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ABSTRACT Residential demand response is vital for the efficiency of power system. It has attracted
much attention from both academic and industry in recent years. Accurate short-term load forecasting is
a fundamental task for demand response. While short-term forecasting for aggregated load data has been
extensively studied, load forecasting for individual residential users is still challenging due to the dynamic
and stochastic characteristic of single users’ electricity consumption behaviors, i.e., the variability of the
residential activities. To address this challenge, this paper presents a short-term residential load forecasting
framework, whichmakes use of the spatio-temporal correlation existing in appliances’ load data through deep
learning. Multiple time series are conducted in the framework to describe electricity consumption behaviors
and their internal spatio-temporal relationship. And a method based on deep neural network and iterative
ResBlock is proposed to learn the correlation among different electricity consumption behaviors for short-
term load forecasting. Experiments based on real world measurements have been conducted to evaluate the
performance of the proposed forecasting approach. The results show that both the appliances’ load data
and iterative ResBlocks can help to improve the forecasting performance. Compared with existing methods,
measurements on Root Mean Squared Error, Mean Absolute Error and Mean Absolute Percentage Error
for the proposed approach are reduced by 3.89%-20.00%, 2.18%-22.58% and 0.69%-32.78%. In addition,
further experiments are conducted to evaluate the impact of using appliances’ load data, iterative ResBlocks
as well as other factors for the proposed approach.

INDEX TERMS Smart grid, short-term load forecasting, deep learning, residential load forecasting, iterative
ResBlocks.

I. INTRODUCTION
Energy is the one of the main drivers of human activity.
Demand response is of crucial importance for maintain-
ing the reliable and efficient operation of the smart grid
system [1]–[4]. In residential power distribution, demand
response can manage the power delivery from power sys-
tem to users and smooth the system load. Short-term load
forecasting (STLF) predicts users’ demand in the near future,
which provides the key information for making decisions in
residential demand response. On one hand, STLF can help
to satisfy users’ electricity demand and reduce the risk of
outages. If the result of STLF indicates that users’ electricity
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demand will exceed the capacity of system in a residential
community, the power company can incentivize residential
users to shift their power consumption by hiking up the
electricity price [5]. On the other hand, STLF can help to
benefit the power company and residential users in economic
aspects. Based on the results of STLF, the power company can
calculate optimal pricing strategies for residential electricity
usage [3]. For residential users, they can take appropriate
countermeasures if the STLF results indicate that there will
be a power shortage [6].

Existing STLF methods could be categorized into two
kinds: aggregated load forecasting [7]–[9] and individual
users’ load forecasting [10]. Both of the forecasting methods
construct features based on historical records of load since
the value of short-term electricity consumption is related with
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previous values. The aggregated load forecasting gives the
estimation of the total electricity consumption for a group
of users in a specific area, such as a city or a residential
community.

Short-term forecasting for aggregated load data has been
extensively studied. Time series analysis has been applied on
the STLF problem, including Auto Regressive Moving Aver-
age (ARMA) based method [11]–[13], [37], [42] and Sup-
port Vector Regression (SVR) based method [14], [15], [45].
Wei and Zhengang [11] combined the ARMA based method
and other statistical methods to improve the performance for
aggregated load forecasting. Pappas et al. [12] developed an
offline model with enhanced the ARMA based method to
predict the power usage provided by a power company in
Greece. Huang and Shih [13] proposed a method that could
improve the forecasting accuracy through a modified ARMA
based method with non-Gaussian process. Amini et al. [40]
apply an ARIMA based model for electric vehicles’ demand
forecasting. The method decouples conventional electrical
load and charging demand of EV to forecast them indepen-
dently, which can reduce forecasting errors. Yang et al. [14]
presented an SVR based method to forecast power consump-
tion at a city scale. They developed a grid search approach to
automatically tune the model parameters, which can reduce
the difficulty in the parameter optimization phase. Velasco
et al. [15] presented a load forecasting model based on the
SVR method for country-wide power usage. Ren et.al [45]
employed an ensembled method for STLF, which consists of
SVR, random forest and Xgboost. Other methods [16]–[20]
take extra conditions into account to improve the forecasting
results.

Load forecasting for individual users gives the estimation
of the total electricity consumption of an individual user,
e.g., a resident. However, this problem is still challenging.
A major reason is that electricity consumption behaviors of
single user is stochastic. The stochasticity is introduced by the
uncertainty of the time that electricity consumption activities
occurred [21]. Another reason for the difficult of individ-
ual users’ load forecasting is the consumption of electricity
usage is dynamic, even for a specific application of the same
user.

In order to provide supporting accurate information for res-
idential demand response, STLF for individual users attracts
increasing interests recently. Some methods [22]–[24] apply
clustering techniques to obtain the groups of users that have
similar consumption behaviors. Teeraratkul et al. [22] pro-
posed a shape based clustering method for STLF. Based
on the profile of load curves, the method uses dynamic
time warping technique to cluster the load curve and find
a canonical shape for each set of curves. Then, a Markov
model is used to conduct the individual users’ load fore-
casting. Quilumba et al. [23] grouped individual users based
on similar consumption behaviors, which are represented by
users’ load data. Based on the clustering results, a neural
network employing weather and calendar features is used in
the prediction phase.

More recently, researchers explored using deep learn-
ing techniques to perform STLF for individual users, due
to its ability to extract the latent features of users’ elec-
tricity consumption behaviors and less domain knowledge
requirements compared to traditionalmethods. Classical deep
learning models are used for STLF, such as Deep Neu-
ral Network (DNN) [43], Extreme Learning Machine [36].
Kong et al. [10] proposed a Long Short-Term Memory RNN
(LSTM-RNN) based framework for residential STLF. Exper-
iment results showed that their method outperforms tradi-
tional machine learning methods. Shi et al. [21] proposed a
pooling based deep RNN. The pooling stage uses load data of
neighbors to generate new features of inputs, which increases
the data volume and helps to solve the over-fitting problem.

Although the above methods made progresses in some
aspects, the historical data they employed are the overall
load data of single resident, which cannot include the spatio-
temporal correlation existing among appliances’ load data.
The spatio-temporal correlation mentioned here is the spa-
tio correlation among electricity consumption behaviors of
different kind of appliances and the temporal correlation
between the historical electricity consumption behaviors and
future electricity consumption behaviors. For a single user,
the spatio correlation exists in the user’s electricity consump-
tion behaviors of different appliances. For instance, house-
hold members may have daily routines that using washing
machine after taking a shower, or opening refrigerator before
making a meal. The temporal correlation is the similarity
of the historical electricity consumption behaviors and the
future consumption behaviors. More specifically, the time of
an electricity consumption behavior (e.g., electricity usage of
washing machine) happened in the future are probably close
to the time that the same behavior happened in the past. These
correlations exist inside the load profile, and is significant for
individual users’ load forecasting.

Consequently, some researchers employed the load data
of different appliances for load forecasting. These researches
employed different methods to explore the correlation among
different appliances. Dinesh et al. [41] used nonintrusive
appliance load monitoring techniques [26] to collect the
appliances’ load and forecast household load based on graph
spectral clustering. Mohi Ud Din et al. [42] applied the
appliances-level load as the input features of neural network
structure to forecast short-term load, and PCA technique is
employed for feature reduction.

In this paper, we explore using the spatio-temporal cor-
relation among different kinds of electricity consumption
behaviors to improve the performance of STLF. We present
a framework of STLF for individual users based on the cor-
relation information. Multiple time series are conducted in
the framework to describe electricity consumption behaviors
for different applications and their internal spatio-temporal
relationship. And a method based on Deep Neural Network
and iterative ResBlocks is proposed to learn the correlation
among consumption behaviors for STLF. ResBlock that con-
sists of few stacked layers and one skip connection is based
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TABLE 1. Nomenclature.

on the building block for ResNet [30]. The proposed method
based on iterative ResBlocks is able to learn both shallow and
deep features of the input vectors, which makes use of the
correlation information among different kinds of electricity
consumption behaviors. The contributions of this paper are
summarized as follows:

1. We designed a framework of STLF for individual users,
which improves the performance of STLF by using the spatio-
temporal correlation among appliances’ load data.

2. We proposed a method based on DNN with iterative
ResBlocks to learn the spatio-temporal correlation among
different kinds of electricity consumption behaviors in the
framework. To the best of our knowledge, this is the first work
using iterative ResBlocks to learn the latent features of elec-
tricity consumption behaviors for the short-term residential
load forecasting problem.

3. Experiments using real world data were conducted to
evaluate the performance of the proposed approach.

Table 1 illustrates all symbols and abbreviations used in
this paper. The rest of this paper is organized as follows. The
designed framework and the proposed Iterative Resblocks
Based Deep Neural Network (IRBDNN) model are presented
in Section 2 and 3. In Section 4, we evaluate the performance
of the proposed forecasting approach. And in Section 5 is the
conclusion of this paper.

II. PRORPOSED FRAMEWORK
In this section, we present the proposed STLF framework
and the IRBDNN based method. Figure 1 is the schematic

overview of the proposed STLF framework. As shown in
Figure 1, the proposed STLF framework consists of four
modules, including data acquisition, data preprocessing,
model training and load forecasting. The data acquisition
module collects measurements from household smart meters,
which report electricity consumption data of appliances for
each consumer. The spatio-temporal correlation is included
in the appliances’ consumption data, which is the output of
the data acquisition module. Data cleaning, data integration
and data transformation are conducted in the data prepro-
cessing module to improve the data quality for the input of
STLF model. In the model training module, a deep learning
model based on deep neural network and iterative ResBlock
is designed to learn the spatio-temporal correlation among
different electricity consumption behaviors. Also, a param-
eter optimization step is included in this module to further
enhance the learning ability of the proposed method. After
the preprocessing steps and the model training procedure,
the proposed model is able to calculate the predicted values
for an individual user. These components work together to
form a suitable solution for residential STLF.

A. DATA ACQUISITION MODULE
As shown in the Figure 2, we would like to employ appli-
ances’ load for residential STLF. This module’s output is
the appliances’ load data that contains the spatio-temporal
correlation among different kinds of electricity consump-
tion behaviors. There are two ways to obtain the appli-
ances’ load for residential STLF. The first one is to install
load monitoring infrastructures for each appliance, which
can report the electricity usage of the appliances. This way
requires extra equipment, which will increase the cost of
power system. The other way is to use nonintrusive appli-
ance load monitoring techniques, which applies disaggrega-
tion algorithms to decompose the entire household load into
appliances’ load data [26] or separates certain appliance’s
load from the entire household power consumption [25].
The algorithms [26], [27] describe the characteristics of the
appliances based on high frequency load data (1 Hz or even
higher). A typical disaggregation algorithm is sparse cod-
ing [28], [29], which has high temporal resolution ability to
separate different applications. At the end of this module,
appliances’ load that contains the spatio-temporal correlation
are obtained.

B. DATA PREPROCESSING MODULE
Usually, the load data acquired from the data acquisition
module are not suitable for the input of forecasting model
directly. This is because the original data may have missing
values, various formats and high computational needs in the
real world. The residential load data need to be preprocessed
and transformed into a suitable form for the STLF model.

The first step to preprocess the residential load is data
cleaning. In the real world, the problem of missing values
is usually the most popular problem, which may be caused
by hardware failures. We consider two ways to handle this
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FIGURE 1. Schematic overview of the short-term load forecasting framework.

FIGURE 2. Disaggregation of household electricity usage.

problem in the residential load. 1) If the length of the missing
values’ duration is acceptable, the missing values can be
estimated according to the values before and after the missing
durations and the values in other days in the corresponding
time. 2) If the length of the missing values’ duration is too
long that is not acceptable, the load data of this day will be
ignored in the model training phase.

The next step is data integration. When appliances’
load monitoring infrastructures report electricity usage,
the recording frequency of each monitor may be different.
Therefore, data integration needs to be conducted to provide
a uniform format for the input of forecasting model. One of
the data integration approaches is calculating the sum for load
data in a duration to form a dataset that has lower recording
frequency than the original dataset. For instance, in order to
get time series which records 1 value each minute, load data
of appliances need to be integrated by calculating the sum of
load data in every minute. Also, normalization needs to be
conducted in each appliance’s load data, which aims to equal
the influence of different kinds of appliances’ load data on the
forecasting results.

The recording frequency of load monitoring infrastruc-
tures are usually at a second level, such as one measurement
every three seconds. However, the second level load data is

FIGURE 3. An example of daily energy consumption for a house in the
greater Boston area of the U.S.

not suitable for STLF due to the following reasons. Firstly,
load forecasting at the second level is impossible due to the
dynamic and stochastic characteristic of electricity consump-
tion behaviors. Secondly, there is too much noise in the load
records at a second level, which may increase the training
difficulties of forecastingmodels. Therefore, it is necessary to
conduct the data transformation step, which aims to obtain a
simplified representation of the original dataset. The record-
ing frequency of the processed data set after the data trans-
formation step will be lower than the original dataset. For
example, the recording frequency will be transformed into
one measurement each hour from one measurement every
three seconds. An example of daily energy consumption for
a house in the greater Boston area of the U.S. is illustrated
in Figure 3.

C. MODEL TRAINING MODULE AND
FORECASTING MODULE
The forecasting model should learn the spatio-temporal cor-
relation among different kinds of electricity consumption
behaviors. The model is expected to have the ability that cap-
tures the characteristics among appliances’ load in both space
and time. In the model training module, a specific forecasting
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model that can learn the spatio-temporal correlation needs to
be built. Then the model needs to be optimized and updated
to obtain an effective solution. After these steps, the training
of the forecasting model is completed.

The last module of the framework is the load forecasting
module. Based on the model output in the model training
module and the historical records, a predicted load value will
be calculated this step.

III. PROPOSED MODEL
A. THE IRBDNN MODEL
In this subsection, we introduce the proposed the IRBDNN
model, which implements the forecastingmodel building step
in themodel trainingmodule of Figure 1. The proposedmodel
employs iterative ResBlocks in a DNN and the model is able
to learn the spatio-temporal correlation among different kinds
of user’s electricity consumption behaviors. The input of the
IRBDNN model includes both the spatio correlation and the
temporal correlation of a residential user, in terms of resi-
dential user’s electricity consumption behaviors of different
appliances and historical electricity consumption behaviors,
respectively. The structure of the IRBDNNmodel enables the
model to learn both the deep features and the shallow features
from the input. Moreover, the structure of iterative ResBlocks
enables the learning ability of the deep IRBDNNmodel is no
worse than the learning ability of a shallow IRBDNN model.
Detailed analysis for the learning ability of the proposed
model is discussed in Section IV. C, which shows that the
employment of iterative ResBlocks can help to improve the
forecasting performance.

The proposed model is employed to learn the nonlinear
relationship between the input features and the output value.
Generally, the increase of model depth strengthens the learn-
ing ability of the neural network. However, the performance
of deep learning model may degrade in practice. The possible
reasons for the degraded performance may be the intrinsic
characteristic of data or the optimization difficulties of deep
learning model. He et al. [30] proposed a method using Res-
Blocks to obtain a better performance than compared meth-
ods only using stacked hidden layers. Inspired by their work,
we propose a model based on DNN and iterative ResBlocks
for the STLF task. The iterative ResBlocks are able to learn
the spatio-temporal correlation in the STLF task and ensure
the learning ability of the model.

ResBlock is a structure that is different to stacked layers.
It is similar to the building block for ResNet [30] that is
widely used in the image classification problem, but with a
twist.

The input and output of the skip connection in a ResBlock
can be in different dimensions, while in the building block
for ResNet they are usually the same. The basic structure
of ResBlock consists of two components, i.e., few stacked
layers and one skip connection. Stacked layers consist of
few hidden layers and adjacent layers are directly connected.
A structure of two stacked layers are shown in Figure 4(a).
The input of the stacked layers is x and the output of the

FIGURE 4. Comparison of stacked layers and ResBlock. (a) Structure of 2
stacked layers; (b) Structure of a ResBlock.

FIGURE 5. An illustration of the IRBDNN structure.

FIGURE 6. The iterative ResBlocks in the IRBDNN.

stacked layers is y = F(x). Figure 4(b) shows the structure
of a ResBlock, which consists of two stacked layers and one
skip connection. When the input and the output of the skip
connections have the same dimension, the skip connection
is a typical identical mapping. Therefore, the output of the
corresponding ResBlock is y = F(x) + x. When the input
and output of the skip connection are in different dimensions,
the skip connection performs as a linear projection to match
the changes of dimensions. The output of the corresponding
ResBlock is y = F(x)+Wx, where W is a linear projection.
When the stacked layers and the ResBlocks contain the same
number of hidden layers, the skip connection ensures that the
learning ability of the ResBlock is no worse than the learning
ability of the stacked layers.

The IRBDNN model is constructed by the stacked lay-
ers and the iterative ResBlocks. The structure is shown in
Figure 5, and Figure 6 illustrates the insight for the structure
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of the iterative ResBlocks.We denote the number of iterations
as t . When t = 0, the ResBlocks module degenerates into a
non-iterative structure, and the IRBDNN model degenerates
into a DNNmodel.When t= 1, the input of the first ResBlock
(denoted asResBlock 1) is added to the output of theResBlock
1 by a skip connection. TheResBlock 1 consists of three parts:
m stacked layers, the ResBlock 2 and a skip connection.When
t = t0, the iterations are repeated t0 times. The ResBlock
t0 consists of m stacked layers, ResBlock (t0 + 1) and a
skip connection. If iteration t0 is the last iteration, ResBlock
(t0 + 1) degenerate into n stacked layers ( m > 0, n > 0).
For each ResBlock in the IRBDNN model, the input of

ResBlock is linked to the output directly by skip connection,
which ensures the learning capability of the current ResBlock
with deeper embeddedResBlock is noworse than the learning
capability of the ResBlock without deeper embedded Res-
Block. The structure enables the model to make full use of the
spatio-temporal correlation among the different consumption
behaviors.

As it is described above, when the number of iterations
is 0, the structure of the IRBDNN model degenerates into a
structure of DNN. When the number of iterations is no less
than 1, the iteration procedures of the IRBDNN model are
presented as below:

y = F(x1,21)+W0(x0) (1)

F(x1,21) = F(x2,22)+W1(x1) (2)

. . .

F(xt ,2t ) = F(xt+1,2t+1)+Wt (xt ) (3)

where F(xt+1,2t+1) is the output of (m + n) staked layers
in the ResBlock (t + 1) with the input xt , (t + 1) is the
number of iterations, y is the output of the IRBDNN model,
2 denotes weights, biases associated with the model and Wt
denotes the linear projection to match the possible changes of
dimensions.

B. INPUT OF THE IRBDNN MODEL
In this subsection, we construct multiple time series based
on appliances’ load data to form the input of the IRBDNN
model. The time series consist of a number of load values
and each load value represents the energy consumption for a
duration. We use ‘‘time interval’’ to denote a duration in the
rest of this paper. The preprocessed load data for the appliance
i in time interval t is represented as Ei(t), and the overall
load in time interval t is denoted as E0(t). The sequence for
forecasting the overall load E0(t0 + 1) is shown as below:

X (t) = {E1(t0 − T + 1),E1(t0 − T + 2), . . . ,E1(t0), . . . ,

Ei(t0 − T + 1),Ei(t0 − T + 2), . . . ,Ei(t0), . . . ,

E0(t0 − T + 1),E0(t0 − T + 2), . . . ,E0(t0)} (4)

where X (t) is the input vector consisting of two parts, includ-
ing the appliances’ load data and the overall load; the length
of the historical records for forecasting is denoted as T .

C. SEQUENTIAL GRID SEARCH METHOD FOR
HYPER-PARAMETER OPTIMIZATION
This subsection introduces the hyper-parameters optimiza-
tion method for the proposed the IRBDNN model. As it
is described in Section 3.1, the IRBDNN architecture con-
sists of the stacked layers and the iterative ResBlocks. The
number of hidden neurons in each layer of IRBDNN model
are the same, which is denoted as N . The weight matrix
that connects the hidden neurons in (l − 1)th layer and
the neurons in l th layer is W l , which is a N × N matrix.
bl is a vector that contains N elements which represents
the bias of the hidden neurons in lth layer. The output of
(l − 1)th layer is denoted as al−1. Then the output of layer
lth is al = σ (W lal−1 + bl), where σ denotes the activation
function.

The loss function applied in the model is given by (5):

Loss =

√
1
N

∑
(t(n)− p(n))2 (5)

where t(n) and p(n) denote the truth load data and the
predicted load data in the n-th time interval, and N is
the number of predicted time intervals in the training
set.

In deep learning methods, numbers of hyper-parameters
need to be optimized. An exhaustive grid search for all
hyper-parameters is time-consuming. To address this prob-
lem, we design a sequential grid search approach to opti-
mize hyper-parameters for the proposed the IRBDNNmodel,
which is inspired by Ismail et al. work [31]. In this
paper, the following hyper-parameters are optimized. The
firsthyper-parameter is the number of neuron N in each layer,
searched in (100, 150, 200, 300, 400, 450, 500). The second
hyper-parameter is the learning rate LR, searched in (0.001,
0.0001, 0.00001). And the last one is the initializer I that can
be used for the IRBDNN parameters, searched in (Normal,
Uniform, Glorot Normal, Glorot Uniform). The sequential
grid search process is illustrated in Figure 7 and Figure 8.
The Algorithm 1 described in Figure 7 is the main program
and the Algorithm 2 described in Figure 8 is its subprogram.
The sequential grid search can be divided into three parts.
In the first part, the hyper-parameters are initialized to build
the initial forecasting model. N and LR have significant
impact on the learning ability of the forecastingmodel. There-
fore, we optimize N and LR synchronously to define Model
1 in the second part. I is set an initialized value first, then it is
optimized in the third part. After the above process, Model 2
is defined with the optimal N , LR and I .

IV. RESULTS
To evaluate the performance of the proposed framework and
the IRBDNN based method, we compare the forecasting
performance of the proposedmethodwith existing algorithms
including the ARMA based method, the ELM based method
and the SRX [42] based method. The above experiments are
conducted based on the Redd dataset [32].
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FIGURE 7. The flow diagram for the main program of the sequential grid
search approach.

A. DATASETS
In this section, we introduce the Redd dataset and the pre-
processing steps for it. The Redd dataset is a public available
data set, which records the consumption data of appliances
in residential users’ houses from March, 2011 to July, 2011.
In our experiments, we employ the data that the recording
frequency is every three seconds for each record.

Data preprocessing for the Redd dataset includes data
cleaning, data integration and data transformation. The data
cleaning step is conducted according to the description in the
Section 2.2. After the data cleaning steps, we sum up the

FIGURE 8. The flow diagram for the subprogram of the sequential grid
search approach.

appliances’ load data in each 30 minutes to get a time series
that consist of 48 values each day, then apply the min-max
normalization for the time series.

The Redd dataset that we use contains ten appliances
(oven, refrigerator, dishwasher, kitchen outlet, washer dryer,
bedroom, lighting, electric heat, microwave and stove).
We obtained 32 days’ load data for one user and separate them
into three subsets: 20 days’ data, 4 days’ data and 7 days’
data for the training set, the validation set and the testing set,
respectively. Table 2 shows the descriptive statistics of the
overall load data in the three subsets, including total size,
mean value, maximum value, minimum value and standard
deviation.

An example of the daily load for all appliances is illus-
trated in Figure 9. Bars with different colors illustrate the
appliances’ load and a red line presents the overall load.
As shown in the figure, the time series of appliances’ load are
quite dynamic. For example, the load record of oven is higher
than 2500kWh around 7:30, while the load data is lower than
1500kWh around 20:00. Moreover, the spatial correlation
among appliances is obvious in the figure. For instance,
the oven and themicrowave are used together around 7:30 and
around 20:00. Also, lighting’ load record value will increase
when the oven and microwave are used.

B. EXPERIMENT RESULTS
In the experiments, we use Root Mean Square Error (RMSE),
Mean Absolute Error (MAE) and Mean Absolute Percentage
Error (MAPE) as the metrics of performance evaluation.
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TABLE 2. Descriptive statistics of the three subsets.

FIGURE 9. An example of energy consumption over a day for one user in
the Redd dataset.

RMSE is root mean square error, which is sensitive to
errors and suitable to evaluate the accuracy of forecasting
results [33]. MAE is mean absolute error, which is a useful
metric widely used in model evaluation [34]. MAPE is mean
absolute percentage error between the predicted value and
the truth value, which is able to avoid the offset problem of
errors [35]. The definitions of the metrics are as follows:

RMSE =

√
1
N

∑
(y− p)2 (6)

MAE =
1
m

∑
|(y− p)| (7)

MAPE =
1
m

∑ |(y− p)|
y

∗ 100% (8)

where m is the number of values that represent the load
data for a duration of 30 minutes in the testing set, y is the
truth value and p is the predicted value. We implemented
an 8 layers IRBDNN with 3 iterations. The number of the
stacked layers in each ResBlock is 1 layer, 1 layer, and
2 layers, respectively. The sequential grid search algorithm
is applied in the hyper-parameter tuning step, and the search
ranges of hyper-parameters are presented in Table 3.

In order to evaluate the effectiveness of our framework
and the proposed IRBDNN based method, we conducted two
groups of experiments. In the first group, the experiments
employ both the appliances’ load data and the overall load.
The DNN based method, the SRX based method, and the pro-
posed IRBDNN based method are conducted in this group.
The experiments in another group includes the ELM based

TABLE 3. Range of hyper-parameters for grid search.

TABLE 4. The comparison for results of forecasting methods.

method and the ARMA based method, which only employ
the overall load. For the ELM based method, the search range
of the hidden neurons is the same with the IRBDNN based
method. And for the DNN based method, the number of
hidden layers is searched in range (3, 4, 6, 8), and the search
ranges of other hyper-parameters are the same as that of the
IRBDNN based method described in Table 2.

Table 4 shows the forecasting results for each day in the
testing set and the forecasting results for the whole testing set.
It can be observed that the IRBDNN based method performs
the best and the second best on Day 2, Day 3, Day 5 Day 6
and Day 7. The last row illustrates the overall results of
five methods. The IRBDNN based method outperforms other
methods, and the DNN based method performs the second
best, better than the SRX based method, the ELM based
method and the ARMA based method. We can observe from
the table that the IRBDNN based method performs better
than other methods on the three metrics, which indicates
that the proposed method using deep neural network and
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FIGURE 10. Error distributions of the results of the forecasting methods. (The suffix ‘AO’ indicates that the model employs both appliances’
load and the overall load data, and the suffix ‘O’ indicates that the model only employs the overall load data).

FIGURE 11. Forecasting Performance of the proposed method for a week.

iterative ResBlock can effectively learn the spatio-temporal
correlation among consumption behaviors. The forecasting
results of a residential user using the proposed method as well
as the actual load are illustrated in Figure 11.

Figure 10 is the error distributions of the results of the fore-
castingmethods.We can observe from the figure that the error
distributions of the IRBDNN-OA, DNN-OA and SRX-OA
perform better than ELM-O and ARMA-O that only employ
the overall load data. More specifically, the number of RSEs
between 0 and 140 (the first two bars) in the IRBDNN-OA’s
forecasting result is over 255, which is more than DNN-OA,
SRX-OA, ARMA-O and ELM-O. In other words, the number
of RSEs larger than 140 in the IRBDNN-OA’s forecasting
results is the fewest among the forecasting result of the five
methods, because the RSE is calculated for each predicted
value and the number of RSEs for each method is equal. The
number of RSEs larger than 210 in the forecasting result of
the IRBDNN-OA is around 25, while the number of RSEs

for the other methods that is larger than 210 is larger than 25.
The IRBDNN based method’s forecasting results have less
extreme large RSEs (>210) than other methods and has
smaller RSEs (0-140) than other methods. Considering the
overall performance in Table 4, we can draw the conclusion
that the IRBDNN based method generally performs better
than other methods.

C. DISCUSSION
To obtain a more comprehensive understanding for the per-
formance of the proposed approach, four additional sets of
experiments are conducted. The training data, validation data
and the testing data in these experiments are the same as the
data used in the Section IV, B.

1) PERFORMANCE ANALYSIS OF SPATIO-TEMPORAL
CORRELATION AND ITERATIVE ResBlocks
In the first set, three groups of experiments are conducted to
verify the impact of spatio-temporal correlation among dif-
ferent appliances and iterative ResBlocks. The three groups
are the IRBDNN group, the DNN group and the SRX group.
Each group includes two cases with different historical data:
1) the overall load data; 2) the overall load data and the
appliances’ load data. The experiments results are shown
in Figure 12.

The results from Figure 12 show that both the appliances’
load data and iterative ResBlocks can help to improve the
forecasting performance. Detailed analysis is presented as
follows. Firstly, comparing two experiments in each group,
the case employs both appliances’ load and the overall load
performs better than the case only employs the overall load
data.We can conclude that the employment of the appliances’
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FIGURE 12. Impact of employing the appliances’ load data. (a) RMSE;
(b) MAE.

TABLE 5. Details for the network structure of the IRBDNN model with
different number of iterations.

load data can help to improve the forecasting performance.
Secondly, the case ‘IRBDNN-AO’ performs better than the
case ‘DNN-AO’ and the case ‘SRX-AO’. The same trend
can be observed from the cases that only employ the overall
load. Case ‘IRBDNN-O’ performs better than other case
‘DNN-O’ and case ‘SRX-O’. These results indicate that the
employment of iterative ResBlocks can better capture the
spatio-temporal correlation among different appliances than
compared methods and help to improve the forecasting per-
formance. However, the improvement of forecasting perfor-
mance is at the cost of computation efficiency. We further
analysis the cost of computation time in the fourth part of
this subsection.

2) IMPACT OF ITERATION TIMES ON THE
IRBDNN BASED METHOD
In the second set of experiments, we test the IRBDNN
models with 0 iteration, 1 iteration, 2 iterations and 3 iter-
ations, respectively. Table 5 shows the details for the net-
work structure of the IRBDNN model with different number
of iterations. The sequential grid search method is used to

FIGURE 13. RMSE of the IRBDNN model with different number of
iterations.

FIGURE 14. MAE of the IRBDNN model with different number of
iterations.

optimal the hyper-parameters, and the search ranges of the
hyper-parameters are illustrated in Table 3. Figure 13 and
Figure 14 illustrate the RMSE and MAE of the experiment
results.

From Figure 13, we can observe that the IRBDNN model
with 3 iterations performs the best among all models. The
RMSE decreaseswhen the number of iterations (i.e., the num-
ber of ResBlocks) increases. The same trend can be observed
from the MAE in Figure 14. There is no experiment of the
IRBDNN model with 4 iterations because the performance
of the IRBDNN model with 3 iterations is close to the per-
formance of the IRBDNN model with 2 iterations, which
only improves 1.14% on RMSE and 0.81% on MAE. When
the number of iterations continuously increases, the improve-
ment on the RMSE andMAEwill not be obvious. The results
indicate that the IRBDNN based method intends to have
improved performances with the increment of the iteration
number.

3) IMPACT OF HIDDEN NEURON NUMBERS ON THE
IRBDNN BASED METHOD
In the third group of experiments, we explore the influence of
the hidden neuron numbers for the 8-layer IRBDNN model
with 3 iterations, and the results are illustrated in Figure 15
and Figure 16.

According to the results in Figure 15 and Figure 16, we can
observe that optimal hidden neuron number is 300. The
changes on RMSE and MAE for different number of hidden
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FIGURE 15. Influence on MAE of hidden neuron number.

FIGURE 16. Influence on RMSE of hidden neuron number.

neurons are similar. Both of them decrease when the hidden
neuron number increases from 100 to 300, while both of
them increase when the number of hidden neurons is larger
than 300.

4) ANALYSIS OF COMPUTATION TIME ON THE IRBDNN
BASED METHOD
In order to analysis the computational cost, we compared
the training time and the testing time of the IRBDNN based
method and the based DNN method, since both of them
are implemented on neural network. The experiments are
conducted on a personal computer equipped with a 2.5GHz
Intel i5 Core Processer and 8GB RAM. We compared the
training time and the testing time for both methods with two
types of historical data, i.e., 1) only the overall load (denoted
as input type ‘O’); 2) both the overall load and the appliances’
load (denoted as input type ‘OA’).

Table 6 shows the computational cost for both methods.
The training time is recorded by running 200 epochs for the
whole training set. And the testing time is recorded by the
whole testing set, which has 7 day’s data. We can observe
from the table that the employment of the appliance’s load
increases the computation cost for the training process and
the testing process for both methods, which indicates that the
improvement of the forecasting performance by employing
the appliances’ load is at the cost of computation time. Also,
we can observe from the table that the employment of iterative
ResBlocks does not evidently increase the computation cost
of the IRBDNN based method that adopting skip connections
in the network structure. Thus, although there is additional

TABLE 6. Running time for the IRBDNN models.

computation cost on the proposedmethod, the overall training
time as well as the overall testing time are acceptable for the
power company since they are relatively short and the training
process is usually off-line.

V. CONCLUSION
In this paper, we explored using the spatio-temporal correla-
tion among different kinds of appliances to predict the short-
term electricity demand for individual residential users.

An effective STLF framework that includes the data acqui-
sition module, the data preprocessing module, the model
training module and the load forecasting module was pro-
posed. Multiple time series were conducted in the frame-
work to describe electricity consumption behaviors and their
internal spatio-temporal relationship. In order to fully exploit
the correlation of user behaviors and characteristics of users’
consumption patterns, a method based on DNN and iterative
ResBlocks was proposed to learn the correlation. A grid
search method was employed in the hyper-parameter opti-
mization phase. The proposed method and several existing
forecasting methods were evaluated on a real world dataset.

The results show that the IRBDNN based method outper-
forms other compared methods. Moreover, we demonstrated
that both the appliances’ load data and iterative ResBlocks
can help to improve the forecasting performance. In addition,
experiment results indicate that the IRBDNN based method
intends to have improved performances with the increment of
the iteration number. In the future work, we intend to employ
the correlation defined in communication networks [38], [39]
to express the spatio-temporal correlation among differ-
ent residential users to improve the performance of STLF.
Also, we will explore predicting thermophysical properties of
matter [44].
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