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ABSTRACT A sequence diagram is a modeling approach for visualizing the behavioral execution of a
system. The objective of this research is to investigate the problem of security in a behavioral model
(sequence diagram) through the application of model refactoring. We propose detection and correction
techniques, empirical evaluation of the proposed techniques and assessment of security improvement in
sequence diagrams. The detection of security bad smells is achieved through the adaptation of a genetic
algorithm, while correction is accomplished by the model transformation approach. The results show
significant detection recall and correction efficacy of the proposed detection and correction approaches,
respectively. Our results show that the proposed approach is effective in detecting and correcting bad smells
and can improve the security of UML Sequence Diagram.

INDEX TERMS Software security, security bad smells, software refactoring, genetic algorithm, software
metrics.

I. INTRODUCTION
The Unified Modeling Language (UML) is a widely used
analysis and design language due to its support for a number
of software quality attributes [2]. It allows the designers
to develop analysis and design models ensuring important
quality attributes. A behavioral view of UML provides a
graphical visualization of the behavioral execution of a sys-
tem. A sequence diagram is a popular technique to visu-
ally represent the behavioral dynamics of a system in the
forms of lifelines and their interactions. Since a sequence
diagram is developed at the design phase, any bad smells
in a sequence diagram can easily propagate to subsequent
software artifacts. Therefore, it becomes crucial to ensure
quality in sequence diagrams. Refactoring is a technique that
improves the quality of a software artifact without altering
its behavior [3]. The correction of bad smells in sequence
diagrams is extremely important to enhance the quality of this
behavioral model.

A number of quality attributes related to software model-
ing have been reported in the literature, such as modularity,
reusability, modifiability, testability, security etc. [4], [5].
These days, security has become one of the important quality
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attributes in software systems because of the critical nature of
systems. This is also evident from the abundance of literature
on secure software development in recent years. However,
there is a lack of work on investigating bad smells and their
impact on the quality of sequence diagrams. In addition,
there is also a scarcity of work on evaluating the impact
of refactoring on improving the quality of sequence dia-
grams [6]. Designers and developers should be careful when
refactoring security critical code as it can introduce subtle
leaks [7]. This work fills these gaps by providing detec-
tion and correction approaches to respectively identify and
remove security bad smells in sequence diagrams. The work
presented in this paper was conducted as part of an MSc
thesis [8].

The main goal of this research is to improve the security
of sequence diagrams through the application of refactor-
ing. The achievement of this goal can be broken down into
multiple sub-objectives. The sub-objectives of this research
include:
• to propose a detection technique to identify security bad
smells in sequence diagrams.

• to propose a correction technique to eradicate security
bad smells in sequence diagrams.

• to empirically assess security improvements in sequence
diagrams due to refactoring.
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This research addresses the following research questions:
RQ1: To what extent can the proposed detection approach

detect security bad smells in sequence diagrams?
RQ2: To what extent can the proposed correction approach

rectify security bad smells in sequence diagrams?
RQ3: To what extent can refactoring security bad smells

improve the security aspects of sequence diagrams?
To address RQ1 and RQ2, we propose detection and cor-

rection approaches, respectively. The detection approach uses
the concept of Genetic Algorithms (GAs) to identify security
bad smells in the studied sequence diagrams. A potential
solution is formed by creating a set of rules measuring secu-
rity bad smells using quality metrics. The best solution is
yielded through the selection, crossover and mutation oper-
ations of the GA process. Initially, we build the detection
rules from five sequence diagrams, but to justify the use
of GA, we generated detection rules for a large dataset of
sequence diagrams. The correction solution is based onmodel
transformation using XMI. The XML representation of a cor-
respondingmodel is refactored to remove security bad smells.
The refactored XML is then exported to the corresponding
sequence diagram. RQ3 is answered through the analysis of
sequence diagram case studies and the statistical analysis of
quality metrics. The comparison of software metric values
before and after refactoring allows a definite conclusion on
significant security improvement in sequence diagrams.

The rest of this paper is structured as follows: section 2
provides a detailed description of the related work.
Section 3 presents the research methodology, including
details of the proposed detection and correction approaches.
Section 4 discusses the implementation details of the pro-
posed detection and correction approaches on multiple case
studies of sequence diagrams. It also describes the validation
of the proposed approaches through case studies and the
statistical analysis of quality metrics. Section 5 presents the
analysis and a discussion of the implications of the acquired
results. Section 6 presents the threats to validity and finally,
Section 7 concludes the paper and directs future work.

II. RELATED WORK
This section provides a detailed discussion on studies related
to this research. It covers model bad smells and existing bad
smell detection techniques.

A. MODEL BAD SMELLS
Suryanarayana et al. classified design smells into four cate-
gories: abstraction, encapsulation, modularization and hier-
archy [9]. The classification with its corresponding design
smells is listed in Table 1. In each classification, a signif-
icant number of design smells are reported. For example,
in abstraction, there is a design smell, ‘‘missing abstraction’’,
which emphasizes a compromise on the integrity of data.
Similarly, in deficient encapsulation, the class attributes are
likely to be exposed to outside classes. The authors also
suggested an appropriate set of refactoring opportunities for
each design smell and their impact on quality attributes.

TABLE 1. Classification of design smells [9].

The design bad smells that are considered in this paper are
briefly described as in Table 1.
Missing Modularization: This type of design smell arises

when a class or component is not decomposed. In other
words, the component lacks the separation of concerns. The
appropriate refactoring strategy for removing this design
smell is ‘Extract Class’ as the cohesive attributes andmethods
are moved to a new class, which leaves the old class properly
modularized.
Broken Modularization: This is when the data and related

procedures are split across abstractions, which allows the
unauthorized access of data across classes or components.
The related refactoring to eradicate this design smell is move
method(s) and attribute(s), which means the data and related
procedures are moved to the class(es) where they actually
belong.
Unutilized Abstraction: This design smell occurs when an

unused abstraction is accidentally invoked, which may result
in runtime problems, affecting the reliability of a design.
This type of design smell can be erased by the application
of remove abstraction refactoring. Removal of unutilized
abstraction motivates the correct invocation of objects, which
results in the reliable execution of software.

Bad smells in the sequence diagram are studied in a similar
manner as class diagram bad smells, the rationale based on the
similarities between bothmodels in terms of classes and inter-
actions. Hence, bad smells, which belong to class diagrams,
are applicable to a sequence diagram. For example, broken
modularization is one of the bad smells usually experienced
in a class diagram and it can also be applied to a sequence
diagram. The calling of methods between classes identifies
how much classes depend on each other intimating the pres-
ence of broken modularization. The rectification procedure
is also like the class diagram. If the bad smells are removed
at the class level, they are automatically removed from the
sequence diagram. Following the same broken modulariza-
tion example, the methods are moved to remove the defects
in the classes, meaning less calling of methods, and even-
tually, fewer calls are observed in corresponding sequence
diagrams.
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B. BAD SMELL DETECTION TECHNIQUES
The classification which we consider in this research is pre-
sented by Misbhauddin and Alshayeb [6]. They classified
three detection strategies, namely: design patterns, software
metrics and pre-defined rules [6]. The details of the detection
techniques in terms of this classification is presented in this
section.

Software metrics provide statistical information by cap-
turing its key attributes. The most well-known object-
oriented metrics reported in the literature are proposed by
Chidamber and Kemerer [10]. Software metrics usually can-
not be directly applied to UML models; hence models are
first transformed into XML and then the XML representa-
tion is parsed to measure the software metrics values. If the
measured metric values are not in an acceptable range, it is
considered as a bad smell. Hence, the major concern in
metrics-based techniques is the threshold values that can be
considered acceptable.

Fourati et al. proposed an approach to identify anti-patterns
at the structural and the behavioral levels through the use
of quality metrics [11]. The structural and behavioral level
models considered in their study were class diagrams and
sequence diagrams, respectively. The basic purpose of incor-
porating sequence diagrams was to compensate for the loss of
information when moving from the source code to the design.
The approach involves several steps. First, the relationship
between bad smells and metrics is revealed. Detection is
done by transforming class diagrams into XML and then the
software metrics are used to identify whether diagrams carry
bad smells or not. Mohamed et al. also presented an extended
meta-model of UML to assist model-driven refactoring [12].
Their approach allows the automated detection of bad smells
in class and sequence diagrams by the use of model metrics
and design smells. They performed domain analysis to pro-
pose a UML extended meta-model to achieve their objective.
Once the design smells are identified, the proposed meta-
model is applied to find possible refactoring. Refactoring
tags are assigned to the source model, indicating the need
for restructuring. Before appropriate refactoring is applied,
the user validates the refactoring tags. Mumtaz et al. eval-
uated how refactoring can be used to improve the software
security at code level [13]. Ruland et al. proposed a method
to maximize strictness of declared accessibility of class
members [14].

Design patterns provide good solutions for defects in soft-
ware development; on the other hand, anti-patterns provide
bad solutions to problems. They allow developers to identify
common design and implementation problems and provide
an appropriate solution. Improving design quality attributes
in models by incorporating patterns into a design is called
pattern-based model refactoring [15]. The refactoring proce-
dure based on patterns involves three stages: the setting of
the source, setting of the target model and applying transfor-
mation [15]. The part of the software artifact which needs
refactoring is first selected, then based on a design pattern,

a target model is set. The selected portion of the artifact is
transformed in accordance with the defined target model.
Kim defined a design pattern consisting of three components:
problem models, solution models and transformation mod-
els [16]. The transformation model describes how problem
specification can be transformed to a solution specification.
A problem specification is assessed against a specific design
pattern for its applicability to that problem. If the pattern
specification matches the problem specification, the corre-
sponding transformation model is applied. They provided
refactoring specifications for the Abstract Factory pattern,
Adapter pattern and Observer pattern.

Rule-based techniques ensure the use of a specific tem-
plate or standard rules to develop software artifacts. If a
software artifact is not created using a predefined standard,
it is suspected to have bad smells. Dobrzanski and Kuzniarz
presented an approach to systematically specify bad smells
and the associated refactoring in the sequence diagram [17].
They used a template that includes the following information:
name of refactoring, origin, trigger element, goal, reasons,
bad smell, pre and post conditions. They considered UML
models that are built in the TAU CASE tool. Jensen and
Cheng proposed an approach, based on genetic program-
ming, to automate the use of software metrics to generate
refactoring strategies that introduce design patterns [18].
Rasool and Arshad conducted a survey on tools and tech-
niques that have been used for mining code smells at software
code level [19]. Khelladi et al. proposed a detection engine
of complex changes that addresses the variability and the
overlap challenges [20].

A few observations can be made from the explanations
of the presented detection techniques. The detection of bad
smells in sequence diagrams is accomplished via design
patterns, software metrics and pre-defined rules. Sequence
diagrams are studied alongside class diagrams. The reason
for this is due to the similar type of model smells for both
diagrams and the way they are detected. The literature has not
studied bad smells from a security perspective. Researchers
have also not yet addressed the detection and refactoring of
bad smells from a security perspective.

C. APPLIED REFACTORING STRATEGIES
Many refactoring strategies have been reported in the lit-
erature [3], but those applied in this research are briefly
explained in this section. The refactoring strategies for class
diagrams and sequence diagrams are generally the same. The
rationale behind this is the use of classes and their interactions
in class and sequence diagrams. The refactoring strategies
considered in this research are briefly explained as follows:
MoveMethod:Thismeansmoving amethod from a class to

another class that uses this method more. This method can be
turned into a delegation or can be completely removed from it.
The corresponding bad smell for this type of refactoring
is ‘‘broken modularization’’ i.e. a method which uses more
features of another class than the class to which it belongs.
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FIGURE 1. Research methodology overview.

This bad smell exploits the common object-oriented design
principle of modularization. Although modularization is
introduced by distributing the methods across multiple
classes, the separation of concerns is not ensured. The move
method refactoring allows the method to move to the class
where it is most required. This way modularization and the
separation of concerns are complementary.
Extract Class: This means moving cohesive methods and

related attributes from an existing class to a new class. This
type of refactoring handles the proper modularization of
design. This type of refactoring copes with the bad smell
of missing modularization. This bad smell also violates the
separation of concerns principle in software design. In other
words, a class is overburdened by many responsibilities.
In this way, high coupling is also induced. In order to cope
with all these design principle violations, extract class refac-
toring is applied. The refactoring readjusts the design with
the objective of having better modularization and separation
of concerns and reduced coupling.
Remove Class: This means removing a class that is not

contributing to a design. Such a class becomes useless and it is
pointless to show it in a design. The idle class may incur inap-
propriate behavior in the case where it is accidently invoked.
Thus, removing such a class also increases the reliability of a
design.

III. RESEARCH METHODOLOGY
This section highlights the major aspects of the research
methodology. The main research goal of the methodology is
the efficient detection and correction of security bad smells.
Another important research goal which needs to be addressed
by the research methodology is the evaluation of security
improvement because of refactoring security bad smells.
Although surveying of security bad smells and qualitymetrics
is performed, the focus of this section is on filtering security
bad smells and related refactoring strategies; the detection
and correction of security bad smells; and the evaluation

of security improvement in the studied sequence diagrams
because of refactoring.

A. RESEARCH METHODOLOGY OVERVIEW
This section includes an abstract description of the research
methodology, the details of which are presented in the forth-
coming section. To ease the understandability, a pictorial
view of the research methodology is depicted in Figure 1.

The filtration of security bad smells from the existing
taxonomy of bad smells is the initializing activity of the
research methodology. A large taxonomy of bad smells exists
in the literature, which must undergo some filtration pro-
cess to strain only security bad smells. After the filtra-
tion, security bad smells and the related quality metrics are
input to the GA for the generation of detection rules. The
rules are combinations of conditional statements using qual-
ity metrics. The generated detection rules are then applied
on sequence diagrams to detect any bad smells existent in
them. This completes the detection activity. The subsequent
focus of the research methodology is on the correction of
the detected security bad smells. The correction adopts the
model transformation approach in which the investigated
sequence diagrams are transformed into XML representa-
tions. The refactoring strategies are applied to XML repre-
sentations of the sequence diagrams based on the targeted
bad smells. This results in the generation of refactored
XML representations. The refactored XML representations
are then exported to corresponding refactored sequence dia-
grams. This completes the correction activity. Behavioral
consistency is accomplished using post-refactoring condi-
tions. The quality metrics are computed, before and after
refactoring, from XML representations of the sequence dia-
grams. The improvement in model quality is assessed by
performing a comparison of quality metrics computed pre-
and post-refactoring. The basic flow of activities is shown
in Figure 1.
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B. FILTERING OF SECURITY BAD SMELLS
It is important to determine whether bad smells tagged
as security bad smells violate one or more security
attributes. This process is supported by the study of
Suryanarayana et al., in which they classified many design
smells [9]. They also identified the quality attributes each
design smell could affect. The quality attributes include secu-
rity related attributes as well. This allows us to identify the
model bad smells that violate security attributes and subse-
quently, tag them as security bad smells. The existing catalog
of model bad smells is passed through this process to ana-
lyze which model bad smell affects the security attributes.
For example, according to Suryanarayana et al., the miss-
ing modularization model smell affects understandability,
changeability, extensibility, reusability, testability and relia-
bility [9]. According to the security definitions, reliability is
one of the security attributes [4], [21]–[23]. Hence, missing
modularization can be tagged as a security bad smell. Simi-
larly, other security bad smells are filtered. The forthcoming
example identifies a bad smell as a non-security bad smell
using the same procedure. According to Suryanarayana et al.,
imperative abstraction impacts understandability, changeabil-
ity, extensibility, reusability and testability [9]. Since none of
these quality attributes is related to security as per the security
definitions, this bad smell is not filtered by the process. In a
similar manner, other non-security bad smells are identified.
In the scope of this research, we focus on three security
bad smells: unutilized abstraction, brokenmodularization and
missing modularization. A brief definition of each security
bad smell, along with the security requirements it violates,
and appropriate refactoring, are presented in Appendix.

1) APPROACH OVERVIEW
The gaps identified in the literature are addressed by the
proposed detection and correction approaches. The idea of
the detection approach is inspired by the technique presented
by Ouni et al. [24], with changes in the GA process, specif-
ically for crossover and mutation operations. In addition,
the approaches investigate security bad smells rather than
normal class level bad smells. A different set of studied bad
smells stipulates the use of a different set of quality metrics.
In addition, a major contribution resides in the application of
the approach to sequence diagrams.

The security bad smell examples and quality metrics are
used to generate detection rules through the application of
the genetic algorithm. The detection rules use a set of metrics
and their values to detect a specific defect. The set of metrics
measuring a bad smell is used as a rule for the detection of that
bad smell. The solution generated by the detection approach
carries the set of rules, which detects a maximum number
of bad smells. The correction approach refactors sequence
diagrams using the model transformation technique.

2) GA IMPLEMENTATION FOR THE DETECTION APPROACH
This section demonstrates the application of genetic
programming in the context of bad smell detection.

FIGURE 2. A high-level GA adaptation for detection [24].

FIGURE 3. Individual representation.

Genetic programming is a heuristic search-based approach
that explores the search space to find a best-fitted solution
for a specific problem [25].

The abstract view of the applied genetic algorithm is shown
in Figure 2. The algorithm takes quality metrics and bad
smell examples as inputs and yields the best solution that
corresponds to a set of detection rules. Lines 1-2 form the
initial population of a genetic algorithm. An individual is
represented by a set of rules with corresponding bad smells.
The summation of all individuals formulates a population.
Lines 4-13 represents the genetic algorithm loop. It explores
the search space and constructs the new population. The fit-
ness values of individuals are evaluated in each iteration. The
best-fitted solution is saved as the best solution in each itera-
tion (line 9). The new population is generated by selecting the
best-fitted individuals from the existing population which are
subsequently exposed to crossover and mutation operations.
During crossover, the selected pair of parents produces two
new individuals. The diversity in the solution is achieved
through the mutation operation. At the end, the algorithm
returns the best solution containing rules that can identify the
maximum defects in a model.
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A set of rules comprises an individual having IF-THEN
conditional statements. The expressions in the rules are a
combination of OR and AND logical operators. If a con-
ditional statement is true, the corresponding bad smell is
detected by the rule. An individual is composed of three rules
with each rule looking for a specific bad smell. An instance
of an individual representation is shown in Figure 3. If the
number of associations (NAss), the number of invocations
(NInvoc), the number of received messages (NRec) and the
number of coupled classes (CBO) of a class in a sequence
diagram equals or exceeds the specified thresholds, then the
specified security bad smell exists in the given sequence
diagram. Only the description of the individual formulation
is presented here, and the definitions of the quality metrics
are presented in section 4.

The number of individuals is dependent on the number of
rules, which further depends on the existence of bad smells.
This means that the greater the number of rules, the more
individuals can be devised. The initial population is formed
by the union of all the individuals. Therefore, the size of the
population is indirectly contingent upon the quantity of the
rules.

For crossover and mutation, the selection is based on the
relative fitness of the individuals. In each iteration, the fit-
ness value is calculated for every individual and two-third
of the relatively best-fitted individuals are selected. The
remaining one-third is discarded in each iteration. The dis-
carded one-third of the population is regenerated from the
selected two-thirds of the population through crossover and
mutation.

For crossover, one of the three rules from an individual is
randomly selected and swapped with a rule (measuring the
same bad smell) in another individual, resulting in two new
individuals. For example, if two individuals I1 and I2 are
randomly selected for crossover, R1 in I1 will be swapped
with R1 of I2. This swapping leads to the introduction of two
new individuals I1‘ and I2‘. I1‘ has R1 of I2, and R2 and
R3 of I1, whereas, I2‘ has R2 and R3 of I2 and R1 of I1. This
creates new children (I1‘ and I2‘) which possess information
from both parents (I1 and I2).

Mutation is achieved by modifying the value of the qual-
ity metrics. The algorithm randomly selects an individual,
followed by a rule and then a metric, whose value will be
changed. The modification to the metric value is in the form
of a random increase by one or a decrease by one.

The quality of an individual is only indicated by how well
the encapsulated rules have performed in detecting security
bad smells. In this regard, the fitness function calculates the
number of detected bad smells against the existing bad smells
in a model. If a rule is able to detect a bad smell, a value
of one is added to its individual’s fitness; otherwise, zero is
added to its fitness value. If an individual is able to detect all
the defects present in a sequence diagram, the fitness value of
that individual is maximized. The individuals with relatively
greater fitness values are selected for crossover and mutation
operations.

C. CORRECTION APPROACH
The correction of security bad smells is achieved through
model transformation using XMI [26]. XML provides suf-
ficient information in the form of tags about the transformed
model. The quality metrics are extracted from the XML rep-
resentations of the investigated sequence diagrams. TheXML
representations of sequence diagrams are modified according
to the refactoring strategies against the identified bad smells.
The detected security bad smells in the sequence diagrams
can be traced in the corresponding XML representation.
The tags are then modified to remove the detected smells.
Once the refactoring is successfully applied, the refactored
XML representations are exported back to the corresponding
sequence diagrams. The resulting sequence diagrams will no
longer have security bad smells.

D. BEHAVIORAL CONSISTENCY
Consistency can be checked via pre-conditions or post-
conditions or both. The consistency approach adopted in
this study is based on post-conditions. We formulate some
conditions before refactoring and once the refactoring is per-
formed, the conditions are validated. For instance, when the
refactoring strategy deletes a class to correct an unutilized
abstraction bad smell, it is checked to ensure that its behav-
ior remains consistent. Since unutilized abstraction already
affects behavior, the removal of the class contributes to the
correctness of behavioral execution. An illustration of how
corrections to security bad smells are validated in terms of
behavioral consistency is presented in section 5 for each
investigated sequence diagram.

E. SECURITY IMPROVEMENT VALIDATION
The assessment of security improvement in sequence dia-
grams due to refactoring is achieved through the statistical
analysis of quality metrics. The specified quality metrics
for each sequence diagram are calculated before and after
refactoring, allowing the change in the metrics values to be
observed. How significant the change in quality metrics is
due to refactoring can only be assessed through statistical
analysis. For this purpose, the pair-wise t-test is performed.
The pair-wise t-test is chosen because it reflects the signifi-
cant change in a pair of values. Since we have metric values
before and after refactoring, it is an appropriate statistical
test to execute, which can suggest significant improvement
in security because of refactoring. The security improvement
validation is performed in section 5.

IV. THE EXPERIMENT
The purpose of this section is to provide details on the
application of the detection and correction approaches on the
considered sequence diagrams to achieve the goals of this
research. This section also explains the experiment setup and
presents the results. The explanations related to the experi-
ments are presented according to the guidelines provided by
Jeditschka et al. [27].
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A. EXPERIMENT GOALS
The main experimental goal is presented below in the form
of the GQM (Goal Question Metric) approach [28]. The
goal is to:
‘‘Analyze the model refactoring security bad smells for the

purpose of improving the quality of sequence diagrams with
respect to security’’.

The achievement of the main goal can be broken down
into multiple sub-goals. The sub-goals include successful
detection and correction of security bad smells and to what
extent refactoring can improve software in terms of security.
To reiterate, the following are the research questions and the
experiments address each:

RQ1: To what extent can the proposed detection approach
detect security bad smells in sequence diagrams?

RQ2: To what extent can the proposed correction approach
rectify security bad smells in sequence diagrams?

RQ3: To what extent can refactoring security bad smells
improve the security aspects of sequence diagrams?

The basic mechanisms to answer these research questions
are as follows:

For RQ1, examples of existing security bad smells along
with quality metrics are used to evaluate the recall of the
proposed detection approach.

For RQ2, the correction efficacy is computed in terms of
howmany security bad smells are eradicated by the correction
approach.

For RQ3, we use the t-test statistical analysis of quality
metrics.

B. EXPERIMENT MATERIALS
Five sequence diagrams belonging to five different sys-
tems are used for the detection purpose. The diagrams
were gathered from an online source [1]. The investigated
security bad smells in the sequence diagrams are: missing
modularization, broken modularization and unutilized
abstraction. Multiple instances (total of 20) of these three
security bad smells can be seen in the investigated sequence
diagrams. Multiple instances of the same bad smell allow
diversity in the generated rules, which contributes to solution
effectiveness.

Figure 4 shows the sequence diagram of an airline reser-
vation system [1]. The diagram comprises five classes with
associations among them except the ‘‘Reservation System’’
class. This class is assumed to be an unutilized abstract class.
The presented airline reservation system carries three security
bad smells: missing modularization, broken modularization
and unutilized abstraction. The instances where these bad
smells occur are listed as follows:

Missing modularization:
SB1: ‘‘Customer’’ class has a lot of associations and in-out

calls or messages.
Broken modularization:
SB2: ‘‘Flight’’ class has just one received call.
Unutilized abstraction:

SB3: ‘‘Reservation System’’ is unassociated with any other
class.

Figure 5 shows the sequence diagram of a hotel manage-
ment system [1]. The diagram comprises nine classes with
associations among them except the ‘‘Staff’’ class. This class
is assumed to be an unutilized abstract class. The presented
hotel management system carries three security bad smells:
missing modularization, broken modularization and unuti-
lized abstraction. The instances where these bad smells occur
are listed as follows:

Missing modularization:
SB4: ‘‘Receptionist’’ class has a lot of associations and in-

out calls or messages.
SB5: ‘‘Customer’’ class has a lot of associations and in-out

calls or messages.
Broken modularization:
SB6: ‘‘Stock’’ class has just one received call.
SB7: ‘‘Food Items’’ class has just one received call.
SB8: ‘‘Room Attendant’’ class has just one received call.
Unutilized abstraction:
SB9: ‘‘Staff’’ is unassociated with any other class.
Figure 6 shows the sequence diagram of a library man-

agement system [1]. The diagram comprises six classes with
associations among them except the ‘‘Staff’’ class. This class
is assumed to be an unutilized abstract class. The presented
library management system carries three security bad smells:
missing modularization, broken modularization and unuti-
lized abstraction. The instances where these bad smells occur
are listed as follows:
Missing modularization:
SB10: ‘‘Librarian’’ class has a lot of associations and in-

out calls or messages.
SB11: ‘‘User’’ class has a lot of associations and in-out

calls or messages.
Broken modularization:
SB12: ‘‘Manager’’ class has just one received call.
Unutilized abstraction:
SB13: ‘‘Staff’’ class is unassociated with any other class.
Figure 7 shows the sequence diagram of an online movie

ticketing system [1]. The diagram comprises eight classes
with associations among them except the ‘‘Visitor’’ and
‘‘Ticket’’ classes. These classes are assumed to be unutilized
abstract classes. The presented online movie ticketing sys-
tem carries three security bad smells: missing modulariza-
tion, broken modularization and unutilized abstraction. The
instances where these bad smells occur are listed as follows:

Missing modularization:
SB14: ‘‘Registered User’’ class has a lot of associations

and in-out calls or messages.
Broken modularization:
SB15: ‘‘Cancel Ticket’’ class has just one received call.
Unutilized abstraction:
SB16: ‘‘Visitor’’ class is unassociated with any other class.
SB17: ‘‘Ticket’’ class is unassociated with any other class.
Figure 8 shows the sequence diagram of a school manage-

ment system [1]. The diagram comprises five classes with
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FIGURE 4. Sequence diagram of airline reservation system [1].

associations among them except the ‘‘Employee’’ class. This
class is assumed to be an unutilized abstract class. The pre-
sented school management system carries three security bad
smells: missing modularization, broken modularization and
unutilized abstraction. The instances where these bad smells
occur are listed as follows:

Missing modularization:
SB18: ‘‘Admin’’ class has a lot of associations and in-out

calls or messages.
Broken modularization:

SB19: ‘‘Class’’ class has just one received call.
Unutilized abstraction:
SB20: ‘‘Employee’’ class is unassociated with any other

class.

C. VARIABLES
The independent variable for the detection of security bad
smells in the investigated sequence diagrams is detection
recall. For correction, the independent variable is computed
as how many security bad smells are removed as a result of
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FIGURE 5. Sequence diagram of hotel management system [1].

refactoring. The other independent variable is quality met-
rics. The metrics are useful in the quantitative validation of
security improvement. The quality metrics selected for the
sequence diagrams are as follows:
• NAss is the number of in-out messages or calls for a
class.

• NInvoc is the number of invoked calls for a class.
• NRec is the number of received messages for a class.
• CBO is the number of coupled classes for a class.

D. PROPOSED HYPOTHESES
The following hypotheses are formulated to statistically vali-
date the effectiveness of the proposed approaches in order to
enable a statistical judgment to be made on security improve-
ment in sequence diagrams:
Hypothesis 1 (RQ1): The proposed detection technique is

able to identify a significant number of security bad smells in
the investigated sequence diagrams.

Null Hypothesis (H01): The detection approach is unable
to identify a significant number of security bad smells in the
investigated sequence diagrams as indicated by its recall.
Alternate Hypothesis (H11): The detection approach is able

to identify a significant number of security bad smells in the
investigated sequence diagrams as indicated by its recall.

The null hypothesis (H01) is rejected in the case, where,
the Detection Recall (DR) of the detection technique in terms
of identifying the security bad smells in the investigated
sequence diagrams is significant. The quantification of the
formulated hypothesis is necessary for later testing. The
quantification of the hypothesis is presented as follows in
terms of detection recall:
Null Hypothesis (H01): DR < 75%
Alternate Hypothesis (H11): DR >= 75%
Hypothesis 2 (RQ2): The proposed correction technique is

able to remove a significant number of security bad smells in
the investigated sequence diagrams.
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FIGURE 6. Sequence diagram of library management system [1].

Null Hypothesis (H02): The correction approach is unable
to remove a significant number of security bad smells in the
investigated sequence diagrams as indicated by its correction
effectiveness.

Alternate Hypothesis (H12): The correction approach is
able to remove a significant number of security bad smells
in the investigated sequence diagrams as indicated by its
correction effectiveness.
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FIGURE 7. Sequence diagram of online movie ticketing system [1].

The null hypothesis (H02) is rejected in the case, where,
the Correction Efficacy (CE) of the correction technique in
terms of removing the security bad smells in the investi-
gated sequence diagrams is significant. The quantification of
the formulated hypothesis is necessary for later testing. The
quantification of the hypothesis is presented as follows in
terms of correction efficacy:
Null Hypothesis (H02): CE < 75%
Alternate Hypothesis (H12): CE >= 75%

Hypothesis 3 (RQ3): Refactoring security bad smells
improves the investigated sequence diagrams from a security
perspective.
Null Hypothesis (H03): No difference is observed in the

security quality of the investigated sequence diagrams as a
result of refactoring security bad smells as indicated by the
quality metrics.
Alternate Hypothesis (H13): A significant difference is

observed in the security quality of the investigated sequence
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FIGURE 8. Sequence diagram of school management system [1].

diagrams as a result of refactoring security bad smells as
indicated by the quality metrics.

The null hypothesis (H03) is rejected in the case, where,
the quality metrics values before refactoring are not equal to
the qualitymetrics values after refactoring. The quantification
of the formulated hypothesis is necessary for later testing.
The quantification of the hypothesis is presented as follows
in terms of p-value:
Null Hypothesis (H03): p-value > 0.05
Alternate Hypothesis (H13): p-value < 0.05

E. EXPERIMENT TASKS
Detection: The initial individuals are formed by govern-

ing rules from existing security bad smells in five sequence
diagrams. The aggregation of individuals creates the initial
population. Once the genetic algorithm reaches its termi-
nating condition, it yields a solution which has the best
fitness.

Correction: The corrections in the sequence diagrams are
achieved by applying relevant refactoring techniques (listed
in Appendix) to the identified security bad smells. The inves-
tigated sequence diagrams are exported using XML to per-
form refactoring by modifying the XML representation. For
example, in the Airline Reservation System (Figure 4), there
exists a security bad smell ‘‘unutilized abstraction’’, where
the ‘‘Reservation System’’ abstract class is not utilized at all.
This smell needs to be eradicated by removing the ‘‘Reserva-
tion System’’ abstract class from the sequence diagram. The
system is first exported to XML representation and then
the tags related to this abstract class are removed manually.
The abridged version of the corresponding XML representa-
tion is shown in Figure 9. The tags ‘lifeline’ and ‘element’
belong to the unutilized abstract reservation system class.
These tags are removed from the XML representation to
remove the unutilized abstraction associated with the ‘Reser-
vation System’. The other security bad smells are removed
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FIGURE 9. Abridged XML of airline reservation system.

using the same process through the related refactoring tech-
niques specified in Appendix.
Behavioral Preservation: Behavioral consistency for

sequence diagrams is verified manually. The unutilized
abstraction does not contribute to the sequence diagram,
so refactoring this bad smell does not introduce any behav-
ioral inconsistency issue. Refactoring broken modularization
moves the method to the class that it needs. Previously,
the class called it from another class and violated multi-
ple security attributes. After refactoring, the functionality is
moved to the class which was calling it from another class,
leaving the behavior untouched. Refactoring missing modu-
larization decomposes a class into two classes and distributes
the relevant functionalities according to their concerns. The
most important post-refactoring condition to meet is the pres-
ence of all functionalities after decomposition. In this case,
the semantics are present and require the involvement of
the designer. Another condition to meet is that the interac-
tions of the decomposed class with the other classes remain
intact. In other words, the sending and receiving of messages
between the refactored class and the other classes should
continue unchanged.

F. RESULTS
Detection: Once the detection technique is applied on

sequence diagrams, it generates the best solution. The set of
rules representing the best solution yielded by the genetic

FIGURE 10. Best solution generated for sequence diagrams.

TABLE 2. Applied refactoring of airline reservation system.

TABLE 3. Applied refactoring of hotel management system.

algorithm is shown in Figure 10. All three rules measure
bad smells using four conditional statements with variables:
NAss, NInvoc, NRec, and CBO. R1, R2 and R3 measure
missing modularization, broken modularization and unuti-
lized abstraction, respectively. The considered qualitymetrics
and the correspondingmapping of rules to specific bad smells
are extracted from Fourati et al. [11]. If the metrics values
of class(c) equal or exceed the thresholds provided by these
rules, then that class has a corresponding bad smell. The best
solution (shown in Figure 10) is then applied on the investi-
gated sequence diagrams to evaluate its recall effectiveness.
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TABLE 4. Applied refactoring of library management system.

TABLE 5. Applied refactoring of online movie ticketing system.

TABLE 6. Applied refactoring of school management system.

The set of rules governing the best solution is able to identify
15 out of 20 security bad smells present in the five examined
sequence diagrams, meaning the detection approach has 75%
recall. The recall is validated manually as well to confirm the
correct detection of security bad smells. This result for recall
provides sufficient evidence to answer RQ1 that the proposed
detection approach can detect a significant number of security
bad smells in sequence diagram.
Correction: The same procedure is applied to remove

security bad smells in the other investigated sequence dia-
grams. Table 2 to Table 6 summarize the refactoring appli-
cation to identify the security bad smells in the sequence
diagrams of the Airline Reservation System, the Hotel
Management System, the Library Management System,
the Online Movie Ticketing System and the School Manage-
ment System, respectively. These sequence diagrams after
refactoring are shown in Figure 11 to Figure 15, respec-
tively. Of the 20 security bad smells, 19 are eradicated
through the correction approach, giving a 95% correction
effectiveness.

G. HYPOTHESES TESTING
We formulated three hypotheses to address the correspond-
ing three research questions. Each hypothesis focuses on a
specific research question. The hypotheses are numerically
validated as follows:
Hypothesis 1 (RQ1): In order to test this hypothesis,

the Detection Recall (DR) of the detection approach is mea-
sured. The null hypothesis (H01) can be rejected if DR is
significant. Numerically, it is set that if DR is greater than or

equal to 75%, then the null hypothesis (H01) can be rejected.
While being executed on the investigated sequence diagrams,
the detection approach shows a significant DR of 75%. The
DR is equal to 75%, so the null hypothesis (H01) is rejected.
This answers RQ1, that the proposed detection approach is
able to detect a significant number of the security bad smells
in sequence diagrams.
Hypothesis 2 (RQ2): In order to test this hypothesis,

the Correction Efficacy (CE) of the correction approach is
measured. The null hypothesis (H02) can be rejected if CE
is significant. In numerical terms, if CE is greater than or
equal to 75%, then the null hypothesis (H02) can be rejected.
The correction approach shows notable results by yielding a
significant CE of 95% in the investigated sequence diagrams.
The CE is greater than 75%, so the null hypothesis (H02) is
rejected. This addresses RQ2, that the proposed correction
approach is able to remove 95% of the security bad smells in
sequence diagrams.
Hypothesis 3 (RQ3): The pair-wise t-test is performed to

statistically analyze the significant security improvement in
sequence diagrams. The pair-wise t-test is beneficial because
it is able to identify the differences in quality metrics as a
result of refactoring. The p-value is computed with 95% con-
fidence through a pair-wise t-test. The computed p-value is
0.04, which is less than 0.05. Hence, it can be concluded that
security in the investigated sequence diagrams has improved
significantly. Subsequent to this observation, we can reject
the formulated null hypothesis (H03) with 95% confidence.
This accomplishes the sub-goal of security improvement in
sequence diagrams and answers RQ3. For reference, the
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FIGURE 11. Refactored sequence diagram of airline reservation system.
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FIGURE 12. Refactored sequence diagram of hotel management system.

quality metrics values of the five investigated sequence dia-
grams (pre- and post-refactoring) are provided in Table 7.

H. EXPERIMENTS WITH LARGE DATASETS
The main purpose of the supplementary experiments is to
gain further confidence in the detection approach in terms
of generating the set of rules. To further increase confi-
dence in the detection approach, we conduct experiments
with large datasets. The abundance of security bad smells
can strengthen the applicability of the generated detection

rules because the generation of detection rules relies on them.
The supplementary experiments address this notion and jus-
tify the generalization of detection rules. The supplementary
experiments are performed on sequence diagrams which are
much larger in size. This data is artificially generated because
of the unavailability of data of a significant size. The gener-
ation of data is performed in two ways: 1) simple replication
and 2) varied replication.

The large datasets contribute to improving the general-
ization of rules and the diversity of security bad smells.
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FIGURE 13. Refactored sequence diagram of library management system.
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FIGURE 14. Refactored sequence diagram of online movie ticketing system.

The detection rules are generated once the large datasets are
input to theGA. The variations between new and old solutions
need to be analyzed. In addition, the improvement in the
detection rules generated by the supplementary experiments
needs to be assessed. The improvement in detection rules is
assessed by either enhanced detection recall or refinement of
the rules in general.

1) EXPERIMENTS WITH SIMPLE REPLICATION DATASETS
In simple replication, the data is produced by replicat-
ing the small datasets. For example, we start with exist-
ing five sequence diagrams, then create the replications of
these diagrams. The replication process halts when at least
1000 sequence diagrams are created. Table 8 shows the
statistics of the simple replicated datasets for the investigated
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FIGURE 15. Refactored sequence diagram of school management system.

sequence diagrams. Data size is significantly enhanced in
terms of the number of lifelines and security bad smell
instances. Since the data size is increased, the security bad
smell instances are automatically escalated.

The set of rules generated by the supplementary experi-
ment with simple replication differs marginally from the best
solution stated earlier. Figure 16 states the best-generated
solution as a result of the supplementary experiment.

The differences are observed in R1, while R2 and R3 remain
unmodified. A decrease is observed in the NInvoc and NRec
values. The new best solution incorporates a lack of coupling
in the rule and as a result, the DR becomes 90%.

2) EXPERIMENTS WITH VARIED REPLICATION DATASETS
The reason for replicating with variations is to introducemore
distinctive quality metrics values. For example, we start with
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TABLE 7. Quality metrics values pre- and post-refactoring.

TABLE 8. Statistics of simple replicated datasets.

the existing five sequence diagrams, then create replications
of these diagrams and modify the metrics values. The new
dataset consists of ten different sequence diagrams because
of the introduction of variations. The replication procedure
halts when at least 1000 sequence diagrams are created. The
statistics related to the varied replication dataset are shown
in Table 9. The datasets sizes are significantly increased

FIGURE 16. Best solution for sequence diagrams (simple replication).

in terms of the number of lifelines. Since the data size is
increased, the security bad smell instances are automatically
escalated. Another reason for enhanced bad smell instances
is the introduction of new instances due to variations.
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TABLE 9. Statistics of replicated datasets with variations.

FIGURE 17. Best solution for sequence diagrams (varied replication).

Datasets created through varied replication examine the flex-
ibility of the GA as well.
Sequence Diagrams: In the experiment with datasets pro-

duced from varied replication, two quality metrics values
are modified in comparison with the best solution presented
earlier. Figure 17 states the best-generated solution as a result
of the supplementary experiment with the varied dataset. The
varied metrics are CBO and NInvoc of R1. The change in
more quality metrics supports the variations in the gener-
ated dataset. Similar to the simple replication experiment,
the best solution generated from the varied replication has
a DR of 90%. Therefore, we can conclude that the large
datasets created from both types of replication have further
refined the generated set of rules. This improvement in results
contributes to strengthening the generalization of these rules.

As a conclusion, we can express that the supplementary
experiments with large sets of sequence diagrams and secu-
rity bad smell instances have improved a few rules in the gen-
erated solutions. The new sets of rules are also a refined form
of the previously acquired rules from the small datasets in a
way that they show the potential of capturing more security
bad smells. This aids the generation of a more reliable and
generalized set of rules.

V. ANALYSIS AND DISCUSSION
This section focuses on the implications of this research. The
analysis and discussion justify many expected propositions.
The justifications for the use of security bad smell examples
and their abundance in the investigated sequence diagrams
are presented in this section. A discussion on the quality
metrics and their values is provided as well. This section also
analyzes the impact of refactoring on the security of other
quality attributes.

A. SECURITY BAD SMELLS
In the detection approach, the most important component is
security bad smell examples because the formulation of rules

mainly depends on this. The quality of the solution is contin-
gent on the quality of the base examples. During individual
formulation, diversity is ensured by selecting rules wisely.
This is evident during detection validation as the yielded solu-
tion can detect a significant number of security bad smells.
In addition, an abundance of investigated security bad smells
has allowed us to draw solutions with the maximum recall.

Bad smell examples are in abundance in online software
repositories. Sometimes, bad smells are reported in the main-
tenance directory, and if not, they can easily be identified
manually or using existing tools. The bad smell examples
incorporate the actual programming practices in the detec-
tion process. As a result, the yielded rules are more precise
and context faithful. The examples also remove the existing
contradictions in the metrics threshold values as it solves the
subtleness of agreeing on commonly accepted metrics values.
The rules generation process is executed multiple times using
bad smell examples to erase any uncertainty with respect
to the quality of rules. Although it is assured that a decent
frequency of security bad smells exists in the investigated
sequence diagrams, the number of instances varies among
different bad smells. The security bad smells found in the
studied sequence diagrams are evenly distributed. In other
words, the frequencies of different types of bad smells are
almost equal.

It can be argued that work overhead exists when using
security bad smell examples because they need to be iden-
tified before the start of the GA. The rationale for using base
examples is to remove any confusion about the quality met-
rics thresholds. It would have been a major threat to validity
if thresholds were used instead of base examples. A consen-
sus on the quality metrics thresholds would have taken this
study to unjustifiable arguments. However, the use of base
examples in this study is completely justified in the study.
Another reason for using base examples is to incorporate
real programming mistakes that lead to security bad smells.
Another consideration is the dependency of the detection
approach on the size of base examples set. The experiment
clearly answers this argument by showing significant results
using a small set of base examples.

B. CONSISTENCY OF RESULTS
Another concern to discuss is the consistency of the results.
The acquired results are consistent because the detection
approach incorporates quantitative information using quality
metrics. If the semantics of the investigated sequence dia-
grams are also considered, then consistency would have been
an issue to address. The approach is irrelevant to sequence
diagram semantics, so the consistency of results is not a
concern.

In order to improve the consistency of results, we per-
formed experiments using large datasets of three of the
investigated sequence diagrams. Although experiments with
small datasets give significant results, experiments with large
datasets further improve the results in terms of consistency.
Consistency can be observed from the achieved detection
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recall when experimenting with large datasets. The experi-
ments also help in the refinement of the detection rules. The
same is confirmed by the detection recall of the detection
approach as well. The experiments with varied replications
produce comparatively better detection rules. The rationale
behind this is due to the diversity in the datasets because of
the modifications during replication.

We believe that the approaches are stable. The generated
solution from multiple runs of the GA almost yielded solu-
tions with none or minimal difference in fitness. The sets of
rules generated by experiments with large datasets also do not
show a significant difference. During correction, the XML
transformations from sequence diagrams remain consistent.

C. VARIATIONS IN QUALITY METRICS
During the validation of the security improvement, changes
in quality metrics values are observed. Though all qual-
ity metrics contribute towards the security improvement in
a specific sequence diagram, the impact of metrics may
vary depending on the security bad smell being removed.
For instance, refactoring missing modularization brings
significant changes to the metrics values because the class
undergoes decomposition. On the other hand, refactoring bro-
ken modularization marginally changes the metrics. Another
important point to discuss is the trend of the variation in
the metrics. It is observed that refactoring causes the metrics
values to decrease. This means that it is desirable to have
metrics with lower values to have a more secure sequence
diagram.

D. IMPACT OF APPLIED REFACTORING ON
QUALITY ATTRIBUTES
Although we analyzed the effect of refactoring on security
improvement, the sequence diagrams showed improvements
in other quality properties as well. The notable enhancement
in quality is observed in terms of modularity, complexity,
reusability and design size.

The quality improvements in sequence diagrams are also
observed in a similar manner. The issue of unutilized abstrac-
tion is resolved through the removal of the abstraction. This
not only decreases the design size but also ensures correct
operational behavior. The problem of broken modularization
is solved by the moving method and removing the respective
class. The movement method strengthens the modularization
and the removal of the class contributes to the reduction in the
design size. The overall number of messages is also reduced.
Themajor reduction in design size comes from the removal of
lifelines as a result of refactoring unutilized abstraction and
broken modularization. Refactoring missing modularization
reduced the number of messages between two classes. The
burden of interactions between two classes is shared by a
newly introduced class. This way the model is modularized,
which means less complexity and more reusability. The sep-
aration of concerns is also validated since classes now only
deal with what concerns them. The two-undetected missing
modularization bad smells in sequence diagrams are due to

a lack of coupling. It is normally perceived that if a com-
ponent has a missing modularization issue, it exhibits high
coupling. However, in these two cases, the coupling was low
regardless of the missing modularization problem. The low
coupling restricted the rule from detecting the bad smells.

It can be observed that as a byproduct of refactoring secu-
rity bad smells, other quality attributes are improved. This
quality upgrade is observed in all the investigated sequence
diagrams. Modularity, complexity, design size and reusabil-
ity are the quality attributes that show the quality revamp.
In addition, the introduction of these quality attributes eases
the analysis of sequence diagrams.

E. THREATS TO VALIDITY
This section reports the validity threats and how they were
mitigated to minify their impact on the experimental vali-
dation of the proposed techniques. The most common clas-
sification to address validity threats is construct validity,
conclusion validity, internal validity and external validity
[29], [30] and is adopted to report the validity threats of the
research.

The most important activity in the experimental process
is the selection of independent variables. The correlation
between dependent and independent variables needs to be
closely examined. In the experimental validation, the inde-
pendent variables i.e. quality metrics, are selected based on
previous studies and after in-depth analysis to ensure their
effectiveness in measuring the security aspects in sequence
diagrams. Some main security bad smell examples might be
overlooked during individual formulation. This threat is miti-
gated because of crossover and mutation operations. The sus-
picions about biasness of experimental outcomes are totally
removed by laying no pre-expectations on the experiments.

The conclusions drawn from the experiments are based
on sufficient subjective and objective findings. The supreme
objectivity of quality metrics has encouraged us to incorpo-
rate them in the empirical validation. The objectivity of qual-
ity metrics has allowed us to reach meaningful and definite
conclusions. The qualitymetrics aremanually calculatedwith
absolute care, but there is always a threat posed by manual
computation. This threat is minified by computing the quality
metrics multiple times. The replication of the datasets is also
performed manually. This threat is minimized by making the
replication random. Randomization introduces diversity in
the datasets, which is the ultimate objective.

The analyzed sequence diagrams are not exposed to any
treatment except correction to observe only the influence
of refactoring on them. No modifications in treatments are
made to observe findings under similar conditions. The post-
refactoring states of sequence diagrams are carefully saved
for the computation of quality metrics. The import and export
of sequence diagrams to and from XML are performed using
the same tool to avoid any structural change in XML rep-
resentations. The modifications in XML representations are
performed manually but these do not impact validity because
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TABLE 10. Taxonomy of Security Bad Smells [3], [9], [31], [32].

the corresponding exported sequence diagrams are validated
with the expected refactored sequence diagrams.

External validity usually poses threats to the generalization
of results. To mitigate this threat, a favorable number of
case studies are collected and are a good representation of
actual sequence diagrams. The generalization of results is
also improved because validation is also performedwith large
datasets carrying a significant number of security bad smell
instances.

VI. CONCLUSION AND FUTURE WORK
The quality of sequence diagrams significantly affects the
quality of other software artifacts. Bad smells in a sequence

diagram are likely to propagate to other phases of software
development. The removal of bad smells at later stages of
software development is a non-trivial task and may lead to
maintainability issues. It is imperative to detect and correct
bad smells from sequence diagrams to avoid maintainability
issues. Although there are many quality attributes reported in
the literature, the focus of this paper is on security quality of
sequence diagrams. There is a lack of work investigating the
contribution of refactoring in improving the security aspects
of sequence diagrams.

In this research, we overcome the problem of security in
sequence diagrams by the application of model refactoring.
The detection of security bad smells is achieved through
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the adaptation of a genetic algorithm, while correction is
accomplished by the model transformation approach. The
detection approach uses quality metrics to formulate rules.
The best set of rules generated by GA is used for the detection
of security bad smells in the studied sequence diagrams. The
correction approach applies a model transformation to XML
representation for refactoring identified security bad smells
in the investigated sequence diagrams.

The proposed approaches are validated by performing
experiments with multiple case studies of sequence diagrams.
The detection approach is able to detect security bad smells
with 75% recall in the investigated sequence diagrams. The
correction approach also shows a significant result by remov-
ing 95% of the security bad smells by applying refactoring
in the investigated sequence diagrams. We also performed
supplementary experiments to generate more generalized
detection rules because the detection approach relies heav-
ily on generated rules. The sets of rules generated by the
supplementary experiments are improved in terms of their
ability to detect more legitimate security bad smells. Through
statistical analysis of the quality metrics, we are also able
to conclude that there is a significant improvement in the
security quality of the investigated sequence diagrams as a
result of refactoring.

The compelling results delivered by the detection and cor-
rection approaches have encouraged us to extend this work in
the future. We plan to apply the approaches to other sequence
diagrams to gain further confidence in their applicability to
other models.We also plan to apply the same approaches with
a different set of bad smells andwe also plan to apply the same
approach to other UML diagrams.

APPENDIX
See Table 10.
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