
Received January 27, 2020, accepted March 14, 2020, date of publication March 18, 2020, date of current version April 7, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2981596

A Novel Active Contour Model Guided by Global
and Local Signed Energy-Based Pressure Force
HUAXIANG LIU 1,2, JIANGXIONG FANG 2, ZIJIAN ZHANG3, AND YONGCHENG LIN1
1College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
2School of Mechanical and Electronic Engineering, East China University of Technology, Nanchang 330013, China
3Department of Radiation Oncology, Central South University, Changsha 410083, China

Corresponding authors: Huaxiang Liu (felicia_liu@126.com) and Yongcheng Lin (yclin@csu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61966001, Grant 61866001, and Grant
61463005, in part by the Natural Science Foundation of Jiangxi Province under Grant 20192BAB207028, Grant 20181BAB211017, and
Grant 20171BAB202028, and in part by the Jiangxi Provincial Key Laboratory of Digital Land under Grant DLLJ201804.

ABSTRACT Active contour models (ACMs) have been widely applied in the field of image segmentation.
However, it is still very challenging to construct an efficient ACM to segment images with intensity
inhomogeneity. In this paper, a novel ACM guided by global and local signed energy-based pressure
force (GLSEPF) is proposed. First, by computing the energy difference between the inner and outer energies
of the evolution curve, a global signed energy-based pressure force (GSEPF) is designed, which can improve
the robustness to initial curves. Second, a local signed energy-based pressure force (LSEPF) is introduced
by computing the pixel-by-pixel energy difference within local neighborhood region, which can handle
images with intensity inhomogeneity and noise. Finally, the global image information and the local energy
information are used for the global and local force propagation functions, respectively. The global and local
variances are used to automatically balance the weights of the GSEPF and the LSEPF, which can solve the
problem of setting parameters. Meanwhile, a regularization term and a penalty term are applied to avoid
the re-initialization process during iterations and smooth the level set function. Experimental results on
different types of images demonstrate that the proposed model is more robust than the popular region-based
and mixed ACMs for segmenting images with intensity inhomogeneity and noise. The code is available at:
https://github.com/HuaxiangLiu/GLSEPF/.

INDEX TERMS Image segmentation, active contour, signed pressure force, intensity inhomogeneity.

I. INTRODUCTION
The segmentation problem is one of the important issues in
computer vision applications including object extraction and
tracking [1], [2]. In recent years, active contour model (ACM)
has been one of the most effective segmentation algorithms,
which was first proposed by Kass et al. [3] and extensively
applied in image analysis. Its basic idea is to segment an
image into non-overlapping regions with a certain similar
feature by minimizing the energy function, such as intensity,
color, and texture [4]. However, it is one great challenge
to develop an effective image segmentation algorithm for
the practice application since the real-world images usually
contain noise, intensity inhomogeneity (Abbreviated as InH)
caused by imaging conditions and imaging devices.

The associate editor coordinating the review of this manuscript and
approving it for publication was Cristian A. Linte.

Generally speaking, according to image information used
as the formulation of the energy function, the exist-
ing ACMs are classified into three categories: edge-based
ACMs [3], [5], region-based ACMs [6]–[22], and the mixed
ACMs [23]–[32]. The edge-based ACMs use the image gra-
dient to construct an edge stopping function (ESP), which
makes the evolution curve to move toward the object bound-
aries. One of the most popular edge-based ACMs is the
geodesic active contour (GAC) [5]. Its basic idea is to con-
struct an ESP to make the evolution curve stop on the exact
object boundaries by incorporating image gradient and geo-
metrically active contour into the curve evolution theory.
However, the edge-based ACM is difficult to extract the
desired objects from the images with weak boundaries since
the gradient information is sensitive to noise and weak edges.

The region-based ACMs use the statistical region infor-
mation of the inner and outer regions of the evolution curve
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to formulate the energy functional, which is minimized by
gradient decent method. In the region-based ACMs, every
closed curve is expressed as a zero level set function (LSF)
to denote a segmented region. Here, the LSF is also called
signed distance function (SDF). The Chan-Vese model [6],
as a representative region-based ACM, is driven by the inten-
sity difference between the input image and the average
intensities of the inside and outside regions of the evolu-
tion curve, which is based on the Mumford-Shah (M-S)
model [8]. The Chan-Vese model could effectively deal with
a binary phase segmentation and each segmented region was
assumed as homogeneous. Compared with the edge-based
ACMs, the region-based ACMs are less sensitive to initial
condition and could successfully detect the object boundaries.
To solve the problem of local minimum energy, a fuzzy
energy-based active contour (FEAC) model [9] by incorpo-
rating the fuzzy set into the ACM [10] was proposed with
strictly convex energy functional. A improved regularization
term [11] was designed to avoid periodically initializing LSF.
Later on, some improved FEAC-based models, such as the
fuzzy region-based ACM with global and local (FRAGL)
model [12] and the fuzzy level set method (FCMLSM) [13],
were designed to segment different types of images. However,
the region-based ACMs often result in the poor segmenta-
tion performance for images with intensity InH since they
assumed that the intensities in the object and background
regions are constant.

To successfully segment the images with intensity InH,
Vese and Chan [7] proposed a piecewise smooth (PS) model,
in which the LSF was represented by the set of discontinuity
points. But its computational cost is very high. The local
binary fitting (LBF) model with the region-scalable fitting
energy could extract local image information, which was
proposed by Li et al. [14], [15] with a convolutional kernel
function. Its basic idea was to utilize local image information
with spatially varyingweight by controlling a scalable param-
eter to extract local image features. But, for the LBF model,
four convolution operations need to be performed in each
iteration, which greatly increases computational cost. More
importantly, the LBF model is highly dependent on the initial
positions of the evolution curves. Zhang et al. [16] proposed
a local image fitting (LIF) model by computing the difference
between the input image and the fitting intensity value. Later
on, many region-based ACMs were proposed by incorpo-
rating local image information, such as the local likelihood
image fitting energy model (LLIF) [17], the local hybrid
image fitting energy (LHIF) model [18], the local Gaussian
distribution fitting (LGDF) model [19], the weighted region-
scalable fitting (WRSF) model [20], the local cosine fitting
based active contour (LCFAC) model [21], the local pre-
fitting based active contour (LPFAC) model [22], and the
hybrid ACM with global and local information [23]. In these
models, the local image information was incorporated into
the energy functional and the ideal segmentation results were
obtained. On the other hand, the Retinex-like image decom-
position technique was used in the Chan-Vese model with

bias correction (CVXB) [24] to approximate the illumination
bias correction inherently. The local image information are
fused into the ACM, such as the local bias field estimation
[25] and the local patch similarity information [26]. How-
ever, these local region-based ACMs were sensitive to initial
position, and improper initial curve led to poor segmentation
results.

By taking full advantages of the edge-based and region-
based ACMs, the mixed ACMs have been designed. The
Geodesic-Aided Chan-Vese (GACV) model [27] consists
of a GAC model and a Chan-Vese model, which com-
bines the edge information and the region information and
can selectively deal with local and global segmentation.
The variational hybrid model [28] includes two fitted terms
based on edges and regions, which was used to balance
the average intensities of the interior and exterior regions.
Li et al. [29] proposed a distance regularization level set evo-
lution (DRLSE) model with a distance regularization term
and a data term, which drove level set evolution toward
forward-and-backward (FAB) diffusion. In the ACM with
selective binary and Gaussian filtering regularized level set
(SBGFRLS) proposed by Zhang et al. [30], a signed pressure
force (SPF) function was firstly designed to construct a global
ACM. The SPF as the driving force was formulated based on
the difference between the input image and the average values
of the inner and outer region fitting centers. Meanwhile,
a Gaussian filtering function was used to regularize and
smooth the LSF. Different from the ACM with SBGFRLS,
an online region-based active contour model (ORACM) [31]
used a simple level set function to replace the curvature
approximation, and an opening and closing morphological
operations to smooth the LSF. The ACM based on Hessian
matrix (ACM-HM) [32] replaced the derivative of the LSF
in Zhang’s model [30] with the eigenvalue information of
Hessian matrix, which could effectively handle with images
with blurred boundaries. More ACMs were found in the liter-
ature [33]–[35] by incorporating different image information
into the SPF, such as the global image information model
(GSRPF) [33], the local signed pressure force (LSPF) model
[34], the SPF-LIF model [35], the global and local weighted
signed pressure force (GL-SPF) model [36], and weighted
hybrid region-based signed pressure force (WHRSPF) [37].
However, the SPFs in these models utilized the global image
information and could not extract desired objects from images
with intensity InH.

In this paper, a novel ACM guided by the global and local
signed energy-based pressure force, which is called GLSEPF,
is proposed to segment images with intensity InH. Our main
contributions can be summarized as:

(1) By computing the energy difference between the inner
and outer energies of the evolution curve, a novel ACMdriven
by a global signed energy-based pressure force (LSEPF) as
the driving force is designed to deal with complex images.
What’s more, a force propagation function (FPF) in the global
data term is introduced, which can automatically be tuned in
terms of image feature during iterations.
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(2) To extract the exact object boundaries for images with
intensity InH and noise, a local signed energy-based pres-
sure force (LSEPF) is designed by computing the pixel-by-
pixel energy difference within the local neighborhood region.
Meanwhile, its corresponding FPF in the local data term
is introduced, which can eliminate the problem of setting
parameter.

(3) In the implementation process, the global and local
variances is applied to automatically balance the weights of
the GSEPF and the LSEPF. In addition, a regularization term
and a penalty term are added to avoid the re-initialization
process and smooth the LSF during iterations.

The rest of this paper is arranged as follows. The related
works are reviewed in Section 2. Section 3 describes the
proposed model, including the formulation of the GSEPF
and LSEPF functions, the level set formulation, and the
description of the algorithm steps. Section 4 shows exper-
imental results compared with the popular ACMs. Finally
Section 5 concludes this paper.

II. RELATED WORKS
Chan and Vese [6] designed a region-based ACM, which is a
special example of the Mumford-Shah model [9]. Let I (x) :
�→ R+ be an input image with point x, and C : [0, 1]→
� be a close contour, which divides the image domain into the
internal region Cin and the external region Cout . The Chan-
Vese model is written as:

ECV (C, c1, c2)= λ1

∫
Cin
|I (x)− c1|2 dx

+λ2

∫
Cout
|I (x)−c2|2 dx+µ · length(C) (1)

where λ1, λ2 and µ are three positive constants, c1 and
c2 are two piecewise constants which denote the average
intensities of the internal region Cin and the external region
Cout , respectively.

In the level set method, the closed curve C is presented as
the zero level set of a Lipschitz function φ(x).

φ(x) > 0 if(x) ∈ Inside(C)
φ(x) = 0 if(x) ∈ On(C)
φ(x) < 0 if(x) ∈ Outside(C)

(2)

To minimize the energy functional by replacing the curve
C with the LSF, the Chan-Vese model can be rewritten as:

ECV (c1, c2, φ)

= µ ·

∫
�

δ(φ) |∇φ| dx + λ1

∫
�

(I (x)− c1)2H (φ)dx

+λ2

∫
�

(I (x)− c2)2(1− H (φ))dx (3)

where H (x) and δ(x) denote the Heaviside function and the
Dirac delta function, respectively, and can be defined as:

H (x) =

{
1 ifx > 0
0 ifx < 0

, δ(x) =
d
dx
H (x) (4)

Then, the gradient descent method is used to solve the min-
imization problem in (3). With artificial time t , the updated
level set formulation is written as:
∂φ

∂t
=δ(φ)

(
µdiv(

∇φ

|∇φ|
)−λ1(I (x)−c1)2+λ1 (I (x)− c2)2

)
(5)

here c1 and c2 are equal to

c1 =

∫
�
H (φ)I (x)dx∫
�
H (φ)dx

, c2 =

∫
� [1− H (φ)] I (x)dx∫
� (1− H (φ))dx

(6)

Later on, to take the advantages of the GAC model and the
Chan-Vese model, the mixed ACMs [26] driven by the SPF
were proposed, simplified as the Zhang’s model [26]. The
SPF function was constructed based on the intensity differ-
ence between the input image and the average intensities of
the inner and outer regions of the evolution curve, which can
efficiently segment homogeneous images. The SPF function
is defined as:

spf (I ((x)) =
I (x)− c1+c2

2

max
(∣∣I (x)− c1+c2

2

∣∣) (7)

where two constants c1 and c2 are the average intensities of
the regions inside and outside the curve C , respectively.

The edge stopping function (ESF) in the GAC model is
replaced with the SPF function. The evolving equation is
written as follows:
∂φ

∂t
=spf (I (x))

(
div(
∇φ

|∇φ|
)+α

)
|∇φ|+∇spf (I (x))·∇φ (8)

where α is a parameter of the speed to control the LSF
updating, and ∇φ is the gradient of the LSF.
To avoid the re-initialization process of the LSF at

each iteration, a Gaussian filter is used to regularize the
binary LSF. So the evolution equation (8) by ignoring the
curvature-based term, which is used to regularize the LSF, is
written as:

∂φ

∂t
= spf (I (x)) · α |∇φ| (9)

To eliminate the parameter α in (9) and shorten the time to
detect the object boundaries, an efficient level function is set
to update the formulation [30], and its evolution equation is
written as:

∂φ

∂x
= H (spf (I (x))) · φ(x) (10)

where spf (·) is the SPF function defined in (7). Different
from the Zhang’s model, a binary level set formula can
express the internal and external regions using different signs,
and the morphological opening and closing operations can
regularize the LSF.

The ACM with a global weighted SPF (GWSPF) and a
local weighted SPF (LWSPF) [36] is given as:

spfHR(I (x)) = wg ·
I (x)− (dNG1c1 + dNG2c2)

max(|I (x)− (dNG1c1 + dNG2c2)|)

+wl ·
I (x)− (dNL1f1 + dNL2f2)

max(|I (x)− (dNL1f1 + dNL2f2)|)
(11)
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where wg and wl are two weighted variables. dNG1 and dNG2,
dNL1 and dNL2 are two pairs of the global and local minimum
absolute differences of pixel intensities of the inner and outer
regions, respectively. c1 and c2 are two average intensities of
the internal region Cin and the external region Cout defined
in (2), respectively. f1 and f2 are the mean values of the inner
and outer regions, i.e.,{

f1 = mean(I (x) ∈ (x ∈ �|(φ(x) > 0)) ∩Wg(x))
f2 = mean(I (x) ∈ (x ∈ �|(φ(x) < 0)) ∩Wg(x))

(12)

where Wg(x) is the local window function with the local
parameter g.

It is obvious that the SPF function is constructed based on
the difference between the input image and the fitted intensity
of the inner and outer regions of the evolution curve. In these
models, the intensities of the inner and outer regions of the
evolution curve in given image are assumed as homogeneous.
Therefore, it is difficult to accurately extract the desired
objects from images with intensity InH.

III. PROPOSED MODEL
From the above analysis, the ACMs driven by the SPF take
advantages of the edge-based and region-based ACMs, and
can obtain satisfactory segmentation results for homogeneous
images. In these models, the SPF function is constructed
based on the global image information, which can not extract
local image features. In fact, the real-world images mainly
exist in intensity InH. Thereby, it is difficult to apply these
models into the practice. In addition, the updating speed α in
the Zhang’s model is difficult to appropriately set. To solve
these problems, a novel ACM guided by the GLSEPF is
proposed. In this section, the formulation of the GSEPF and
LSEPF, the level set formulation, and the implementation
process are presented in details.

A. FORMULATION OF THE GSEPF
Let I (x) ∈ Rd be a given vector value image with point x in
the image domain �, where d = 1 for the gray image while
d = 3 for the color image. The evolution curve partitions the
image domain� into two regions: the internal region Cin and
the external region Cout . In Fig. 1, the yellow line denotes the
evolution curve. Two corresponding variables are defined as:{

c1 = mean(I (x) ∈ {x ∈ �|φ(x) > 0})
c2 = mean(I (x) ∈ {x ∈ �|φ(x) < 0})

(13)

where I (x) is the input image of the pixel location x in the
image domain �. In fact, the constants c1 and c2 are average
intensities of the internal region Cin and the external region
Cout , respectively.

The internal and external energies of the evolution curve
e1(x) and e2(x) in the image domain � can be defined as:{

Eg1 (I (x)) =
∫
� (I (x)− c1)

2 dx
Eg2 (I (x)) =

∫
� (I (x)− c2)

2 dx
(14)

FIGURE 1. The description of the evolution curve (Yellow line). The local
region is formulated centered at point x on the evolution curve C.

On the basis of the above energy functions (14), the global
sign energy-based pressure force (GSEPF) function is
defined as:

spfGE (I ((x)) =
Eg2 (I (x))−E

g
1 (I (x))

max
(∣∣Eg2 (I (x))−Eg1 (I (x))∣∣)

=

∫
� (I (x)−c2)

2 dx−
∫
� (I (x)−c1)

2 dx

max
(∣∣∫

� (I (x)−c2)
2 dx−

∫
� (I (x)−c1)

2dx
∣∣)

(15)

From (15), it is intuitive that the GSEPF function is similar
to the SPF function in the Zhang’s model [30], and it can
extract the global image characteristics by incorporating the
global image information. The direction of motion of the
evolution curve is analyzed as follows. Suppose the average
intensities of the foreground and background regions are co
and cb (co > cb), the moving direction of the evolution curve
depends on the following equation:

1Eg(I (x)) = Eg2 (I (x))− E
g
1 (I (x))

=

∫
�

(c2 − c1)
(
I (x)−

c1 + c2
2

)
dx (16)

Since the average intensity of the foreground region is not
equal to that of the background region, the moving direction
of the evolution curve is dependent on the equation I (x) −
c1+c2

2 . In Fig. 2(a), the evolution curveC completely contains
the object region, the average intensity of the inner region is
smaller than that of the foreground region, and the average
intensity of the outer region is nearly equal to that of the
background region, namely, co > c1 and c2 ≈ cb. Thus,
cb < (c1 + c2)

/
2 < (cb + co)

/
2 < co. The evolution

curvewill shrink toward the object region. Contrarily, the evo-
lution curve is inside the object region shown in Fig. 2(b),
the average intensity of the outer region is larger than that of
the background region, and the average intensity of the inner
region is nearly equal to that of the foreground region, namely
cb < c2 and c1 ≈ co. Hence, there is co > (c1 + c2)

/
2 >

(cb + co)
/
2 > cb, which drives the curve to expand toward

the objects. In Fig. 2(c), the average intensity difference of
the inner region is larger than that of the outer region, which
is similar to Fig. 2(a). In Fig. 2(d), the average intensity
difference of the outer region is larger than that of the inner
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FIGURE 2. Different locations of the evolution curve (Red line). (a) The
evolution curve is outside the object region; (b)The evolution curve is
inside the object region; (c-d) The evolution curve intersects the object
region.

region, which is similar to Fig. 2(b). In the sameway, the same
conclusion can be obtained when the average intensity of
the foreground region is smaller than that of the background
region (cb < co).

B. FORMULATION OF THE LSEPF
In the local region (the black circle shown in Fig. 1), let
x be a point on the evolution curve C , point y be inde-
pendent of spatial variable x, and the local region �x cen-
tered at x with the radius r can be represented as �x =

{|y− x| ≤ r y ∈ �}. The local region �x includes the inner
region�1 = {|y− x| ≤ r y ∈ (� ∩ φ(y) > 0)} and the outer
region�2 = {|y− x| ≤ r y ∈ (� ∩ φ(y) < 0)}, respectively.
The evolution curve C divides the black circle in Fig. 1 into
two regions corresponding to the inner and outer regions of
the evolution curve. Two average intensitiesm1 andm2 in the
local region �x are respectively defined as follows:{

m1 = mean(y ∈ �1 , �1 = ((�x ∩ (φ(y) > 0)))
m2 = mean(y ∈ �2, �2 = ((�x ∩ (φ(y) < 0)))

(17)

where the constants m1 and m2 are the average intensities
of the inner and outer regions in the image domain �x ,
respectively.

For point x, the internal and external energies of the evolu-
tion curve el1(x) and e

l
2(x) in the local region �x are respec-

tively written as:

el1(x) =
∫
�1

(I (y)− m1)
2 dy, el2(x) =

∫
�2

(I (y)− m2)
2 dy

(18)

The Gaussian kernel function [12] is often used to extract
the local image information. Thus, two local energies el1(x)
and el2(x) can be replaced as follows:{

el1(x) =
∫
�x
κσ (x − y) (I (y)− m1)

2 H (y)dy

el2(x) =
∫
�x
κσ (x − y) (I (y)− m2)

2 (1− H (y))dy
(19)

where κσ (·) is Gaussian kernel with a scale parameter σ .

Correspondingly, two local energy functions E l1(x) and
E l2(x) in the image domain � can be written as follows:
E l1(I (x))=

∫
�
el1(x)dx

=
∫
�

∫
�x
κσ (x − y) (I (y)− m1)

2H (x)dydx

E l2(I (x))=
∫
�
el2(x)dx

=
∫
�

∫
�x
κσ (x−y) (I (y)−m2)

2 (1−H (x))dydx

(20)

By combining two local energies in (20), the LSEPF is
defined as:

spfLE (I ((x))

=
E l2(I (x))−E

l
1(I (x))

max
(∣∣E l2(x)−E l1(x)∣∣)

=

∫
� (I (x)−c2)

2 (1−H (x))dx−
∫
� (I (x)−c1)

2H (x)dx

max
(∣∣∫

�

(
(I (x)−c2)2 (1−H (x))−(I (x)−c1)2 (H (x)

)
dx
∣∣)

(21)

In the following section, the moving direction of evolution
curve will be explained. Suppose that the average intensities
of the local foreground and background regions are co and cb
(co > cb), respectively. For point x, the moving direction for
point x on the evolution curve is dependent on the difference
between the local energies el1(x) and el2(x). Similar to the
energy difference in the GSEPF, the local energy difference
between the energies e1(x) and e2(x) is rewritten as:

1el(x) = 1e2(x)−1e1(x)

=

∫
�x

(κσ (x−y) (I (y)−m2)
2
−κσ(x−y) (I (y)−m1)

2)dx

= 2
∫
�x

κσ (x − y)(I (y)−
m1 + m2

2
)(m1 − m2) (22)

In (13), since the average intensities m1 and m2 are not
equal (m1 > m2), the direction of the driving force for
point x depends on the term I (y) − m1+m2

2 , which is the
intensity difference between the input intensity and the aver-
age intensities of the inside and outside regions. For point
x inside the object region in Fig. 3(a), the average intensity
in the inner region (m1 ≈ co) is close to that of the fore-
ground region, and the average intensity of the outer region
(m2 > cb) is larger than that of the background region.
So, cb < (co + cb)

/
2 < (m1 + m2)

/
2 < co, which drives

the evolving curve to move toward the background region.
On the contrary, for point x outside the object region (Fig. 3b),
the intensity average of the outer region (m2 ≈ cb) is close
to that of the background region, and the average intensity
of the inner region (m1 < c0) is smaller than that of the
foreground region. So, cb < (m1 + m2)

/
2 < (co + cb)

/
2 <

co, i.e., the evolution curve will move toward the object
region. For point x on the object boundary (Fig. 3c), the
average intensity of the outer regions in the evolution curve
is (co + cb)

/
2 ≈ (m1 + m2)

/
2 when the contour reaches the

exact boundary. For the same reason, the direction of motion
for point x is consistent with the above discussion when the
average intensity of the local foreground region (co < cb) is
smaller than that of the local background region.
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FIGURE 3. Different locations of the evolution curve (Red line). (a): The evolution curve is outside the object region; (b)The
evolution curve is inside the object region; (c-d) The evolution curve intersects the object region.

C. LEVEL SET FORMULATION
To maintain the smoothness of the evolution curve and avoid
the re-initialization process at each iteration, a regularization
term and a penalty term are fused into the model. Following
the SPF formulation in the Zhang’s model [30], the level set
formulation of the proposedmodel is defined (23) as shown at
the bottom of the next page, whereµ and ν are two constants,
wg and wl are two weighted variables, which is used to bal-
ance the effects of the GSEPF and LSEPF functions. In (23),
the first and second terms denote the global data and the local
data, respectively. The third term is the regularization, and the
last term is penalty term.

Unlike the Zhang’s model with a fixed force α, two adap-
tive force propagation functions are used to control the global
and local force of the inner and outer regions of the curve.
Two force propagation function are defined as:{

α1 (I (x)) = |c1 − c2|

α2 (I (x)) = max
(∣∣E l2(x)− E l1(x)∣∣) (24)

Therefore, the evolution equation in (23) is rewritten as:

∂φ

∂t
= wg · spfGE (I (x)) · |c1 − c2| · ∇φ

+wl · spfLE (I (x)) · α2(I (x)) · ∇φ

+µδ(φ) · div
(
∇φ

|∇φ|

)
+ ν

(
∇

2φ − div(
∇φ

|∇φ|
)
)

= wg ·
1Eg(I (x))

max (|1Eg(I (x))|)
· |c1 − c2| · ∇φ

+wl ·
E l2(I (x))− E

l
1(I (x))

max
(∣∣E l2(I (x))− E l1(I (x))∣∣)

×max
(∣∣∣E l2(I (x))− E l1(I (x))∣∣∣) · ∇φ

+µδ(φ) · div
(
∇φ

|∇φ|

)
+ ν

(
∇

2φ − div(
∇φ

|∇φ|
)
)
+

= wg ·
1Eg(I (x))

max (|1Eg(I (x))|)
· |c1 − c2| · ∇φ

+wl ·
(
E l2(I (x))− E

l
1(I (x))

)
· ∇φ

+µδ(φ) · div
(
∇φ

|∇φ|

)
+ ν

(
∇

2φ − div(
∇φ

|∇φ|
)
)
(25)

where the difference of the global energy 1Eg(I (x)) is
defined as

1Eg(I (x)) = Eg2 (I (x))− E
g
1 (I (x)) (26)

Two weighted variables are defined as:

wg =
σ 2
g

σ 2
g + σ

2
l

,wl =
σ 2
l

σ 2
g + σ

2
l

(27)

where σg and σl are the global and local variances in the given
image, respectively, which are defined as:{

σ 2
g =

∫
�

(
I (x)− mg

)2 dx mg = mean(I (x))

σ 2
l =

∫
�

∫
�x
(I (x)− ml)2 dx ml =

∫
�x

I (x)dx
Nl

(28)

where Nl is the pixel number in the local image domain �x .
In (25), it can be seen that the force propagation function

α1(I (x)) = |c1 − c2| in the global data term can automat-
ically balance the interior and exterior forces of the curves
using the global image information. The propagation force
increases when the evolving curve are not in the vicinity of
the boundaries while the force decreases when the curve is
close to the boundaries. The force propagation function in
the local data term simplifies the computational cost of the
LESPF. Therefore, the advantage is that the proposed model
can avoid the problem of setting fixed parameters.

D. DESCRIPTION OF ALGORITHM STEPS
The procedure of implementation is summarized as:

1. Specify a given image, and initial parameters: the max-
imum number of iterations, two constants µ and ν, the local
window size k and standard deviation σ in (19).
2. Initialize the LSF

φ(x) =

{
ρ x ∈ �b

−ρ x ∈ �−�b
(29)

where ρ is a positive constant, and�b is a subset of the image
domain �.

3. Compute two weighted variables wg and wl by combin-
ing (27) and (28).

4. Compute the variables: two global average intensities c1
and c2 using (13), and two local average intensitiesm1 andm2
using (17). Then, according to intensity InH, judge whether
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the average intensity of the object region is larger or smaller
than that of the background region or not.

5. Compute the global and local energy functions:
Eg1 (I (x)), E

g
2 (I (x)), E

l
1(I (x)) and E

l
2(I (x)) by combining (14),

(18), and (20).
6. Update the level set function in (25) by combing the

force propagation function (24).
7. Repeat steps 4-6 till the iterations are finished.

IV. EXPERIMENTS AND RESULTS
In this section, the segmentation performance of the pro-
posed model on the images with intensity InH and noise are
validated. The following experiments are implemented on a
3.2-GHz Intel 4-core PC computer with 3 GB of memory
using the Matlab programming language. If not specified,
the fixed parameters are set as: ν = 1, µ = 0.001 × 2552,
and the iteration number Num=100.

To fairly compare the proposed model with the popular
ACMs, the Dice coefficient [37] is used to quantitatively eval-
uate the accuracy of the proposedmodel. The Dice coefficient
between two regions is defined as follows:

Dic(A,B) =
2 (A ∩ B)
A+ B

(30)

where A and B denote the given baseline object region and
the object region, respectively. It is obvious that the closer
the Dice coefficient value is to 1, the better the segmentation
results we obtain.

A. SEGMENTATION RESULTS ON SYNTHETIC IMAGES
Fig. 4 shows the segmentation results on a synthetic image
with severe intensity InH. The local widow sizes are all set
to 5. The original image with red initial curve is shown
in Fig. 4(a). The intermediate stopping positions of the evo-
lution curves during 5th, 10th, 15th, and 20th iterations are
shown in Figs. 4(b)-(e), respectively. To further verify the
robustness of the proposed model, the segmentation results
on the synthetic image by adding different types of noise are
shown in Fig. 5. Three images in the 1st column are from the
clean image corrupted by the speckle noise with the mean
0 and the variance 0.01, the Gaussian noise with the mean
0 and the variance 15, and the salt and pepper noise with
densities of 0.05, respectively. From the 2nd column to the 4th

column, the intermediate stopping positions of the evolving
curves during 5th, 10th, and 15th iterations are shown, respec-
tively. The last column shows the final stopping positions of
the evolution curves. It can be seen that the proposed model

FIGURE 4. The segmentation results of the proposed model. (a) The
original image with initial curve.; (b)-(e) The intermediate stopping
positions of the evolution curve during 5th, 10th, 15th, and 20th

iterations; (f) The final stopping position of the evolution curve.

can still extract these objects from these noisy images though
the images is gravely corrupted by different types of noise.
So, it can be concluded that the proposed model is robust to
noise.

In this section, the tested experiments are used to val-
idate that the proposed model is robust to initial curves.
Fig. 6 shows the segmentation results of the proposed model
with different initial shapes for inhomogeneious images. The
initial contours with different shapes and positions are shown
in the 1st row, and the final stopping positions of the curves
are shown in the 2nd row, respectively. The results shows the
proposed model with different initial conditions (shapes and
positions) can obtain similar results. In conclusion, our model
is robust to initialization.

B. SEGMENTATION RESULTS ON NATURAL IMAGES
In fact, the real-world images are often in the presence of
intensity inhomogeneity. In the following experiments, the
natural images from Berkeley Image Dataset [38] with seri-
ous intensity inhomogeneity are performed using the pro-
posed method. The segmentation results are shown in Fig. 7.
It is intuitive that our model can accurately extract the desired
objects.

C. EFFECTS OF THE GSEPF AND THE LSEPF
The following experiments will test the effects of the global
and local data terms driven by the GSEPF and LSEPF,
respectively. In this work, the ACM with the signed global
energy-based pressure force is called as the GSEPF model,

∂φ

∂t
=

Global Data Term︷ ︸︸ ︷
wg · spfGE (I (x)) · α1(I (x)) · ∇φ+

Local Data Term︷ ︸︸ ︷
wl · spfLE (I (x)) · α2(I (x)) · ∇φ︸ ︷︷ ︸

Data Term

+µδ(φ) · div
(
∇φ

|∇φ|

)
︸ ︷︷ ︸
Regularization Term

+ν

(
∇

2φ − div(
∇φ

|∇φ|
)
)

︸ ︷︷ ︸
Penety Term

(23)
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FIGURE 5. Segmentation results on the synthetic image by adding different types of noise. In the 1st column: noisy
images with initial contours; From the 2nd column to 4th column: the stopping positions of the curves during 5th, 10th,
and 15th iterations, respectively; The 5th column: the finial stopping positions of the curves.

FIGURE 6. Segmentation results for inhomogeneious image with different initial curves. In the 1st row: initial
contours with different shapes and positions; The 2nd row: the finial stopping positions.

and the ACM with the signed local energy-based pressure
force is called as the LSEPF model. The level set formulation
of the GSEPF and LSEPF models are written as:

GSEPF model:
∂φ

∂t
=

1Eg(I (x))
max (|1Eg(I (x))|)

· |c1 − c2| · ∇φ

+µδ(φ) · div
(
∇φ

|∇φ|

)
+ν

(
∇

2φ − div(
∇φ

|∇φ|
)
)

(31)

LSEPF model:
∂φ

∂t
=

(
E l2(I (x))− E

l
1(I (x))

)
· ∇φ

+µδ(φ) · div
(
∇φ

|∇φ|

)
+ν

(
∇

2φ − div(
∇φ

|∇φ|
)
)

(32)

Fig. 8 demonstrates the segmentation results on the car-
diac and remote sensing images using the GSEPF model,

the LSEPF model and the GLSEPF model, respectively.
Three models with the same initial curves are shown in
the 1st column. The finial stopping positions of the evolu-
tion curves corresponding to the GSEPF model, the LSEPF
model, and the GLSEPF model are shown from the 2nd

column to the 4th column, respectively. From Fig. 8, it can
be seen that the GESPF model can extract more detailed
information than the LSEPF models while the LSEPF model
can extract more local image features than the GESPF model.
The GESPF with the global image information is robust
to initial curve while the LSEPF model is robust to noise.
By incorporating the GSEPF and the LSEPF model, the
proposed model can accurately detect object boundaries.

D. COMPARISIONS OF THE PROPOSED MODEL
WITH THE POPULAR ACMS
Figs. 9-15 show the segmentation results on the medical
images with intensity InH compared with thirteen popular
ACMs including the C-V model [6], the LBF model [14],
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FIGURE 7. Segmentation results on Berkeley Image Dataset. The 1st row: the input image with initial contours; The 2nd row: the finial
stopping positions.

FIGURE 8. Segmentation results using the GESPF model, the LESPF model, and the GLESPF model, respectively. The 1st column: the input
image with initial contours; From the 2nd column to the 4th column: the finial stopping positions corresponding to the GRSPF model,
the LRSPF model, and the proposed model, respectively.

the LIF model [16], the LGDF model [19], the LPFAC
model [22], the CVXB model [24], the Zhang’s model
[30], the ORACM model [31] without morphological oper-
ation (ORACM-WT), the ORACM model with morpholog-
ical operation (ORACM-WH), the ACM-HM model [32],
the GSRPF model [33], the WHRSPF model [37], and the
FRAGL model [12]. For these severely inhomogeneious
images, accurately extracting the desired objects is a chal-
lenging task. In the proposed model, the local window sizes
are set to 5, 5, 5, 5, 7, 12, and 12, respectively. In Figs. 10-15,
each (a) shows the original images with initial curves.
In Figs. 9-15, fourteen segmentation results are shown using
the C-V model, the LBF model, the LIF model, the LGDF
model, the LPFAC model, the CVXB model, the Zhang’s
model, the ORACM-WT model, the ORACM-WH model,
the ACM-HM model, the GSRPF model, the WHRSPF
model, the FRGAL model, and the proposed model,
respectively.

From Figs. 9-15, it is intuitive that the C-V model and the
Zhang’s model have too many small regions since they are
based on the global image information and assume that the
object region is homogeneous. The local region-basedACMs,
such as the LBF model, the LIF model, the LGDF model,
and the CVXB model, cannot accurately exact the desired
objects since the local minimum energy causes the segmen-
tation results sensitive to initial curves. The FRAGL model
and the ORACM-WH model have better results than the
ORACM-WT model, the GRSPF model, and the ACM-HM
model. As seen from these figures, it is intuitive that only
the proposed model by incorporating global and local image
information can extract desired objects from these images
with severely intensity InH. To quantitatively present the seg-
mentation performance, Fig. 16 lists the comparative results
in terms of the Dice coefficient.

The segmentation results are analyzed as follows. The C-V
model is constructed based on the global image feature, which
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FIGURE 9. Segmentation results of the medical image using fourteen models. (a) The input image with Initial curve;
(b) C-V; (c) LBF; (d) LIF; (e) LGDF; (f) LPFAC; (g) CVXB; (h) Zhang’s; (i) ACM-HM; (j) ORACM-WT; (k) ORACM-WH;
(l) GSRPF; (m) WHRSPF; (n) FRAGL; (o) our model.

FIGURE 10. Segmentation results of the medical image using fourteen models. (a) The input image with Initial
curve; (b) C-V; (c) LBF; (d) LIF; (e) LGDF; (f) LPFAC; (g) CVXB; (h) Zhang’s; (i) ACM-HM; (j) ORACM-WT;
(k) ORACM-WH; (l) GSRPF; (m) WHRSPF; (n) FRAGL; (o) our model.

cannot deal with intensity InH. The LBF model with local
image information can deal with intensity InH in some extent.
But its segmentation results are dependent on initial curve.

The LIF model takes advantage of the means and variances
in local regions to construct the local image fitting energy.
But it is difficult to set the suitable size of the local window.
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FIGURE 11. Segmentation results of the medical image using fourteen models. (a) The input image with Initial curve; (b) C-V; (c) LBF; (d) LIF;
(e) LGDF; (f) LPFAC; (g) CVXB; (h) Zhang’s; (i) ACM-HM; (j) ORACM-WT; (k) ORACM-WH; (l) GSRPF; (m) WHRSPF; (n) FRAGL; (o) our model.

FIGURE 12. Segmentation results of the medical image using fourteen models. (a) The input image with Initial curve; (b) C-V; (c) LBF;
(d) LIF; (e) LGDF; (f) LPFAC; (g) CVXB; (h) Zhang’s; (i) ACM-HM; (j) ORACM-WT; (k) ORACM-WH; (l) GSRPF; (m) WHRSPF; (n) FRAGL;
(o) our model.

In the LGDF model, the Gaussian noise cannot suppress the
effect of the intensity InH. In the LPFACmodel, the local pre-
fitting energy cannot extract local image information during

the curve evolution. In the CVXB model, the bias correc-
tion cannot coincide with the noise in the given segmented
images. Thus, its segmentation results are not accurate. In the
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FIGURE 13. Segmentation results of the medical image using fourteen models. (a) The input image with Initial curve; (b) C-V; (c)
LBF; (d) LIF; (e) LGDF; (f) LPFAC; (g) CVXB; (h) Zhang’s; (i) ACM-HM; (j) ORACM-WT; (k) ORACM-WH; (l) GSRPF; (m) WHRSPF;
(n) FRAGL; (o) our model.

FIGURE 14. Segmentation results of the medical image using fourteen models. (a) The input image with Initial curve; (b) C-V; (c) LBF;
(d) LIF; (e) LGDF; (f) LPFAC; (g) CVXB; (h) Zhang’s; (i) ACM-HM; (j) ORACM-WT; (k) ORACM-WH; (l) GSRPF; (m) WHRSPF; (n) FRAGL;
(o) our model.

Zhang’s model, the global image information assumes that
the object region is homogeneous, which causes many small
object regions. Similar to the Zhang’s model, the ORACM
(ORACM-WT and ORACM-WH) models also compute the

average intensity differences of two sides of the evolution
curve as the driving force. Thus, twoORACMmodels neglect
the slow change of the neighborhood points and also assumes
that the object region is homogeneous. But, the ORACM-WT
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FIGURE 15. Segmentation results of the medical image using fourteen models. (a) The input image with Initial curve; (b) C-V; (c) LBF;
(d) LIF; (e) LGDF; (f) LPFAC; (g) CVXB; (h) Zhang’s; (i) ACM-HM; (j) ORACM-WT; (k) ORACM-WH; (l) GSRPF; (m) WHRSPF; (n) FRAGL;
(o) our model.

FIGURE 16. Comparison of the region-based ACMs in terms the Dice coefficient.

model causes smaller regions than the ORACM-WH model
since the former with morphological operations can reduce
the effect of noise. In the ACM-HM model, the derivative
of the LSF in (9) is replaced by the eigenvalues of Hes-
sian matrix, which can decrease the effect of noise. But the
model can only extract the brightest regions due to its use
of a second order derivative. Thus, the ACM-HM model can
only extract the brightest regions. In the GSRPF model, the
GSRPF as the driving force is formulated by incorporating
local image characteristics, which is based on the local mean
values of the inner and outer regions of the evolution curve
instead of the global mean values, and can attain the satis-
factory segmentation results for image with intensity InH.
However, the GSRPF model is still not accurate enough to
attain the desired object regions since the quadratic function
with the median of the global intensity cannot control the
propagation of the evolving curve. In the WHRSPF model,
the global and local region-based SPF (GLRSPF) as the
driving force consists of a weighted global region-based
SPF (GRSPF) function and a weighted local region-based
SPF (LRSPF) function, and an automatic force propagation
function based on the image characteristics is introduced.

However, the weights in the WHRSPF model needs to set
manually. However, in our works, the GSEPF and the LSEPF
are constructed by incorporating the global and local image
information, respectively.

E. COMPUTATIONAL COMPLEXITY
In a given image, assuming the number of pixels isN , the size
of the local window size is k . From (25), it is intuitive that
the complexity of the GSEPF model and the LSEPF model
are O(N ) and O(k2N ), respectively. The proposed model
is constructed by incorporating the GSEPF model and the
LRSPF model. Therefore, the computational complexity of
the proposed model O((k2 + 1)N ) ≈ O(N ) since the local
window.size k is very small. Similarly, the computational
complexity of the Zhang’s, ORACM-WH, ORACM-WT, and
GSRPF models are all O(N ).

Table 1 shows the running time (in seconds) during itera-
tions using fourteen models for segmenting the images corre-
sponding to Fig. 9-15.It is intuitive that the LBF, LIF, and
LDGF models take more running time than other models.
And two ORACM models, the ACM-HM model, and the
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TABLE 1. Comparison of the region-based ACMs in terms of running time(seconds).

GSRPF model takes less running time than our model. From
above analysis, our model has similar complexity to the
0Zhang’s model and two ORACM models. Therefore, our
model takes almost the same average running time compared
with the popular ACMs.

V. CONCLUSION
A novel ACM guided by the global and local signed energy-
based pressure force is proposed to segment images in the
present of intensity InH and noise. Some important conclu-
sions can be summarized as follows.

(1) A global data term with global image information is
designed, which is driven by the GSEPF. The GSEPF is
formulated by computing the energy difference between the
inner and outer energies of the evolution curve, and can
effectively segment the homogeneious images.

(2) A local data term with local image information is
proposed, which is driven by the LSEPF. The LSEPF is
constructed by computing the pixel-by-pixel energy differ-
ence within the local neighborhood region, which can accu-
rately extract the desired objects from the inhomogeneious
images.

(3) According to the image characteristics, the global and
local variances are used to balance the weight of the GSEPF
and the LSEPF,which can solve the problem of setting param-
eters. In addition, a regularization term and a penalty term
are added to avoid the re-initialization process and smooth
the LSF.

(4) By incorporating the global and local image informa-
tion, the proposed model can accurately detect the desired
objects from images with intensity InH and noise. Further-
more, the proposed model has higher accuracy in terms of the
average Dice coefficient compared with thirteenth ACMs.

(5) It is noticed that the proposed model is mainly applied
to two-phase image segmentation. In the future, an effective
multi-phase image segmentation method to deal with inten-
sity InH will be developed. In addition, the proposed model
poorly segments the color images [38] since it only utilizes
the intensity information. Therefore, another extension of this
work is to study the color image segmentation.
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