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ABSTRACT At present, there are two main problems with fruit-and vegetable-picking robots. One is that
complex scenes (with backlighting, direct sunlight, overlapping fruit and branches, blocking leaves, etc.)
obviously interfere with the detection of fruits and vegetables; the other is that an embedded platform needs a
lighter detection method due to performance constraints. To address these problems, a fast tomato detection
method based on improved YOLOv3-tiny is proposed. First, we improve the precision of the model by
improving the backbone network; second, we use image enhancement to improve the detection ability of
the algorithm in complex scenes. Finally, we design several groups of comparative experiments to prove
the rationality and feasibility of this method. The experimental results show that the f1-score of the tomato
recognition model proposed in this paper is 91.92%, which is 12% higher than that of YOLOv3-tiny; the
detection speed on a CPU can reach 25 frames/s, and the inferential speed is 40.35 ms, equivalent to that
of YOLOv3-tiny. Through comparative experiments, we can see that the comprehensive performance of our
method is better than that of other state-of-the-art methods.

INDEX TERMS Real-time object detection, deep learning, picking robot, tomato, embedded device.

I. INTRODUCTION
The detection of fruit is the primary task and a major design
difficulty for fruit- and vegetable-picking robots. The preci-
sion of detection is related to the efficiency of the picking
robot. The occlusion or overlapping of fruits has always been
a difficult problem in fruit detection [1]. Fruit recognition
has been widely studied at home and abroad [2]–[9]. The
detection methods for fruit targets include chromatic aber-
ration [10], [11], k-means clustering [12], fuzzy C-means
clustering [13], K-nearest neighbors [14], artificial neural
networks [15], and support vector machines [16], [17]. The
above methods can detect fruit in an image, but detection is
based on the color, shape or texture of the fruit. When the
color of the fruit surface is uneven, shadowed or blocked due
to light or natural environmental factors, the detection preci-
sion will be significantly reduced. Zhao Jinying et al. used
the Otsu dynamic threshold segmentation method [18] based
on R-G color features to segment an image and determine
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the locations of tomatoes. However, this method is very
sensitive to light and loses its object in a backlit environ-
ment. Wachs et al. [12] used a combination of color images
and thermal images to identify apples, but the method of
thermal imaging systems can only be used in the afternoon
under direct sunlight, which cannot meet the requirements
of the all-weather work of picking robots. Compared with
conventional methods, deep convolutional neural networks
have shown great advantages in the field of object detection
in recent years. A deep neural network makes it possible
to recognize tomatoes in complex situations because of its
automatic extraction of high-dimensional features. Convolu-
tional neural networks are mainly divided into two methods.
The first is two-stage object detection. The core idea of
the two-stage object detection method is to generate region
proposals and classify the region. Representative methods
are R-CNN [19], Fast R-CNN [20] and Faster R-CNN [21].
Sa et al. [22] used Faster R-CNN to detect sweet peppers and
oranges. The precision of the model is very high, and its gen-
eralization ability is strong, but because the regional proposal
step consumes many computing resources, the detection time
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FIGURE 1. Depth-separable convolution.

is great, and the model cannot meet real-time processing
requirements. The other method is one-stage object detection.
Its core idea is to use a single CNN to process a whole
image directly to detect an object and predict the object
category. It is usually faster than the two-stage method, and
the representative methods include SSD [23] and YOLO [24].
Real-time scene-parsing through object detection running on
an embedded device is very challenging due to the limited
memory and computing power of embedded devices [25].
Due to the limitation of computing resources, it is obvious
that the current one-stage methods are not suitable for embed-
ded devices except for YOLOv3-tiny.

For the above problems, based on YOLOv3-tiny, we pro-
pose a fast tomato detection method for a picking robot in
complex scenes. To make the method suitable for embedded
devices, an improved depth-separable convolution and resid-
ual structure replace the standard convolutional network in
the original method. This increases the depth of the network
and greatly reduces the amount of calculation to achieve a
good balance between the precision and real-time perfor-
mance of tomato detection. Then, to overcome the prob-
lems of overlapping fruits and branch occlusion, the features
of the tomato are extracted by a neural network, and the
region of the tomato is identified and detected. In addition,
the data amplification and multiscale training strategies are
integrated to improve precision while maintaining detection
speed. Finally, we use the image enhancement algorithm in
the training and detection phase of the model to solve the
problem of tomato detection under the conditions of back-
lighting, darkness and other light conditions. By increasing
the contrast of tomato images, the detection ability of the
robot in a complex illumination scene is improved. In this
paper, a number of comparative experiments are designed to
validate the rationale and feasibility of this method.

II. RELATED WORK
A. DEEP SEPARABLE CONVOLUTION
Deep separable convolution [25] is a form of factorized
convolution, which can be divided into two types of con-
volutions: depthwise convolution (DW) and pointwise con-
volution (PW). Its details are shown in Figure 1. DW is
different from standard convolution. The convolution kernel
of standard convolution is used in all input channels, while
DW convolution uses different convolution kernels for each
input channel. The difference between PW and standard con-
volution is that PW only uses a 1× 1 convolution kernel.

The depth-separable convolution process is as follows:
first, DW convolution is used to convolve different input
channels, and then PW convolution is used to combine the
result with the previous output. The number of FLOPs is an
index used to measure the computation amount of a convo-
lutional neural network. The higher the number of FLOPs,
the larger the amount of computation and the more system
resources are used by CNN. We use the formula below to
compare the FLOPs of a standard convolution and a depth
separable convolution.

The calculation process of standard convolution is as
follows:

Kh × Kw × Cin × Cout ×W × H (1)

In formula (1), Kh×Kw is the convolution kernel size, Cin
is the number of input channels, and Cout is the number of
output channels. W and H are the width and height of the
output characteristic map respectively.

The calculation process of the first depth-separable convo-
lution is as follows:

Kh × Kw × Cin ×W × H + Cin × Cout ×W × H (2)

The ratio of the floating-point operations of depth- separa-
ble convolution and standard convolution is:
Kh × Kw × Cin ×W × H + Cin × Cout ×W × H

Kh × Kw × Cin × Cout ×W × H

=
1

Cout
+

1

K 2
h,w

(3)

From formula (3), we see that when the convolution ker-
nel size is 3 × 3, the number of FLOPs of depth-separable
convolution is approximately 1/9 that of standard convolu-
tion. A new idea of depth-separable convolution is proposed:
different convolution kernels are used to convolve different
input channels, which decomposes the standard convolution
operation into two processes. The combined effect of the two
convolutions is similar to that of a standard convolution, and
the number of calculations and model parameters are greatly
reduced. Therefore, we use the improved depth-separable
convolution instead of standard convolution, which is helpful
in building a lightweight and efficient backbone network.

B. YOLOv3-TINY
YOLO is an end-to-end object detection algorithm based
on deep learning, which has the advantages of fast run-
ning speed and real-time effect in a GPU environment.
YOLOv3 [26] is the third iteration of YOLO, and it has
improved detection precision compared with that of YOLO
and YOLOv2 [27]. YOLOv3 uses darknet-53 for feature
extraction, and darknet-53 is more powerful than the darknet-
19 of YOLOv2. YOLOv3 uses multiscale prediction, that is,
detection on multiscale feature map, to improve the precision
of object detection. However, the number of parameters of
YOLOv3-416 is 65.86 bn, the model size is approximately
237 m, and the detection speed is only 1∼2 frames/s on
an embedded platform. Therefore, YOLOv3 is not suitable
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FIGURE 2. YOLOv3-tiny network.

for embedded devices. YOLOv3-tiny is the lightweight ver-
sion of the YOLOv3 model, and the network structure of
YOLOv3-tiny is shown in Figure 2.

The backbone network of YOLOv3-tiny is a 7-layer stan-
dard convolution structure rather than a Darknet series.
YOLOv3-tiny is the same as the end-to-end object detection
method. First, the input layer is a 416 × 416 image, and
then after 10 convolutions and 6 subsampling operations,
the output feature maps have a size of 13 × 13. At the
same time, the feature map after the 5th downsampling is
unsampled and convolved to obtain a size of 26 × 26 × 128,
and it is subjected to standard convolution twice to obtain a
size of 26× 26× 255. The output feature maps of both scales
contain the prediction information of objects. The number of
FLOPs of YOLOv3-tiny is only 5.56 bn, and the model size
is only 33.7MB. It can run on embedded or mobile devices.
However, its backbone network has only 7 layers, so it cannot
extract higher level semantic features, and its precision is
low. In practical applications, YOLOv3-tiny can only detect
tomatoes close to the camera and that are relatively complete,
and the detection precision is poor in complex scenes such as
those involving dim light, backlighting, occlusion and so on.

III. PROPOSED SOLUTION
A. NETWORK
At present, the high computing resources of advanced object
detection algorithms exceed the capabilities of embedded and
mobile devices. For this reason, we design a new neural
network architecture based on low computation and high
precision. We think that deepening the network layer can
make YOLOv3-tiny extract more abundant convolution fea-
tures. Considering that the deep network model increases the
detection time, which is not conducive to real-time perfor-
mance, the improved depth-separable convolution and resid-
ual modules are used to form the backbone network of the
detection algorithm. The tomato detection network is shown
in Figure 3, where x and y are the prediction coordinates of

the x-axis and y-axis, respectively, w is the prediction width,
h is the prediction height, and Pr is the prediction confidence.
In Figure 3, the tomato detection network framework

includes two parts: the backbone network and the predic-
tion network. With the goal of a lightweight network and
enhancement of the feature extraction ability, we redesigned
the basic unit of the backbone network and called it the PDP
structure. The backbone network consists of one standard
convolution and nine PDP structures. With this structure,
multilayer feature reuse and fusion can be realized, and the
amount of computation introduced by the new structure can
be reduced. To detect tomatoes at different distances, the
prediction network consists of two branches, corresponding
to the output of two scales. The following describes the
differences between the PDP structure, standard convolution
and depth-separable convolution.

Standard convolution with a BN layer and the a ReLU is
shown in Figure 4 (a). To speed up the model convergence,
the BN (batch normalization) layer is usually placed
between the standard convolution component and the ReLU.
The depth separable convolution component is shown in
Figure 4 (b), and the improvement of Figure 4 (a) mainly
uses DWconvolution and PW convolution instead of standard
convolution. The effect of this structure is similar to that of
standard convolution, which greatly reduces the computation.

As shown in Figure 4 (c), the PDP structure is a combi-
nation of PW convolution and the structure in Figure 4 (b).
To enhance the propagation of gradients, a PW convolution
is added before the structure in Figure 4 (b). After adding
PW convolution, DW convolution can extract the features of
the high-dimensional space. At the same time, a BN layer is
added after each step of convolution to speed up the conver-
gence of the model. The output of the first step and the second
step uses the nonlinear activation function ReLU6, which
makes the model more robust in low-precision calculations.
In the third step, the output of the operation does not use
the activation function, and the direct linear output reduces
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FIGURE 3. Proposed network.

FIGURE 4. (a)Standard convolutional layer with batchnorm and a ReLU;
(b) Depthwise-separable convolutions with depthwise and pointwise
layers followed by batchnorm and a ReLU6; (c) PDP structure.

information loss. We use the PDP structure to replace the
standard convolution of the original network, which greatly
reduces the computation. By increasing the number of chan-
nels and network layers, we can improve the precision of the
model and make it easy to migrate it to embedded devices,
mobile devices and other smaller systems.

1) BACKBONE
In Figure 3, n in Conv_PDP_n indicates the number of times
the PDP structure is currently used. The backbone network
first uses 3 × 3 convolution kernels for the standard convo-
lution of the input image to obtain conv1 to extract features

and upgrade dimensions. To enrich the network feature infor-
mation, we use the idea of residuals to add Conv_PDP_2 and
Conv_PDP_3 (we add the feature map and keep the number
of channels unchanged) and then use the PDP structure to
generate Conv_PDP_4. Conv_PDP_6 and Conv_ PDP_8 are
obtained similarly. Therefore, the backbone network executes
the PDP structure 9 times until Conv_PDP_9 is generated.
We use a convolution of stride=2 to replace the convolution
and max-pooling, so that the parameter amount is unchanged,
the calculation amount becomes one quarter that of the orig-
inal network, and the amount of calculation involved in the
max-pooling is omitted.

2) PREDICTION NETWORK
The prediction network consists of two branches, correspond-
ing to the output of two scales. The first branch outputs a
13 × 13 × 18 feature map. When the feature map reaches
Conv_PDP_8 in the backbone network, the second branch
is generated in parallel. The second branch is fused with
the 26 × 26 × 64 output of the first branch, and the final
output is 26 × 26 × 18. In this paper, the three scale feature
maps are not generated by imitating YOLOv3, because the
52× 52 prediction grid in the original network is responsible
for detecting objects at a far distance. In actual detection of
dense tomatoes, only tomatoes with a resolution greater than
16× 16 need to be detected. Small tomatoes are too far away
to be the object of the picking robot. At the same time, using a
52×52 prediction grid makes the prediction tensor too large,
increasing the detection time. To shorten the network training
time, anchor boxes are used to help predict bounding boxes.
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FIGURE 5. Prediction for a 13 × 13 feature map.

The prediction information contained in the 13 × 13 feature
diagram is shown in Figure 5.

We used k-means clustering to calculate 6 anchors of the
current dataset: (50×66), (74×99), (91×125), (113×154),
(140 ×190), and (220 × 284). K-means uses the Euclidean
distance. For the output of the backbone network, the first
three kinds of anchors are used for the 13 × 13 feature map,
and the last three kinds of anchors are used for the 26 × 26
feature map to predict three boxes per grid. For 13× 13 and
26 × 26 outputs, the parameters of each box include x, y, w,
and h, the confidence Pi of the tomato and the probability Pc.

3) LOSS FUNCTION
The loss function of this algorithm consists of four parts.
The first part concerns the prediction of central coordinates,
as shown in equation (4); the second part concerns about
the prediction of the boundary box regression, as shown in
equation (5); the third part concerns the prediction of object
categories, as shown in equation (6); the fourth part concerns
the prediction of object confidence, as shown in equation (7).

Loss1 = λcoord
S2∑
i=0

B∑
j=0

lobjij

[
(xi − x̂i)2 + (yi − ŷi)2

]
(4)

In formula (4), xi and yi are the x and y coordinates of the
predicted object, and x̂i and ŷi are the x and y coordinates of
the actual object.

Loss2 = λcoord
S2∑
i=0

B∑
j=0

`
obj
ij

×

[(
√
wi −

√
ŵi
)2
+

(
√
yi −

√
ŷi
)2]

(5)

In formula (5), wi and hi are the width and height of the
predicted object, respectively, and ŵi and ĥi are the width and
height of the actual object, respectively.

Loss3 =
S2∑
i=0

`
obj
ij

B∑
j=0

[(
pi (C)− p̂i (C)

)2] (6)

In formula (6), pi (C) is the confidence of the predicted
object and p̂i (C) is the confidence of the actual object.

Loss4 =
S2∑
i=0

B∑
j=0

lobjij

[
(Ci − ĈI )2

]

+λnoobj

S2∑
i=0

B∑
j=0

lnoobjij

[
(Ci − ĈI )2

]
(7)

In formula (7), Ci is the category of the predicted object,
and ĈI is the category of the actual object. The parameters
λ are used to weight parts of the loss functions differently.
This is necessary to increase the model stability. λcoord= 5
and λnoobj= 0.5 are the weights to balance the proportion of
each Lossi. S is a grid cell, B is a bounding box, obj contains
an object, and noobj does not contains an object. The total
loss is:

Total Loss Function =
4∑
i=1

Lossi (8)

B. TOMATO TRAINING AND DETECTION PROCESS
The main process of fast detection of tomatoes includes
two parts: model training and model inference. As shown
in Figure 6, model training requires the tomato dataset and
the boundary box labels to be fed into the convolutional
neural network; iterative training is then conducted, and a
fully trained model is obtained. In model inference, the image
acquired by the robot camera is input into the trained model,
and the position of a tomato in the image is acquired.
The specific process is as follows:

1) TRAINING DETAIL
Step 1. Data collection. A total of N tomato images in the
actual data set and network were collected, which is denoted
as fN (x, y). An individual image is denoted as fi (x, y).
Step 2. Dataset preprocessing. First, fi (x, y) is cut and

scaled to 416×416. The bounding box of a tomato in fi (x, y)
is then manually labeled. The information of the bounding
box is composed of the upper left coordinate (x1, y1) and the
lower right coordinate (x2, y2). The bounding box informa-
tion is saved in the format of the Pascal VOC dataset and
recorded as LN .
Step 3. Image space conversion. By transforming fi (x, y)

from the RGB space to the HSI space, three channel compo-
nents H (hue), S(saturation) and I (brightness) are obtained.
Step 4. Dataset image enhancement. We use adaptive

histogram equalization for the brightness channel I , and the
result is denoted as Clahe (I ). Then, H , S,and Clahe (I ) are
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FIGURE 6. The training and detecting process of the tomato detection method.

fused into a new HSI image. Finally, fi (x, y) is transformed
from the HSI space to the RGB space, and the enhanced
fi (x, y) is recorded as Fi (x, y). The dataset obtained after
image enhancement is denoted as FN (x, y).

Step 5. Training network model. First, the Imagenet
model is used to initialize the backbone network parame-
ters, and then Fi (x, y) and LN are input into the network
framework. After the processing of the backbone network
and prediction network, the feature maps of scales 13 × 13
and 26 × 26 are obtained. The feature map contains the
coordinates of the upper left corner (x, y) ,w, h,Pi and Pc.
The loss function is used to adjust the parameters and judge
whether the loss is minimal. If the loss is minimal, the model
is saved.

2) DETECTING DETAIL
Step 1. Obtaining the tomato image. Fruit- and vegetable-
picking robots obtain real-time video through cameras.
Extracting the video frame by frame, the extracted image are
recorded as pj (x, y), j = 1, 2, 3 · · ·M . Finally, we obtain a
set of tomato images pM (x, y).

Step 2. Tomato image space conversion.By transforming
pj (x, y) from the RGB space to the HSI space, the 3 channel
components H (hue), S (saturation) and I (brightness) are
obtained.

Step 3. Enhancing the tomato image. Finally, the group
of images to be detected after image enhancement is recorded
as PM (x, y).
Step 4. Inputting the enhanced tomato image input to

the model. Pj (x, y) is input into the trained model to obtain
a set of prediction boxes. Non-maximum suppression is used
to filter the prediction boxes with high overlap and output the
final prediction box.

IV. EXPERIMENT
We use the Adam optimization function to train the net-
work in an end-to-end joint manner. During network training,

a model pretrained on Imagenet is used to initialize the
network parameters. The initial learning rate is set to 0.001,
the weight attenuation rate is set to 0.0005, and the verifica-
tion period is set to 50.When the model reaches convergence,
the training is stopped, and the model is saved.

A. TOMATO DATASET
The main collection site of the tomato dataset is a
high- efficiency agricultural base in Qingdao, China. The
main varieties collected are Xiazhuang-69, Dahong-1 and
Xiafen-F1, which have the most common tomato character-
istics. On July 22 and August 25, 2019, using the iPadPro
11 camera (five-mirror lens, 12 megapixels and f/1.8), image
acquisition was conducted in four directions 1∼2 m from
each crown: east, west, north and south. Under the conditions
of smooth lighting and backlighting, a total of 800 images of
naturally growing tomato crowns were collected. To ensure
the diversity of the tomato dataset, 200 tomato images were
acquired and screened by a web scraping tool, taking into
account the influence of the dataset proportion on the training
balance. Preliminary experiments suggested that the ratio of
the number of images in daytime, evening and night should
follow the ratio of 2:1:1. However, in all three cases, the num-
ber of tomatoes should be the same. Because the light in the
daytime is more complex and diverse (side light, backlight,
etc.), and the light in the evening and night is similar and uni-
form, the number of daytime images should be greater. There
are 4378 tomatoes in the dataset of 1000 tomato images.
Among the images, 500 (167 in smooth light,167 in side
light and 166 in backlight, for a total of 2310 tomatoes) were
taken in the daytime, 250 (1157 tomatoes) in the evening and
250 (1011 tomatoes) at night. Some tomato dataset images
are shown in Figure 7, which are in side light, smooth light,
backlight, dark, blocked, dense and other conditions.

In this experiment, 1000 tomato images were col-
lected in JPG format. To shorten the training time of the
model, the images were cropped uniformly and reduced to
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TABLE 1. Comparison of test results of advanced detection based on the tomato dataset.

FIGURE 7. (a) Side-lit tomato; (b) tomatoes under smooth light;
(c) backlit tomatoes; (d) tomatoes under dark light; (e) shaded tomatoes;
(f) dense tomatoes.

416 × 416 pixels. We considered the appearance and shape
of the tomatoes in the process of sample labeling, and we
labeled 4378 tomato bounding boxes in the 1000 original
samples. We used software to annotate the dataset manually,
and the annotation information was saved in Pascal VOC
dataset format, including the categories and bounding boxes
of the object tomatoes.

Image enhancement of training samples can improve the
quality of the samples and improve the detection precision
of the CNN. In an orchard under natural light, especially in a
scene with high light intensity, a shadow on the fruit surface is
caused by the mutual occlusion or backlighting of tomatoes,
which makes the color of the fruit very different from that of
the diffuse reflection area under normal light and affects the
quality of the tomato image. The data quality will affect the
model training. The training of deep learning models requires
a large amount of data, and 1000 images are not sufficient.
Before the training, the dataset was enhanced [29]; in this
process, the change range of the hue was from 1 to 1.5 times,
the change range of the exposure was from 1 to 1.5 times,
and the change range of the number of colors was from
0.9 to 1.1 times, so 5500 images were ultimately generated
for training.

B. ENVIRONMENT AND EVALUATION INDEX
In this experiment, based on the i5-7300HQ CPU and
NVIDIA GTX 1050ti GPU, a TensorFlow deep learning
framework was built under in Windows 10. The training and
detection of the tomato object detection network model was
programmed in Python.

We use the precision, f1-score, FLOPs, FPS, parameters,
and time (ms) evaluation indexes to evaluate our method
and other comparison methods. The calculation formulas of
precision (P) and f1-score (F1) are shown in formula (9).

p =
TP

TP+ FP
, R =

TP
TP+ FN

, F1 =
2PR
P+ R

, (9)

where P is the precision rate, R is the recall rate, TP is the
number of true positive samples, FP is the number of false
positive samples, and FN is the number of false negative
samples.

C. RESULTS AND ANALYSIS
In Table 1, our method is compared with some state-of-the-
art object detection methods. All methods were trained with
the tomato dataset and optimal parameters. The comparison
information involved in the table includes the backbone, pre-
cision, f1-score, FLOPs, FPS, parameters and time (ms), all
of which are calculation results on the CPU. Since the FPS
and time of the two-stage methods are far lower than that
those of one-stagemethods, the FPS and time in the two-stage
methods are not discussed.

Table 1 shows that the one-stage object detection method
is significantly faster than the two-stage detection method.
The six indexes of our method are better than those of
YOLOv3-tiny. The precision of our method is close to that of
YOLOv3, the time is 1/25 that of YOLOv3, and the number
of FLOPs is 1/13 that of YOLOv3. We think that the main
reason for maintaining the precision and having few FLOPs is
that a combination of the PDP structure and residual structure
is used in the backbone network. Although Faster R-CNN,
R-FCN [30], and Mask R_CNN [31], have higher precision
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FIGURE 8. The detection results of our method in some tomato datasets.

than our method, our method is much faster than these
two-stage methods. In particular, we compared two of the
latest excellent lightweight methods: Mini-YOLOv3 [25] and
SlimYOLOv3 [33]. The experimental results show that the
indexes of our method are better than those of two methods.

We use the trained model to test some tomato datasets,
as shown in Figure 8. According to Figure 8, our method can
successfully detect tomatoes in smooth, backlit, dark, dense,
occluded and complex scenes.

To further verify the effectiveness of the model, it is neces-
sary to evaluate the detection efficiency of the method under
various practical conditions. In the next experiments, we took
the number of tomatoes, light intensity and picking time as the
control variables; the test results of three methods (YOLOv3,
YOLOv3-tiny and our method) under the above conditions
were compared, and the performance of the methods was
evaluated with the f1-score.

1) COMPARISON OF DETECTION RESULTS UNDER
DIFFERENT NUMBERS OF TOMATOES
In the actual picking process of the robot, the number and
size of tomatoes changes with the distance between the cam-
era and the tomato tree. When the number of tomatoes is
small and their size is large, the object to be detected is
clear and complete, so it is easier to detect. However, in a
multi-object image, due to the reduction in size and the
increase in the number of objects, adhesion and occlusion
may occur, and detection is difficult. Therefore, we set up a
comparative experiment of tomato detection under different
numbers of tomatoes, which are divided into one tomato,mul-
tiple tomatoes and dense tomatoes, to compare the detection
performance of the three methods under different numbers of
tomatoes. The test results are shown in Figure 9.

In the test set of this experiment, 336 images containing
1410 tomatoes, are divided into three categories according
to the number of fruits. In these images, 75 one-tomato
images contain 75 tomatoes, 203 many-tomato images

FIGURE 9. Three methods were used to detect different amounts of
tomatoes. (a) Detection result of the YOLOv3 method; (b) detection result
of the YOLOv3-tiny method; (c) detection result of our method.

TABLE 2. Test results of three methods for images with different
numbers of tomatoes.

contain 576 tomatoes, and 58 dense tomato images con-
tain 759 tomatoes. The resolution of the smallest tomatoes
in the dense tomato images is not less than 15× 15. For each
class, 30 images are randomly selected as the experimental
test set, and three different methods are used to detect the
positive sample number; the total sample number is synthe-
sized, as well as the undetected sample number and the false
detection sample number, and the parameters rate and the
recall rate are calculated to obtain the f1-score. We repeat the
above steps three times, take the average, and finally average
the three types of results to obtain the comprehensive results,
as shown in Table 2.

It can be seen from Table 2 that the algorithm of
YOLOv3 performs best. The f1-score of our method is higher
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TABLE 3. Test results of three methods for different illumination of
tomato images.

than that of YOLOv3-tiny and close to that of YOLOv3.
The fewer tomatoes there are, the higher the f1-score. When
the number increased from 1 to less than 10, the f1-score
did not decrease much. However, for dense tomato images,
f1-score dropped by nearly 20 percentage points. Because of
the different sizes of tomatoes in dense images and situations
of adhesion and occlusion, some tomatoes are not detected.
At the same time, because of the inherent characteristics of
convolutional neural networks, continuous convolution will
lose the characteristics of small objects when the deep net-
work has high resolution. Base on the comprehensive results,
our method is competent for the detection of different num-
bers of tomatoes.

2) COMPARISON OF DETECTION METHODS UNDER
DIFFERENT ILLUMINATION ANGLES
In the experiment in this section, the angle of light on the
tomato at the time of shooting is taken as the control variable,
and the lighting conditions include side light, backlight and
even light. Among the images, 124 side-lit images include
357 tomatoes, 67 backlit images include 149 tomatoes, and
87 images with direct sunlight include 145 tomatoes. The
results are shown in Figure 10, and the statistical results are
shown in Table 3.

Figure 10 shows that the texture of a tomato is clear under
side light, the surface light intensity is uniform, and it is easier
to detect. The brightness of the tomato and its branches and
leaves decreased remarkably under the backlight condition,
and the boundary between them was not obvious. When the
tomato is under direct sunlight, part of its surface brightness
increases, and the color of the tomato is bright white without
texture features. In the latter two cases, the difficulty of
tomato detection increased significantly.

As seen from Table 3, the F1 of the YOLOv3 method
is the highest. Because of its backbone(darknet-53), it has

FIGURE 10. Detection results of tomatoes by three methods under
different illumination. (a) Detection result of the YOLOv3 method;
(b) detection result of the YOLOv3-tiny method; (c) detection result of
our method.

a strong feature extraction ability. The f1-score of our
method is approximately 5 percentage points lower than
that of YOLOv3 and 4 percentage points higher than that
of YOLOv3-tiny. The performance of the three methods is
worst under backlight conditions. The reason is the lack
of brightness under backlighting, which directly eliminated
some tomatoes, reducing the model f1-socre.

3) COMPARISON OF DETECTION METHODS UNDER
DIFFERENT PICKING TIMES
In this experiment, the imaging time of the tomatoes was
taken as the control variable, and the conditions were day,
evening and night. In the tomato dataset, the tomato images
in the daytime include three kinds of lighting scenes (167 in
smooth light, 167 in side light and 166 in backlight). The
radio of images in the three kinds of scenes is 1:1:1. Backlit
images are taken during the day and tend to be darker. There-
fore, the characteristics of backlit images are similar to those
of nightfall and dark scenes. The number of images in the
evening and in the dark is 250. It is assumed that the number
of backlit images is evenly distributed among the images
in the evening and in the dark. We can obtain 334 images
in brighter scenes (daytime), 333 in the evening and 333 in
the dark. To maintain the distribution of proportions under
various conditions in the dataset, and we weight the images
by the number of tomatoes. Because of the backlit images,
the total number of images in daylight conditions is greater
than that in evening and dark conditions. This may affect the
f1-score of daylight conditions, so we removed the images
under backlighting conditions in this comparison experiment.
We selected images of tomatoes in daylight (35 in smooth
light, 35 in side light), with a total of 150 tomatoes, 70 images
of tomatoes in the evening, with a total of 153 tomatoes and
70 images of tomatoes in the night, with a total of 151 toma-
toes. The experimental method is the same as that in the
previous section. The specific implementation results are
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FIGURE 11. Tomato detection results for three methods at different
times. (a) Detection result of the YOLOv3 method; (b) detection result of
the YOLOv3-tiny method; (c) detection result of our method.

TABLE 4. Test results of three methods for different illumination of
tomato images.

shown in Figure 11, and the statistical results are shown
in Table 4.

As seen from Figure 11, tomatoes appear normally in the
daytime, and their color and texture characteristics are in
good condition. The features of tomatoes in the evening are
similar to those in backlight. At night, due to the lack of
light source, unlike in cases of daytime backlight and diffuse
reflection of light on tomatoes, most parts of tomatoes are
black. In this case, regardless of the color, nature, or texture
characteristics of tomatoes, there are almost none; some of
them are incomplete. Our method and the YOLOv3 method
can successfully detect tomatoes at different times. The
YOLOv3-tiny method can only detect the part of tomatoes
closest to the camera.

It can be seen from Table 4 that the f1-score of the three
methods are not significantly different in the three scenarios.
The f1-score of our method in the three scenarios is close to
the performance of YOLOv3. The performance of YOLOv3-
tiny in all three scenarios is 5 percentage points lower than
the performance of our method.

To summarize the above three experiments, the method
of YOLOv3-tiny finds detection difficult in dense, backlit,
evening, night and other environments, and its f1-score is gen-
erally low. The YOLOv3 achieves the best detection results,
but it has the slowest speed and requires the most FLOPs.
In contrast, the f1-score of our method under various condi-
tions is close to that of YOLOv3, and its number of FLOPs
is only 1/8 that of YOLOv3. Three groups of comparative
experiments show that our method can adapt to the detection
of tomatoes in most situations, which makes it possible for
a tomato-picking robot equipped with this vision method to
work all day.

V. CONCLUSION
Based on the YOLOv3-tiny detection method, we propose
a fast detection method for tomatoes in complex scenes
for picking robots. First, we use improved depth- separable
convolution and a residual structure to replace the standard
convolution network in the original network, which increases
the network depth and greatly reduces the number of FLOPs.
Then, a fusion of data amplification and multiscale train-
ing strategy improves precision while maintaining detection
speed. Finally, we propose using an image enhancement
algorithm in the training and detection phase of the model.
By increasing the contrast of the tomatoes, the detection
ability of robots in complex illumination scenes is improved.
Experimental results show that compared with other state-
of-art methods, our method has the fastest detection speed,
the fewest FLOPs and higher detection precision. Because
most fruit-picking robots are embedded devices or mobile
devices, our method has obvious advantages.
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