecological advantages, on the grounds that the decrease of the
energy utilization will prompt less CO2 emanations related to
energy creation. Electrical energy is spared through decreased
system losses because of the lower voltage. Customers’
advantage through lower energy bills, and speedier reaction
to the power outage. Utility advantage through lower losses,
longer transformer life and expanded information of their
system’s present condition. Operating expenses are decreased
amid blackouts (outages) because of a superior comprehen-
sion of the fault place. The data gave can shape the premise of
a prescient support system. Utilities may control the measure
of preservation and request by rapidly the modifying set
focuses from the Master station [1], [4], and [16].

2) SUBSTATION CVR MANAGEMENT CONCEPT

There are two typical voltage regulation schemes in a substa-
tion. The first is bus regulated and the second is feeder reg-
ulated. Bus regulated stations have regulators on the source
side of the bus work that feeds all of the circuits. Feeder
regulated circuits have a set of regulators for each feeder
circuit. Bus regulated stations allow the utility to save on
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the cost of purchasing many regulators. However, feeder
regulated stations allow the utility much more control over
the voltage of their system due to the fact that each circuit is
individually regulated [17]. The main concern with Conser-
vation Voltage Reduction is maintaining an adequate voltage
at every meter on the system [18]. This is another reason
why feeder regulated circuits are ideal for CVR because they
can independently contribute to the voltage demands of the
circuit. The American National Standards Institute (ANSI)
sets the following regulations for voltage as shown in figure 2.

Range A is the standard regulation parameters, and range B
is for temporary conditions, which CVR falls under. This
window of additional range allows CVR to be much more
capable of application during these times. The two main types
of consumer loads are resistive loads, and inductive loads, and
for these types of loads, load management based CVR is an
important approach [19], [20].

Resistive loads include anything with a resistive element,
such as light bulbs or heating elements. Inductive loads
which constitute most of the residential loads. They are often
referred to as power loads because inductive loads consume
a constant amount of power. These loads are typically from
devices or appliances that include some type of electrical
motor. Applying the power equation (P = V [I) is obvious
that reducing the voltage will raise the current. With resistive
loads, the constant variable is the resistance. Applying the
principles of Ohms Law (V = I[R), reducing the voltage
reduces the current. This fact is key to conservation voltage
reduction.

Washington EMC is billed according to its contribution
to the peak load during the peak of five hours of the load
management calling days. The peak load season usually falls
in the window of June to September, but occasionally is in
the winter months. When their provider (Georgia Transmis-
sion Corporation) calls for load management, the usage is
monitored for the given window of time. The instantaneous
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FIGURE 3. Example of two distribution utilities with different load
profiles.

TABLE 1. Peak load during the peak of 5 hours.

4pm. Spm. 6pm. 7pm. 8p.m. Average
Utility A 800 900 800 900 800 840 kW
max kW
Utility B 450 500 450 400 400 440 kW
max kW
TABLE 2. Monthly charge.
Average Cost  Monthly
per Charge
KW
Utility A 840 $1.95 $1638
Utility B 440 $1.95 $858

peaks of each hour are recorded. The average of these peaks
is multiplied by a predetermined dollar amount. The resulting
dollar amount is charged to EMC every month until the next
load management is called. Reducing the load during the
yearly peak would save money for the rest of the year by
lowering the monthly demand charge. These savings would
also be translated to the consumers because the cost of their
power reflects what the utility pays. To illustrate the potential
magnitude of the effects of the demand charge, consider the
following example shown in figure 3, and tables 1 and 2.

A power transmission company charges $1.95 per kW for
their demand charge and $0.061 per kWh for their supply
charge. There are two distribution utilities adjacent to each
other with very different load profiles. Utility A has very
high peaks during the peak demand times but uses very
little during the rest of the day. Utility B has a very stable
demand, regardless of time. Their peak consumption can be
viewed in figure 3, with Utility B represented in the blue
line, while Utility A is represented with the red line, kWh
is shown on the Y-axis, and time (1 am to midnight) on the
X-axis. If load management is called from 3 to 8 pm, the
area boxed in black, their corresponding peaks would be as
follows: Utility B uses more power over the course of the day
in comparison to Utility A. This would equate to Utility B
having a higher supply cost, but a much lower demand charge.
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In some cases, it can be to the extent of the demand charge
making up the majority of the bill. The fact that the demand
charges are only relative to this short window of time is the
reason that it is important to monitor and manage peak con-
sumption. Table 1 shows a comparison of peak load demand
over the peak of five hours between the two utilities A and B.
However, table 2 introduces the monthly charge comparison
between the two utilities.

1Il. PROPOSED CVR APPLICATION

A. EXPERIMENTAL CVR SCENARIO

There have been numerous studies of CVR deployed on
systems, and there are many vendors that offer CVR based
systems. The concept has been applied in various locations,
but it is always case specific. Regarding this work, multiple
substations have been investigated to elect a suitable sys-
tem for testing with the required technologies. Then, some
experiments have been done with the control systems of the
distribution circuit to determine the effectiveness of remotely
manipulating the voltage. Historical data from the circuit
chosen was thoroughly investigated and a predictive model of
the demand was created. The temperature data of the previous
year was also analyzed to compare it with the consumption
data. These two data sources, along with data on the power
factor of the circuit with respect to time were used to develop
a set of parameters that when applied to the circuit will
give an estimate of power consumption. A valid measurable
outcome is the determinant of success, as well as the proven
accuracy of the methods to estimate power consumption. It is
a very subjective application, in that it varies in effectiveness
and is only feasible on particular utility circuits. Washington
EMC has a 14.4/24.9 kV, system with 14 substations, and it
is the main subject of this study.

The first step is to identify substations that are feeder
regulated. The next step is to analyze the consumer loads
to identify the circuits with the lowest resistive to inductive
load ratio. A utility circuit with about 480 meters has been
selected. The power factor of this circuit typically remains
within 0.9. The circuit is residential in a rural location, with
the distribution of the meters being relatively scattered. The
entire distribution map is too large to accurately display it
on this paper, and scaling it down to fit would result in the
lines becoming too small to see. The best representation of
the circuit that was obtained for the paper is shown in figure 4,
and came from the outage system software of the utility.

The screenshot of this process is illustrated in figure 5. This
information was used as the first step to identify the lowest
meter’s voltages. Washington EMC has recently installed
smart meters on their system, which allowed to obtain the
information needed. Data from the smart meters at these
locations were analyzed to identify locations with the lowest
voltages. The purpose of this was to make adjustments to
these particular locations to raise their voltage closer to the
norm, which would allow a further reduction in voltage before
any meters began to approach the lower end of the ANSI
voltage standards.
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B. EXPERIMENTAL CVR DATA
The smart meters produced a sufficient amount of infor-
mation. The graphs of low voltage readings over the past
2 months were reviewed to identify instantaneous low volt-
ages. The voltages from the previous two months of each
meter were averaged together and the lowest 5 averages were
selected. Next, the maps were revisited to analyze the circuits
leading up to these meters. Some of the meters had very long
services, one was on a potentially overloaded transformer,
and some were at locations very far from the substations.
All of the meters fell within the acceptable standards, but
the information was relayed to the company to see if they
wanted to shorten the service lengths, increase wire sizes,
or increase the transformer Kilo-Volt-Ampere (KVA) char-
acteristics. Figure 6 shows the screenshot graphs provided by
the software that receives the data from the smart meters. The
purpose of monitoring and analyzing these particular meters
was to allow the utility company to be aware of these loca-
tions and consider means necessary to raise the voltages in
order to allow for a larger window of safe voltage reduction.

55388

Smart Meters Readings
2 =)y

) Time (Hour)

FIGURE 6. Screenshot of the smart meters data.

Depending on the particular case and cause, meter voltage
could be increased by moving the transformer closer to the
meter (shortening the length that the secondary voltage has
to travel), installing a larger secondary service wire (reduc-
ing the resistance), and/or installing in-line regulators. The
meters’ measurements’ variation was mainly interesting at
their lowest voltages. It was noticed that two patterns of low
fluctuations appeared and that the origin of these patterns
should be determined. The reason behind that is due to the
variance of weather and the difference in the customers’
appliances. The highs and lows over the past two months
were observed and found that the two patterns followed the
temperature extremes. One group’s low voltage fell on the
high extremes and the other on the low extremes. This was a
key point to consider because it showed that the critical points
would vary according to the temperature.

C. EXPERIMENTAL CVR MANAGEMENT USING SCADA

To verify that consumers would all maintain adequate voltage
during a CVR, a relatively cold morning was selected to
examine with (visit) Washington EMC at around 5:30 am.
This particular time was chosen because this is a typical high
consumption period. This examination is carried out at the
dispatch center, where the computer system is tied to the
Supervisory Control and Data Acquisition (SCADA) system.
The carried out work was to remotely use the regulators to
step down the voltage one step for around a minute, then
remove the remote control setting, let the voltage return to
normal for around a minute, reapply remote control and step
the regulator down 2 steps for around a minute and then let it
settles back to normal for another minute. This process was
continued until the regulators had been stepped down a total
of 3 or 4 steps. To avoid stepping the regulators farther than
intended, the state of the regulators was physically monitored
on site during the testing period. It was verified if any low
voltage alarms were received from the smart meters.
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TABLE 3. Load management full data.

TABLE 4. Load management averages.

Load Management #1 (9/18/17)

ba P b da s e kW  Weighted

kW kW kw PF. PF. P.JF. Sum P.JF.
3:50 PM 523 676 375 982 97.5 99.8 1574 9828
4:55 PM 527 728 379 981 975 999 1634 98.25
6:00 PM 543 721 385 985 977 999 1649 9848
7:05 PM 524 729 375 984 97.8 99.8 1628 9845
8:10 PM 512 652 377 984 975 99.8 1541 9836
Load Management #2 (1/18/18)
5:35 AM 559 852 511 999 100 99 1922 99.71
6:40AM 578 903 547 100 100 993 2028 99.81
7:45 AM 611 868 603 100 100 99.2 2082 99.77
8:50 AM 620 858 540 100 99.9 987 2018 99.61
9:55 AM 544 784 444 100 100 982 1772 99.55

D. LOAD MANAGEMENT MODELING USING ACTUAL
TEMPERATURE DATA

Accurate weather data with the highest resolution were
obtained from the National Oceanic and Atmospheric
Administration (NOAA). Temperature data, in twenty-
minute intervals, from 1/1/2017 to 1/31/2018, was provided.
After analyzing the data, outliers were removed, and interpo-
lation was used for missing points.

Washington EMC provided the last two times load man-
agement data. The dates and times were 9/18/2017, from
4:00 pm to 8:00 pm and 1/18/2018, from 6:00 am to 10:00 am.
These days fell during the summer and winter peaks respec-
tively. These time periods were noted as points of interest
for doing critical analysis. The data file includes: the time,
the amperage of phase A (p4), the amperage of phase B
(¢B), the amperage of phase C (pc ), the amperage on the
neutral conductor, the volt-ampere reactive (VArs) on phase
A (¢4a), the VArs on phase B (¢p), the VArs on phase C (¢¢),
the wattage of phase A (¢4), the wattage of phase B (¢p),
the wattage of phase C (¢c ), the power factor of phase A
(PFy4), the power factor of phase B (PFyp), and the power
factor of phase C (PFy¢), respectively as shown in table 3.

However, the averages for kW and the power factor for
each phase is illustrated in table 4. The adjusted power factor
for the circuit shown in table 3, was calculated using the
formula given by Eq. 4. This formula is used to calculate the
weighted or the averaged power factor for the three phases.

AgwAppr + Bykw Bgpr + Cokw Copr

PFWeightea' = Totalw @

where Totalw is the total power in kW, A cw is the phase “A”
power in KW, By is the phase “B” power in kW, Cyiw is
the phase “C” power in kW, Aypr is the phase “A” power
factor, Bypr is the phase “B” power factor, and CypF is the
phase “C’’ power factor.

Next, the analysis of the data with respect to the external
factors, the variance of weather, and the difference in the
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Phase A B C
Average 313.0920934 359.6375597 229.846511
Power (kW)

Average P.F. 99.59687863 99.07451309 88.63232297
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FIGURE 7. Demand power and temperature readings.

costumer’s appliances, was executed. The first step of this
process was finding the interconnections between the data
and its contributing factors. The focus was paid first in the
kW demand charge considering the temperature as a leading
contributor. The data for the temperature and the kW from
the SCADA system are shown in figure 7 (Temperature in
Red and kW in Blue).

E. CVR APPLICATION DISCUSSION

From the analysis, it was obvious that the temperature had a
large impact on the kW, but the graph contained so much data
that it was still difficult to derive any more information from
the graph. Next, the data was separated into two consecutive
sections in order to graph the data with more detail, but it
was still very difficult to extract any information from it.
It was decided to investigate how much the day of the week
influenced the data. The initial attempt at this analysis was to
take the kW data from the SCADA and break it down into the
corresponding 168 hours of each week. The average for each
day of the week, for the 53 weeks of the data was calculated.
Excel was used to create a matrix of this information, with
168 columns for hours and the respective kW values for the
rows. Next, the readings from the past two instances of load
management were added in the graph for comparison. The
resulting graph is depicted in figure 8.

The difference between the average readings and the peri-
ods of load management are very clear. The hour of day
also clearly had an impact on the kW values, but the day
of the week made little difference. To further investigate the
external factors, another graph was generated, which shows
the average kW each hour for each day of the week, the results
are shown in figure 9.

The results show that the day of the week has a much
greater influence on the resulting kW usage. Although there
are very subtle differences, the day of the week did not seem
to have near the impact that time of day had on the usage. The
analysis of the data from the two periods of load management
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FIGURE 10. Demand power reading for the two periods of load
management.

show that these periods are quite extreme in comparison to
the typical readings. Then the analysis was focused on the
entire week around the two instances, with the period of load
management in the middle. These values can be observed
in figure 10.

IV. CVR LOAD MANAGEMENT MODELING EXPERIMENTS
To benchmark the performance of the various CVR load man-
agement techniques, a steady-state model was first imple-
mented using Multisim.

A. STEADY-STATE MODEL

To demonstrate the effect of voltage change on a circuit with
constant inductive and resistive loads, a steady-state analysis
was performed. Table 5 presents the effect of reducing the
voltage over the power and power factor. As the voltage was
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TABLE 5. Reduced voltage change effect.

Voltage 124 123 122 121 120 119 118
Power 307 302 299 292 288 283 278
(kw) 5 6 7 8 0 2 5

P.F. 090 090 090 090 090 090 0.90

TABLE 6. Load-voltage dependencies for common loads.

Load Component (% Change in I)/ (% Change in V)

Battery Charge 1.59
Fluorescent Lamps 1.07
Constant Impedance 1
Air Conditioner -0.5
Constant Current 0
Pumps, other Motors -0.92
Small Industrial Motors -0.9
Constant Power -1

reduced, the corresponding values of the power demand was
also reduced, while the power factor remained unchanged
regardless of the voltage.

Actual load values were utilized to improve on the initial
steady-state analysis of the CVR load management. For com-
mon values of residential loads, a typical power saving of
0.4%-0.7% is attainable for every 1% reduction in the voltage.
This information is used with additional common values of
appliances to estimate the potential savings. Load voltage
dependency relates the percentage change in current to the
percentage change in voltage which is commonly used to
model typical loads. Table 6 shows the typical load-voltage
dependency factors of some common loads used [21].

Using the load-voltage dependency factors in table 6, the
potential savings were calculated for the case if CVR has
been implemented using the two load management scenarios
provided in table 3. The load data used in these scenarios
are seasonal which contribute to the excessive demand in
certain cases due to the use of heaters to maintain a reasonable
temperature within residential households.

A mixed model was created to match the average of the
summer and winter load management time periods. The
steady-state results are the least accurate results in this study,
due to the fact that they assume a fixed state. They are useful,
however, to investigate how inductive and resistive loads
react to a changing voltage. Therefore, from the values the
steady-state analysis provided, the estimated savings were
calculated for the case if CVR has been implemented.

The amount of savings due to the CVR implementation
in a substation, 1/4 of the system, and 1/2 of the system
were based on the fact that this circuit accounts for approx-
imately 1/5 of the particular substation’s demand and the
demand of the circuit in respect to the utility’s typical peak.
Table 7 presents the amount of cost savings for the two load
management scenarios.
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TABLE 7. Steady-State Analysis cost savings vs. voltage change.

Load Management #1

CVRV Circuit  Substation  1/4 System  1/2 System
124 $152.48 $762.38 $1,548.03 $3.096.06
123 $305.67 $1,528.36 b3,103.31 $6,2006.63
122 $459.57 $2,297.86 $4.665.86 $9,331.71
121 $614.19 53,070.64 $6,235.66  $12,471.31
120 $769.53 $3.847.64 $7.812.71  $15,625.42
119 $925.58 $4,627.89 $9,397.02  $18,794.05
118 $1,082.34  $5411.72 $10,988.59  $21,977.19

Load Management #2

CVR YV Circuit  Substation  1/4 System  1/2 System
124 $435.94  $2.179.70 $3.661.67 $7,323.35
123 $869.17 $4,345.87 $7,300.64  $14,601.29
122 $1,299.71 $6,498.54 $10916.91  $21,833.81
121 $1,727.54  $8,637.68 $14,510.46  $29,020.93
120 $2,152.66  $10.763.31  $18,081.32  $36,162.63
119 $2,575.09  $12,87543  $21,629.46  $43,258.93
118 $2.895.41 $14477.06  $24.320.05  $48.640.09

Load Management #1

Voltage 124.00 | 123.00 [ 122.00 | 121.00 120.00 | 115.00 | 118.00
Average Power (kw) 1605.20| 1605.20|1605.20| 1605.20| 160520 1605.20| 1605.20
CVR Average Power (kW)|1599.22| 1593.21|1587.18| 1581.11| 1575.01| 1568.89| 1562.73
Power savings (kW) 5.98) 11.93| 18.02 24.09 3019 36.31 42.47

Monthly $ saved (circuit)] 11.66] 23.37| 35.14] 46.97 58.86 70.81 82.81
Annual $ saved (circuit) | 139.89| 280.45| 421.73 563.69| 70633| B49.67| 993.70
Annual $ saved (station) | 699.43| 1402.31|2108.64| 2818.43| 3531.67| 4248.35| 4968.51
Annual § saved (1/4)  [1437.89 2882 88(4334.98| 5794.17) 726047) §733.87(10214.37
Annual $ saved (1/2) 2875.78| 5765.77 5669.96| 11588.35( 14520.94 | 17467.73 | 20428.73

FIGURE 11. CVR results of load management scenario #1.

Load Management §2

Valtage 12400 | 123.00 | 12200 | 121.00 120.00 | 119.00 116.00
ge Power (kW] 1964.40| 156440 1564.40| 1964.40| 1564.40) 1564.40| 1564.40

CVRAverage Power (kW)|1946.75| 1929.22| 1911.79| 1894.48| 1877.27| 1860.17| 1B43.18

Power savings (kW) 17.65 3518 52.61 69.92 §7.13| 104.23| 12122

Monthly $ saved (circuit)| 34.41 E8.60) 102.59| 136.35| 169.91| 203.25| 236.37
Annual § saved (circuit) | 412.91| 823.25| 1231.03| 1636.24| 2038.88| 2438.95| 2836.46
Annual § saved (station) | 2064.55| 4116.26| 6155.14| B8181.18|10194.38| 12194.75|14182.28
Annual § saved (1/4) 3468.24| 6514.92| 10340.03 | 13743.58|17125.57| 20485.98 | 23824.84
Annual § saved (1/2) 6036.48| 13820.84| 20680.07 | 27487.16 | 34251.13 | 405971.97 | 47545.68

FIGURE 12. CVR results of load management scenario #2.

For comparison purposes, the proposed CVR results are
tabulated in figures 11 and 12 for load management #1 and
load management 2 scenarios, respectively. The results indi-
cate a relative matching with the steady-state analysis with
the proposed CVR method being more accurate in estimating
the savings than the steady-state. However, the steady-state
analysis is a simple approach to estimate the CVR savings
to validate the initial viability of the application of CVR in a
system.
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FIGURE 13. Percentage power reduction versus voltage.

B. CVR MANAGEMENT EFFECIENCY

A simple efficiency estimation as a ratio between the new
value of the power in kW with the load management and the
average power value in kW versus samples of voltage are pro-
posed. It shows a high efficiency with respect to the reduced
voltages with average values 98%, and 96% for the first
load management, and second one respectively. However,
more research will be proposed in the future to deduce new
efficiency formula with all possible parasitic, economical and
unrepresented characteristics.

The CVR factor is defined as the reduction percentage of
the load power with respect to the voltage reduction percent-
age. It is a measure of efficient conservation voltage reduction
load management. It is considered as the proper independent
quantitative indicator to identify how efficient the proposed
voltage reduction. The active power CVR factor is shown
in Eq. 5.

CVR, = —— &)

where %AV is the percentage of the voltage change, and
% AP is the percentage variation of the active demand load.

The typical CVR factor values are within the range
between 0.3 and 0.9 [4]. Figure 13 introduces a CVR fac-
tor’s estimation for the two load managements as percentage
power reduction versus voltage. The CVR factor’ estimations
are used as a measure of how efficient the proposed CVR load
managements. From figure 13, the average power CVR factor
for the LM# 1 equals 0.3714, and the average power CVR
factor for the LM# 2 equals 0.8643. Both of them are within
the perfect range from 0.3 to 0.9 [4].

C. ARTIFICIAL NEURAL NETWORK (DYNAMIC) MODEL

To improve the CVR load management modeling, a neural
network (NN) model is proposed and implemented to analyze
the behavior of CVR and its impact on power reduction
taking into consideration time, day, and temperature to pre-
dict the nature of the utility circuit management and asso-
ciated savings. An NN utilizing backpropagation with the
Levenberg-Marquardt training algorithm was used to create
a load management predictive model. The temperature data
received from NOAA was pre-processed and interpolated to
be consistent with the experimental data.
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FIGURE 14. Architecture of the neural network.
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FIGURE 15. Mean Squared Error of the ANN model.

Due to the internal temperatures of houses remaining
around 68° F in the winter and 70° F in the summer, a number
line is created that went from 68° to 71°, and back to 68°
over the course of the given data. It is notified that the peak
temperatures were right at the same time frame as the summer
load management. Also, the temperature data is used on a
weighted scale by taking the data from the current temper-
ature to 2 hours and twenty minutes prior to the current time
with a twenty-minute interval. Then, temperature classifica-
tion is adopted by selecting three different temperature ranges
in terms of Fahrenheit that are equal to T > 80°F, 60°F <
T < 80°F, and T < 60°F. It is noticed that the accuracy
went up for the bottom two ranges and down for the top one.
Then the ranges were adjusted to T > 85°F, 60°F < T <
80°F, and T < 60°F. It was noticed that the accuracy went
up for lower temperatures T < 92°F, and down for higher
temperatures T > 92°F. This trend is continued of adjustment
with the consolidation of the data from the previous trial to
maintain better accuracy. After selecting the NN architecture,
the NN was trained using the Levenberg-Marquardt algorithm
with randomly selected data set to use 70% for training, 15%
for validation, and 15% for testing.

In figures 14 and 15, the NN architecture and one of the
best error values plots that were obtained from training the
neural network are shown as a sample of many trials to get
the average.

The input vector has three variables: the day of the week
(Monday to Sunday), the time (0-24 Hr.), and tempera-
ture (°F). However, the output vector contains the power
savings (kW), power load demand (kW), and yearly money
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FIGURE 16. Average error values vs number of neurons.

savings ($). ANN architectures with a range from 10 to
100 neurons in the hidden layer were tested when doing
the evaluation. There were no significant differences in the
results between 77 up to 100 neurons. So, for the sake of con-
sistency the 77 neurons configuration was finally selected.
The neural network has been run many times at each number
of neurons in the hidden layer to get the average of each case.
The number of network running at each time is 100.

However, Figure 16 presents the average of the obtained
mean-square-error (MSE) after many trials for each with
respect to the change of the number of neurons in the
ANN hidden layer. The best average achieved error was
around 0.0022 at 77 number of neurons in the hidden layer.

The implemented ANN predictive model is not limited to
predict the CVR power and money saving based on real-data,
but also it is capable to predict the dynamic load behavior as
shown in the next validation section.

V. MODELING VALIDATION

This section proposes a comparison between the actual CVR
load management data, ANN Model, and a Gaussian model.
The adopted Gaussian model from is utilized as a proof of
ANN accuracy and as another alternative method for model
prediction [22], [23]. However, the actual data for modeling is
processed using the predefined Gaussian process regression
models (kriging) inside the Matlab, [24] for the proposed
real data range and ANN model. Gaussian process regres-
sion (GPR) model is a nonparametric kernel-based proba-
bilistic models [24]. It is trained using the Matlab “fitrgp”
function with the same training data set used in the neural
one. The basis equations for the embedded Gaussian model
in the Matlab are shown in the next formulas.

The training set is considered as (x;, y;);i=1,2...... . n.
where x; € R? and vi € R. The Gaussian regression model
predicts the response variable y,.,, given the input vector
Xnew, and the training data. The Gaussian regression model
is introduced as follow:

h)" B+ f(x) (©6)

where f (x) ~ GP (0, k (x,x’)), that is f (x) are from a zero
mean GP with covariance function, k (x, x' ) .h (x) are a set of

VOLUME 8, 2020



A. El-Shahat et al.: CVR Case Study

IEEE Access

1100

1050 -

1000

950 -

900 |-

Power (kW)

800 Actual Data (Thursday)

= = ANN Model (Thursday)
====Gaussian Model (Thursday)

750 |

00 L L el L p—pic] L= Ty
012345678 910111213141516171819202122232425
Time (Hour)

FIGURE 17. Comparison between predictive models and actual data for
load demand.
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FIGURE 18. Comparison between predictive models and actual data for
CVR factor.

basic functions that transform the original vector x in R¢ into
anew vector & (x) in RP. § is a p-by-1 vector of basis function
coefficients. The instantaneous response y can be modeled
as [24].

POILf ().x) ~ N (ylh ()T B+/(xi) . 0D (D)

Because, Gaussian regression model is a probabilistic
model and it has a latent variable f (x;) for each observation
x; which varieties the GPR model nonparametric.

The covariance function seizures the response’s softness.
However, the GR model computes the prediction interludes
using the trained model.

Figure 17 shows a dynamic load performance comparison
among actual data, ANN model, and Gaussian model for one
day over twenty-four hours as a sample (Thursday).

From Figure 17, the ANN model has a great matching to
the real actual data and then the Gaussian prediction model.
However, another form of CVR prediction model’s valida-
tion is proved in Figure 18, and Figure 19 for CVR factors
and annual money saving per station respectively. The ANN
model is very close to the real data in both.

From the comparisons, the average Gaussian’s error and
the average ANN'’s error percentages are estimated as
2.145%, and 0.22% respectively w.r.t. the actual data.
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FIGURE 19. Comparison between predictive models and actual data for
annual money saving per station.

FIGURE 20. SCADA system interface.

FIGURE 21. SCADA system diagram of components.

VI. SCADA SYSTEM OPERATION AND DISCUSSION

The regulators with the SCADA system are remotely oper-
ated in Washington EMC’s control center. The SCADA
system has a very user-friendly interface that allows the
operator to view the entire system in multiple ways.
Figures 20 and 21 show the typical screen displays for the
SCADA interface.
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FIGURE 22. Line diagram on SCADA control.
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FIGURE 23. SCADA system commands to regulators.

The software allows to monitor the entire system and com-
pare the conditions of substations and utility circuits very
easy. Once a substation is chosen, a more detailed view of
characteristics is shown, as seen in figure 22.

A utility’s circuit can be chosen if the operator desires to
modify the voltage regulators from the control center. The
setting has to be changed to “remote” instead of ‘““manual”.
After this is complete, the regulators are ready to receive
commands. This can be viewed in figure 23. A problem
was noticed related to the resolution of the results due to
the precision of the data used for the analysis. The control
center’s computer shows the voltage rationalized in terms
of 120V, so 120 volts = 14,400 volts. This means that the
125 volts that the regulators are set to represent 15,000 volts.
The wattage is read in kilowatts, and the resolution of the
amperage is only available to the one thousand of the unit.
In order to get a more accurate measurement of the results,
a higher resolution on the original data was needed. When
the data from the SCADA system was received, the resolution
was the same.

There are other options that can be used to accomplish load
management during peak hours. A utility could install large

55394

generators to carry a portion of the load, set up solar panel
arrays, or engage in load shedding with willing customers.
Each of these has its advantages and disadvantages. The large
generators are a great way to handle some of the load, but they
are very expensive. The size of generators allows many sub-
stations to have generators installed inside of them. They also
need to be maintained, consume fuel, and have to have special
equipment to be remotely controlled and synchronized with
the power system. Solar arrays are another option that allows
the utility to generate power within its own system. The
drawbacks of solar are the initial cost, the battery cost, and
the size of the area needed to carry a significant portion of
the load. Load shedding is a more common method used in
utilities. A utility often sells power to certain customers at
a discounted rate in exchange for the control of dropping
them from the system during these peak times. This can be
inconvenient for the customer, and it also reduces the money
that the utility will receive for power distribution.

VIl. FUTURE DIRECTIONS AND ROOM OF IMPROVEMENT
As future directions of this paper, the following research
points could be addressed:

o Optimize the demand prediction at the extreme end of
the temperatures with additional constraints,

« Explore stability, uncertainty and sensitivity analysis
for the power network with CVR along and intelligent
systems,

o Investigate time-varying ZIP plug loads, search the
effect of electric vehicles and distributed generation pen-
etration on CVR in distribution power system,

« Investigate the influence of distorted voltage at the sub-
station on the optimal capacitor placement with their
transient effect,

o Measure the practical impact on the consumer’s comfort
level on implementing the CVR method.

« Propose inverter-based VAR control with the presented
model,

« Explore developing online optimization platform for the
customer, and

o Study the effect of various filters on the voltage
magnitude.

In addition to that, there is ongoing work on two impor-
tant topics for efficiency optimization and the measure of
customer satisfaction. These two topics need more data from
the EMC utility such as losses under different circumstances
and customers’ surveys about their service along with eco-
nomic characteristics investigation. The required data will be
obtained to be used in the future.

The combination of the knowledge of the different types
of load and the different types of voltage-regulated substa-
tions can be used to seek out opportunities to save utility
money on demand charges. After making calculations and
simply lowering the voltage by a small percentage during load
management, a utility could cut their demand charge by a
large enough degree to make an impact. The impact of this
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FIGURE 24. Overall paper flowchart.

goes beyond the utility. If a nonprofit provider, such as an
EMC, is paying less for the power that is being distributed,
then the consumers’ cost will be a reflection of this as well.
Optimizing the voltage will also save on consumed energy,
and prolong the amount of time that infrastructures are capa-
ble of carrying the peak demands. This is a proactive way
to help manage the world’s limited resources that allows
all parties to benefit. Figure 24 shows the overall paper’s
flowchart including different sections.

From this research on CVR, several messages are clear to
utilities investigating the potential use and benefits of apply-
ing this concept. It would increase the validity of the results
if temperature, humidity, rainfall, and sunlight are recorded.
All of these would contribute to the rate of heat transfer in
the building, which would contribute to the demand. The
type of demands served (agricultural, residential, and indus-
trial) should be considered. A recording device that measures
amperage and voltage to a higher degree of precision would
be beneficial, especially in continuous measurements. When
a regulator steps, the change in the current would indicate
the load voltage dependency. This would need to take place
quite often and would eventually allow the modeling of the
dynamic load with respect to time. Finally, the outage data
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from the smart meters should be continually considered. If all
of this information were accessible, then the calculations for
CVR would have a high degree of accuracy.

VIIl. CONCLUSION

The paper confirms the importance of the Conservation Volt-
age Reduction (CVR) for a reduction of power consump-
tion by reducing the voltages to be within the lower end of
the American National Standard Institute’s standard voltage
band. The paper illustrates the CVR management concept,
philosophy, CVR dynamic modeling, and demand manage-
ment of the CVR technique. The CVR concept has been
applied in Washington EMC utility after multiple substa-
tions has been investigated to determine the effectiveness of
remotely manipulating the voltage. Washington EMC is the
main subject of this paper and it has a 14.4/24.9 kV system
with 14 substations. A utility circuit with 480 meters has
been selected to analyze the consumer loads and get the smart
meter data. The circuit is residential in a rural location, with
the distribution of the meters being relatively scattered. Two
load management scenarios utilizing the CVR method are
experimentally implemented for summer and winter seasons.
The CVR factor’ estimations for the two load management
cases are used to evaluate how efficient the proposed CVR
method. The average active power CVR factors for the load
management one and two equal 0.3714, and 0.8643 respec-
tively and they are within the referenced efficient range. Ver-
ification of all consumers would maintain adequate voltage
during a CVR that has been done by examining with the
Washington EMC center through the (SCADA) system. Step
by step operation for experimental investigation, analysis, and
CVR application are explained with the aid of the Futura
Systems’ GIS Mapping software, smart meters, and Super-
visory Control and Data Acquisition (SCADA) system. This
is done to ensure the effectiveness of remotely manipulating
the voltage by the regulators and to verify that consumers’
satisfaction with the aid of Washington EMC during a typical
high consumption period. The power factor of this circuit
typically remains unchanged and stays within 0.9 while the
voltage changes. The steady-state characteristics and amount
of savings for the CVR technique have been done based
on real common loads to show the load-voltage dependen-
cies. Then, a modern dynamic CVR load management model
using neural networks (NN) is proposed. It is implemented
to analyze the behavior of CVR taking into consideration
time, day, and temperature to predict the nature of utility
circuit management. The real training data for NN model are
obtained from the utility’s smart meters and SCADA system
along with real temperature data from the (NOAA) over one
year. This model shows the impact of the temperature and the
time on power demand, power saving, and money savings.
The NN model is trained for minimal error, tested many times
to get the average performance, and achieved good accuracy.
The number of neurons in the hidden layer is altered and
tested over a range from 10 to 100 neurons until reaching
the optimal number for minimal error. The best average
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mean-square-error (MSE) after the neural network has been
run 100 times at each number of neurons is 0.0022 and
it achieved at 77 neurons in the hidden layer. The ANN
predictive model is not limited to predict the CVR power
and money-saving based on real data, but also it is capable
to predict the dynamic load behavior. The NN model is
validated in the form of comparisons with real data, and
the Gaussian model for power demand, CVR factors, and
money savings per station. The NN model has a great match-
ing to the real actual data and then the Gaussian prediction
model with average NN’s error percentage equals 0.22%
and the average Gaussian one equals 2.145%. The SCADA
system operation is discussed to monitor the entire system
and compare the conditions of substations and utility circuits.
Finally, the shortcomings of the paper and recommendations
for future work are addressed by the end of the paper.
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