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ABSTRACT Because of Korea’s rapid expansion in photovoltaic (PV) generation, forecasting long-term PV
generation is of prime importance for utilities to establish transmission and distribution planning. However,
most previous studies focused on long-term PV forecasting have been based on parametric methodologies,
and most machine learning-based approaches have focused on short-term forecasting. In addition, many
factors can affect local PV production, but proper feature selection is needed to prevent overfitting and
multicollinearity. In this study, we perform feature-selective long-term PV power generation predictions
based on an ensemblemodel that combinesmachine learningmethods and traditional time-series predictions.
We provide a framework for performing feature selection through correlation analysis and backward
elimination, along with an ensemble prediction methodology based on feature selection. Utilities gather
predictions from various sources and need to consider them to make accurate forecasts. Our ensemble
method can produce accurate predictions using various prediction sources. The model with applied feature
selection shows higher predictive power than other models that use arbitrary features, and the proposed
feature-selective ensemble model based on a convolutional neural network shows the best predictive power.

INDEX TERMS Ensemble learning, forecasting, long-term forecast, machine learning, power system
planning.

I. INTRODUCTION
Korea is pursuing conversion to an energy mix with a photo-
voltaic (PV) focus and plans to increase PV power generation
by about 5.7 times in the coming years, from 5,835 MW
in 2017 to 33,530MW in 2030 [1]. As a result, it is anticipated
the large fluctuations in PV power generation will cause
difficulties in utilities’ grid management [2]; for example,
PV curtailment will increase because of steep load ramping.
In this sense, utilities’ proactive response to long-term PV
installation will be of primary importance [3]. A fundamental
tool to handle PV fluctuation is accurate forecasting of PV
generation, and many researchers have worked on renewable
forecasting.

A large portion of PV power generation prediction studies
target PVs that have already been installed and their produc-
tion, and the input variables used for forecasting are gener-
ally limited to weather and equipment-related values [4]–[6].
However, from the standpoint of utility planning, existing
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forecasting methods have limitations in the prediction of
future PV installations, which would significantly affect
PV fluctuations [7]. Although weather and equipment vari-
ables are essential factors in power generation forecasting
for installed PVs, various other factors, such as economic
indices and policies, determine the prediction of PVs that
will be newly installed [8]. The authors of [9] investigated
the expansion of new PV facilities. The study attempted to
predict PV generation in Shanghai, China, through analysis
of Granger causality and logistic functions with policy and
economic factors. However, Granger causality analysis does
not consider nonlinear relationships, and logistic functions
should assume any parametric probability distribution.

Many statistical methods and models have been used for
the renewable energy forecasting. Among them, the autore-
gressive integratedmoving average (ARIMA)model depends
on time-series data analysis, assuming that prior knowledge
or experience influences future trends. In [10], a multi-
period prediction method based on 1 hour of solar radi-
ation data is used to determine the best period for the
model. A hybrid model combining ARIMA and the wavelet
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transform technique was used in [11] for day-ahead fore-
casting, and empirical mode decomposition and the ARIMA
model were used in [12]. Work in [13] described a 24-hour
PV forecasting model at the aggregated system level by
comparing the stability of ARIMA, radial basis function
neural network (RBFNN), and least-squares support vector
machine (LSSVM) with a persistence model.

The vector autoregression (VAR) model is a general form
of a univariate autoregressive model that predicts time-series
vectors. Unlike other autoregression (AR) models, VAR
focuses on finding correlation among variables using impact
analysis focused on how dynamically a change in a vari-
able affects endogenous variables. Furthermore, the rela-
tive impact on each endogenous variable that contributes to
the overall change can be determined by the variance. The
authors of [14] applied VAR in a multienergy system load
and found it presented higher accuracy than a single-variable
prediction method. In [15], multivariate wind data, includ-
ing wind direction, wind speed, and wind farm layout,
improved forecasting performance when compared with uni-
variate autoregressive prediction models. Researchers in [16]
combined the VAR model with the least absolute shrinkage
and selection operator (LASSO) framework, thereby present-
ing better prediction performance than the conventional AR
model.

In addition to statistical forecasting methods, many efforts
have been made to use the machine learning approach for
renewable forecasting, including deep learning algorithms.
Among the algorithms, long short-term memory (LSTM) is
a type of recurrent neural network (RNN) algorithm that
has a chain structure and thus can deal with sequential data.
Although RNN has a vanishing gradient problem that makes
it hard to use when solving long-term dependency problems,
LSTM, which has acknowledged performance in the process-
ing of series data, is designed to avoid this problem [17].
Therefore, LSTM has been used in diverse research areas,
including renewable forecasting. For example, the authors
of [18] used LSTM with the k-means method to differenti-
ate cloudy days from sunny days and enhance the forecast
accuracy on cloudy days; the accuracy of typical forecasting
models is low in cloudy days. The study in [19] proposed
an LSTM model combined with principal-component anal-
ysis (PCA) to reduce training time for PV forecasting and to
prevent overfitting.

This paper is organized as follows: Section II explains
the related works of the proposed work, followed by the
description of the proposedmethodology in Section III. Then,
Section IV describes variable selection and data acquisi-
tion, and experimental setup is depicted in Section V. Then,
Section VI presents simulation results, and the paper is finally
concluded in Section VII.

II. RELATED WORKS
Various forecasting methods based on statistics and machine
learning have been studied, but any single method has its lim-
itations. The traditional time-series models, such as ARIMA

and VAR, are difficult fit into data that include nonlinear
correlations. In contrast, the machine learning technique has
the advantage of reducing the bias of variable selection
by grasping nonlinear relationships among variables, and a
deep learning model, like LSTM, can automatically derive
characteristics from the data. However, difficulty remains
in obtaining enough data, because the data frequency of
macroeconomic indicators or policy-related variables is low;
therefore, the learning is not great enough to be effective.

To overcome these limitations, this study proposes an
ensemble model that combines traditional time-series mod-
els and machine learning-based models. The rationale for
using the ensemble model is that each prediction model has
an essential property. For example, although most persis-
tence models have high accuracy in short-period prediction,
the average model presents flat accuracy over the entire pre-
diction horizon. Hence, the proper combination of various
models can contain the best accuracy section of each model.

Several studies have focused on the ensemble
method [20]–[22]. Ensemble prediction based on the Gaus-
sian process and neural networks for short-term wind power
forecasting was proposed in [20], and the authors of [21]
proposed a combination model of deep belief network,
autoencoder, and LSTM, which improved renewable energy
forecasts compared with single usage of physical models or
machine learning models. In [22], the authors proposed a
framework for hybrid ensemble deep learning that used two
LSTM models to perform short-term prediction of PV power
generation.

However, these studies mainly focused on short-term fore-
casting, with only a few considerations related to deep learn-
ing methods for PV planning. When it comes to long-term
PV forecasting, utilities must deal with diverse factors. To be
specific, the ARIMA and VAR models are adequate for fore-
casting near-future PV generation, and the LSTM model has
a substantial advantage in cases with various training data.

In this paper, three representative meta-learner models
(ARIMA, VAR, and LSTM) are chosen to form the ensemble.
Our goal is to make accurate predictions based on predictions
from various sources, because utilities gather and need to
consider predictions from various sources to forecast accu-
rately. In addition, we use the simple average method, mul-
tilayer perceptron (MLP) method, and convolutional neural
network (CNN)method to form an ensemble algorithm.MLP
and CNN are neural network-based methodologies and are
suitable as ensemble algorithms in that they can identify
nonlinear relationships among the predictions of each meta-
learner.

Before creating the ensemble model, we performed fea-
ture selection to prevent overfitting and multicollinearity.
Correlation analysis was performed to solve the problem
of multicollinearity among candidate variables. Significant
variables were selected through backward elimination for the
first selected variables through correlation analysis. We pro-
vided a framework for performing feature selection through
correlation analysis and backward elimination, along with
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an ensemble prediction methodology based on feature selec-
tion. To demonstrate the proposed methodology’s adequacy,
we analyzed the effects of feature selection and compared
the predictive power between proposed ensemble models and
single models.

The main contributions of this study are as follows:

• Because of Korea’s rapid expansion of PV power gener-
ation, it is important to forecast mid- and long-term PV
generation to establish utilities’ transmission and distri-
bution planning. Unlike most previous studies, which
mainly focused on short-term predictions, this study
attempts to make mid- and long-term predictions that
may help utility transmission and distribution planning.

• Many factors can affect local PV production, but proper
feature selection is needed to prevent overfitting and
multicollinearity. We provide a framework for perform-
ing feature selection through correlation analysis and
backward elimination, along with an ensemble predic-
tion methodology based on feature selection. When the
variables derived through feature selection are used,
the proposed methodology shows higher predictive
power than other models using the variable that an arbi-
trary feature is applied.

• Utilities gather predictions from various sources and
need to consider them to make accurate forecasts. Our
ensemble method can produce more accurate forecast-
ing using various predictions. The proposed CNN-based
ensemble method shows better predictive power than
other models and is superior to the simple average of
each predicted value.

III. METHODOLOGY
A. PROPOSED METHODOLOGY AND FRAMEWORK
The forecasting methodology is based on a feature-selective
ensemble learning method. In general, the process of
long-term regional PV power generation forecasting is com-
posed of three steps: feature selection based on correla-
tion analysis and backward elimination, meta-learner training
based on k-fold validation, and construction of an ensem-
ble model that uses meta-learners’ predictions as input data
for PV forecasting. The proposed forecasting methodology’s
framework is shown in Fig. 1.
In the first step, we set categories of variables based on

previous research and derived a candidate variable for each
category. To prevent multicollinearity of candidate variables,
dependent variables and variables with a correlation coeffi-
cient of |0.9| or more were removed. Insignificant variables
were removed from the derived candidate variables. For the
remaining variables, a final variable was selected that had a
significant relationship with the dependent variable through
backward elimination. The backward elimination algorithms
are shown in Fig. 2.

In the second step, meta-learner models were trained using
the data after feature selection. Because our goal was to
make accurate forecasts based on predictions from various

FIGURE 1. Framework of the methodology.

FIGURE 2. Backward elimination algorithms for feature selection.

sources, we chose three representativemeta-learnermodels of
time-series prediction. We choose the representative models
from traditional time-series models such as ARIMA, VAR,
and recursive machine learning models like LSTM.

Each model chosen is a commonly used model for
time-series prediction. The ensemble model is a methodol-
ogy that performs forecasting based on the predictions of
various meta-learners. We focused on applying the ensem-
ble rather than individual prediction models. To train the
ensemble model, meta-learner training and validation had
to be done in the training set. To do this, we divided the
training set into k folds, trained the meta-learner based on
each fold, and computed the predictions from the other
folds.
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In the last step, the ensemble model was trained based on
the predictions generated by the meta-learner and the actual
values. To compare the ensemble models’ predictive power,
we introduced and compared different ensemble algorithms.
In this study, we used the simple average method, MLP
method, and CNN method to form an ensemble algorithm.
Finally, to find the effects of the predictive power of the
ensemble algorithm, the predictive power was compared by
classifying whether the ensemble was applied and the ensem-
ble algorithm types. For a fair comparison, individual predic-
tive models that did not apply the ensemble used the entire
training set for training.

B. META-LEARNER
1) ARIMA
In general, time-series information has regular patterns and
irregular patterns, and the regular pattern can be classified
as autocorrelation or moving average. To use these regular
patterns for time-series forecasting, Box and Jenkins pro-
posed the ARIMA model, which is based on the autoregres-
sive moving average model (ARMA) and the momentum of
past data. The ARIMA model’s formula can be expressed as
follows:

yt = ϕ0 + ϕ1yt−1 + ϕ2yt−2 + · · · + +ϕpyt−p
+ εt − θ1εt−1 − θ2εt−2 − · · · − θqεt−q, (1)

where yt is the actual value at period t , εt is the random errors,
which are distributed with zero mean and a constant variance,
and ϕi for i = 0, 1, · · · , p and θj for j = 1, 2, · · · , q aremodel
parameters.

2) LSTM
LSTM is an artificial RNN that has feedforward neural
networks and feedback connections, processing single data
points and entire sequences of data. The LSTM model pre-
vents gradient disappearance and explosion by using gates
and memory cells, which are suitable for learning long-term
dependencies. An LSTM unit has three gates (i.e., input,
output, and forget) and a memory cell that can hold data for a
certain period. In addition, the three gates can control the cell
input and output. The LSTM structure is shown in Fig. 3 and
is expressed as follows:

ft = σg(Wf xt + Uf ht−1 + bf ), (2)

it = σg(Wixt + Uiht−1 + bi), (3)

ot = σg(Woxt + Uoht−1 + bo), (4)

ct = ft ◦ ct−1 + it ◦ σc(Wcxt + Ucht−1 + bc), (5)

ht = ot ◦ σh(ct ), (6)

where xt is the input vector of the LSTM unit, ht is the output
vector of the LSTM unit, ft is the activation vector of the
forget gate, it is the activation vector of the input gate, ot
is the activation vector of the output gate, ct is the cell state
vector, σ is the sigmoid function, and the subscript t denotes
the time step.W ,U , and b are weight matrices and bias vector
parameters that need to be updated during training.

FIGURE 3. LSTM architecture.

3) VAR
The traditional regression model is based on variable cor-
relation to calculate the dependent variable Y from several
explanatory variables Xt , but the model cannot reflect time
variation. Although the ARIMA method can deal with the
time-series information, it ignores the interaction among vari-
ables. To overcome the drawbacks of the regression model
and ARIMA, the VAR model, which combines both regres-
sion and time-series analysis, has been applied for forecast-
ing. The VAR model Xt has N multivariate stationary time
series: Xt = (X1,t ,X2,t , · · · ,XN ,t ). The VAR model can be
expressed as follows:

Xt = C + θ1Xt−1 + θ2Xt−2 + · · · + θpXt−p + εt , (7)

where C is the vector of constants, θi is the matrix of
time-invariant coefficients, and εt is the white noise vector.

C. ENSEMBLE MODEL
No single model can perform well in all situations. The
ensemble model (or stacking ensemble model) used in this
study produced improved performance by combining differ-
ent models. Stacking models can be constructed by combin-
ing various algorithms, and such combination makes up for
the weaknesses of each algorithm. In this study, the stack-
ing ensemble model was constructed using simple average,
multilayer perceptron, and CNN. To compare the ensemble
models’ predictive power, three ensemble models were con-
structed.

1) SIMPLE MEAN
An ensemble model combines meta-learner model predic-
tions with certain rules to produce new predictions. The
simplest ensemble model is simply averaging each predic-
tion. Despite the simplicity of this model, it is possible to
attain good performance if enough meta-learner models are
available.

2) MLP
MLP is a neural network model composed of an input layer,
a hidden layer, and an output layer as shown in Fig. 4.
This algorithm is more advanced than a single-layer neural
network, which is composed of one input layer and a hidden
layer. The MLP methodology constructs and analyzes many
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FIGURE 4. MLP conceptual diagram.

hidden layers in an artificial neural network. This analyt-
ical methodology is widely used for pattern classification,
recognition, and prediction and is extended to more advanced
neural network analysis depending on the hidden layer’s
shape and function. MLP can be written as shown in (8).
vi is the input layer or previous hidden layer signal, and bj
and bk represent the bias of the hidden layer and the output
layer, respectively. wij and wjk denote coefficient values of
the hidden layer and the output layer, respectively:

Yk =
m∑
j=1

f

(
n∑
i=1

viwij + bj

)
wjk + bk , (8)

where f represents an activation function, and sigmoid and
rectified linear unit functions are commonly used. The resul-
tant value Y of the output layer can be obtained through the
path of (8).

3) CNN
CNN is a regularized version of multilayer perceptrons. Mul-
tilayer perceptrons usually mean fully connected networks;
that is, each neuron in one layer is connected to all neurons
in the next layer. Typical methods of regularization include
adding some form of magnitude measurement of weights to
the loss function.

CNNs take a different approach to regularization: they take
advantage of the data’s hierarchical pattern and assemble
complex patterns using smaller and simpler patterns. There-
fore, on the scale of connectedness and complexity, CNNs
are on the lower extreme. Composite product neural networks
like CNNs have shown significant performance in the field
of imaging. As shown in Fig. 5, a CNN is composed of one
input layer and one output layer, one or more convolutional
layers, and a pooling layer. Data are input through the input
layer and filtered through a convolutional layer to extract the
appropriate features. At this time, the number of feature maps
is determined according to the number of filters.

IV. VARIABLES SELECTION AND DATA ACQUISITION
A. DATA DESCRIPTION
As the amount of PV generation continues to increase, the dif-
ficulty utilities have in managing loads increases, because PV

FIGURE 5. CNN conceptual diagram.

power generation is concentrated during the daytime and the
volatility of PV generation is high. In particular, PV power
generation has a large variation in scale from region to region,
and regional distribution networks and transformer capaci-
ties are different, so regional prediction of PV installation
is important. Korea is among the countries most rapidly
pursuing a PV-focused energy mix, so forecasting for PV
installation is highly important. PV generation in Korea is the
highest in Jeollanam-do and Gwangju, so we tried to fore-
cast local PV installation in Jeollanam-do and Gwangju. The
main factors that affect the amount of PV already installed
are weather and equipment-related variables, but new PV
installation relies on the profitability of the PV investment,
the mandatory PV generation ratio set by the government,
the climate and demographic characteristics of the region,
etc. Therefore, this study selected candidate variables for
economic, policy, and environmental factors that affect exist-
ing and new PV installations and created forecasts based on
them. Table 1 and Table 2 displays symbols for the variables
and their descriptive statistical results, respectively. We used
monthly data for forecasting.

1) ECONOMIC FACTORS
Economic factors that can affect PV installations include the
profits and costs of PV power generation and the relative
profitability of other investments, such as stock prices and
Treasury yield. System marginal cost (SMP) was selected
as a candidate variable to judge the profit of PV genera-
tion, and the PV installation price announced by Bloomberg
was selected as a variable representing the cost. In addition,
Korea’s consumer prices and GDP should be considered to
determine the relative profitability and purchasing power by
year. We also considered the Korea Composite Stock Price
Index (KOSPI) and Treasury yield (3 year) for comparison
with alternative investments.

2) POLICY FACTORS
PV installations have traditionally been heavily influenced
by government policy decisions. The government sets targets
for PV power generation from an energy-mix perspective.
To determine these policy factors, we selected the renew-
able portfolio standard (RPS) target as a candidate variable.
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TABLE 1. Symbols for regional PV capacity forecasting.

TABLE 2. Descriptive statistical results.

In addition, power consumption, maximum power, supply
reserves, and regional (Jeollanam-do and Gwangju) trans-
former capacity were considered.

3) ENVIRONMENTAL FACTORS
In addition to economic and policy factors, the main envi-
ronmental factors affecting PV installation are weather and
demographics in the region. In this study, we selected local
mean temperature and local average sunshine as weather
candidates and used local population density representing
population per unit area as the demographic factor.

B. FEATURE SELECTION
1) MULTICOLLINEARITY VARIABLE ELIMINATION
The result of correlation analysis with all features (variables)
is shown in Fig. 6. The variables with high correlation coef-
ficients (|ρ| > 0.9) that showed multicollinearity were PV

FIGURE 6. Correlation analysis results for all candidate variables.

TABLE 3. Model fit results (1st round).

installation price, Korea’s consumer prices, Korean GDP,
Treasury yield (3 year), RPS, power consumption, and local
mean temperature. Therefore, we excluded those variables
before proceeding to the next step.

2) BACKWARD ELIMINATION
Backward elimination was performed based on the assump-
tion that the multicollinearity issue was resolved. Table 3
shows the result of constructing the regression model with
each feature as an independent variable and the target variable
as a dependent variable. The variable with the highest p-value
was removed, and the regression model was rebuilt using
the remaining variables. V13, V12, and V5 was removed from
Table 3, Table 4, and Table 5, respectively. In Table 6, we can
see that the p-values of all features were lower than the
threshold.

V. EXPERIMENTAL SETUP
We used monthly data up to time t to predict t + 1 years.
This means that the forecast horizon was 1 year. Because the
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TABLE 4. Model fit results (2nd round).

TABLE 5. Model fit results (3rd round).

TABLE 6. Model fit results (4th round).

ensemble model was trained based on meta-learner predicted
values, the predicted value of each meta-learner should be
calculated in the training set. Therefore, it was necessary to
divide the training set to train the meta-learner and to derive
the predicted value. In this study, training set was divided in
two, as shown in Fig. 7.

The training set of Fold 1 consisted of feature data from
January 2013 to December 2014 and target data from Jan-
uary 2014 to December 2015. The validation set of Fold 1
consisted of feature data from January 2015 to Decem-
ber 2015 and target data from January 2015 to Decem-
ber 2016. Similarly, the training set of Fold 2 consisted of
feature data from January 2014 to December 2015 and target
data from January 2015 to December 2016. The validation
set of Fold 2 consisted of feature data from January 2016 to
December 2016 and target data from January 2017 to Decem-
ber 2017. Predicted values of the meta-learners (LSTM,
ARIMA, and VAR) in folds and actual PV capacity were used
to train the ensemble model (simple mean, MLP, and CNN).
Each model predicted PV generation for up to 1 year.

A. META-LEARNER MODEL DESCRIPTION
1) LSTM
To make the LSTM model predict PV power generation after
1 year, the data set was set up as follows: The target was the

FIGURE 7. Fold composition for ensemble learning.

TABLE 7. Hyperparameter setting value of the LSTM model.

TABLE 8. ARIMA model parameter setting results.

regional PV generation at t + 1 year, and the input data were
the other variables at t years. Training sets of Fold 1 and
Fold 2 were used as training data, and the predictive power
was tested through each validation set. Hyperparameters for
LSTM model implication are shown in Table 7.

2) ARIMA
We used the seasonal-ARIMA model to consider the data’s
seasonality. Model identification and order decision were
made based on Akaike’s information criterion (AIC) and the
Bayesian information criterion (BIC). The selected model
and order are shown in Table 8. For the analysis, training sets
of Fold 1 and Fold 2 were used as input data.

3) VAR
To ensure the time series remains stationary, the first dif-
ference was made. The order was chosen based on the data
provided. The calculated orders, AIC, and BIC are shown
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TABLE 9. VAR model parameter setting results.

TABLE 10. Hyperparameter setting value of the MLP model.

TABLE 11. Hyperparameter setting value of the CNN model.

in Table 9. As with other models, training sets of Fold 1 and
Fold 2 were used as input data.

B. ENSEMBLE MODEL DESCRIPTION
1) SIMPLE MEAN
The simple mean method simply averaged the predictions of
each meta-learner (LSTM, ARIMA, and VAR). This method
was used as a criterion to compare the predictive power of
other ensemble models.

2) MLP
TheMLPmodel’s input data were the predicted value of each
meta-learner model and the actual target value. The trained
MLP model predicted PV power generation using the test
set. Hyperparameters for MLP model implication are shown
in Table 10.

3) CNN
The CNN model’s input data were the predicted value of
each meta-learner model and the actual target value, like the
MLPmodel shown earlier. TrainedCNNmodels used test sets
to predict PV generation. Hyperparameters for CNN model
implication are shown in Table 11.

VI. SIMULATION RESULTS
A. EACH META-LEARNER
To calculate the prediction value for each meta-learner model
to be used as the ensemble model’s input data, we trained
and verified the meta-learner model for each fold. Fig. 8
shows the result of predicting PV power generation in
2016 using training data of Fold 1 up to December 2015

FIGURE 8. Meta-learner’s forecasting result of PV generation (Fold 1).

FIGURE 9. Meta-learner’s forecasting result of PV generation (Fold 2).

from January 2014, and Fig. 9 shows the result of predicting
PV power generation in 2017 using training data of Fold 2 up
to December 2016 from January 2015. In the case of Fold 1,
ARIMA tended to predict higher PV generation than actual
PV generation over time, and LSTM showed a repetitive
rise and fall. In the case of Fold 2, ARIMA showed higher
predictive power than other models, and LSTM showed sig-
nificantly lower predictive power than other models. VAR
showed more stable predictive power than other models.

Figs. 10 to 12 show the prediction error results of the
calculated meta-leaner models. In these cases, mean absolute
error (MAE), mean squared error (MSE), and root mean
squared error (RMSE) are calculated as follows:

MAE =
1
n

n∑
i=1

|et |, (9)
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FIGURE 10. Prediction errors of meta-learner models (MAE).

FIGURE 11. Prediction errors of meta-learner models (MSE).

FIGURE 12. Prediction errors of meta-learner models (RMSE).

MSE =
1
n

n∑
i=1

e2t , (10)

RMSE =

√√√√1
n

n∑
i=1

e2t . (11)

In Fold 1, the VAR model showed the highest accuracy,
whereas in Fold 2, the ARIMA model showed the highest
accuracy. The ensemblemodel was trained based on themeta-
learner’s prediction value using the training set in each fold
and the actual target value.

B. ENSEMBLE MODEL
1) FEATURE SELECTION EFFECT ANALYSIS
In this section, we compare the models’ predictive power
depending on whether feature selection was applied. We used
only the simple averagemethods, becauseMLP and CNN can
produce good estimates even if a meta-learner’s predictive
power is poor. The control group for comparing the models’
predictive power based on whether feature selection was
applied has used the same four variables for fair comparison
with the proposed ensemble model. Therefore, the control
group used three variables excluded from feature selection
(V5, V12, and V13) and any one variable. Fig. 13 shows the
ensemble model’s prediction results based on whether feature
selection was applied, and Table 12 shows the prediction
error results. When the variables (V1, V9, V10, and V14)
derived through feature selection were used, the proposed
ensemble model showed higher predictive power than other

FIGURE 13. Comparison of predictive power with or without feature
selection.

TABLE 12. Comparison of forecasting results (simple mean based).

models using the variable that arbitrary features were applied.
The simple mean-based model that applied feature selection
showed particularly high accuracy from the start of prediction
to 4 months. Comparison model 2 and comparison model
4 showed poor predictive power than other models in all
periods. However, we can see that the simple mean method
of the meta-learner’s predictions did not show strong enough
performance overall. In the next section, we attempt ensemble
predictions using MLP and CNN, as well as the simple mean
method.

2) ENSEMBLE MODEL PREDICTION RESULTS
After feature selection, we compared the ensemble models’
predictive power using a test set. The meta-learners used here
were trained through Fold 1 and Fold 2. Figs. 14 to 16 show
the prediction error results of the calculated ensemblemodels.
CNN showed the best predictive power in MAE, MSE, and
RMSE. MLP and CNN outperformed the simple average of
each meta-learner.
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FIGURE 14. Prediction errors of ensemble models (MAE).

FIGURE 15. Prediction errors of ensemble models (MSE).

FIGURE 16. Prediction errors of ensemble models (RMSE).

FIGURE 17. Forecasting results of PV generation in 2018.

To compare the ensemble models’ predictive power,
we compared them with single models using the same train-
ing data. Fig. 17 shows the results of forecasting PV power
generation in 2018 based on training data up to 2017. The
CNN-based ensemble model showed the best predictive
power. However, the MLP-based ensemble model showed
higher predictive power than the CNN-based ensemble model
during the initial forecasting period.

TABLE 13. Comparison of forecasting results (simple mean based).

The ensemble models all showed higher predictive power
than the LSTM-based single model. The simple mean-based
ensemble model, which simply averaged the meta-learner
predictors, showed low predictive power because of LSTM’s
low predictive power. Finally, all models tended to pre-
dict slower PV power generation than actual PV generation
trends.

Table 13 shows the prediction error for each model. The
CNN-based ensemble model showed the highest predic-
tive power, followed by ARIMA- and MLP-based ensemble
models. In the case of MAE, the prediction error of the
CNN-based ensemble model was 30% of the simple mean
and 59% of the MLP results. Similarly, In the case of MSE,
the prediction error of the CNN-based ensemble model was
13% of the simple mean and 34% of the MLP results. In the
case of RMSE, the prediction error of the CNN-based ensem-
ble model was 36% of the simple mean and 59% of the
MLP results. In the single model, ARIMA showed relatively
high predictive power, but it was 1.57 times higher than the
predicted error of the CNN-based ensemble model (in the
case of MAE).

VII. CONCLUSION
To estimate future regional PV power generation, we consider
not only weather and equipment-related variables but also
economic and PV government policy variables, because new
PV installations can be strongly influenced by economic and
policy factors. In addition, correlation analysis is performed
to solve the problem of multicollinearity among candidate
variables. As a result, 7 of the 14 variables are removed.
Then, significant variables are selected through backward
elimination for the first selected variables through correlation
analysis. In this study, four variables are finally selected.
When the variables derived through feature selection are
used, the proposed ensemble models show higher predictive
power than other models using the variable that arbitrary
features are applied. To carry out long-term predictions of
regional PV generation, we propose ensemble models based
on the predictions of meta-learners (LSTM, ARIMA, and
VAR). We use simple mean, MLP, and CNN methods as
ensemble models. To compare the ensemble models’ predic-
tive power, we compare them with single models using the
same training data. As a result of forecasting, the CNN-based
ensemble model shows the best predictive power. However,
the MLP-based ensemble model shows higher predictive
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power than the CNN-based ensemble model during the initial
forecasting period. MLP and CNN outperform the simple
average of each meta-learner. Finally, ensemble models all
show higher predictive power than the LSTM-based single
model.

On the basis of feature-selective ensemble learning-based
long-term regional PV power generation forecasting, we can
drive further research using more diverse types of data, such
as map images and distribution networks. PV forecasting
using other types of data will increase actual utilization and
increase predictive power.
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