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ABSTRACT Vehicle-to-Everything (V2X) requirements from cooperative autonomous driving can be
characterized as ultra-reliable, low latency, high traffic, and high mobility. These requirements introduce
great challenges in the air interface and protocol stack design, resource allocation, network deployment, and
all the way up to mobile (or multi-access) edge computing (MEC), cloud and application layer. In this paper,
we present a cooperative autonomous driving oriented MEC-aided 5G-V2X prototype system design and
the rationale behind the design choices. The prototype system is developed based on a next-generation radio
access network (NG-RAN) experimental platform, a cooperative driving vehicle platoon, and anMEC server
providing high definition (HD) 3D dynamic map service. Field tests are conducted and the results demon-
strate that the combination of 5G-V2X, MEC and cooperative autonomous driving can be pretty powerful.
Considering the remaining challenges in the commercial deployment of 5G-V2X networks and future
researches, we propose two artificial intelligence (AI) based optimization tools. The first is a deep-learning-
based tool called deep spatio-temporal residual networks with a permutation operator (PST-ResNet).
By providing city-wide user and network traffic prediction, PST-ResNet can help to reduce the capital
expense (CAPEX) and operating expense (OPEX) costs of commercial 5G-V2X networks. The second is a
swarm intelligence based optimization tool called subpopulation collaboration based dynamic self-adaption
cuckoo Search (SC-DSCS), which can be widely used to solve complex optimization problems in future
researches. The effectiveness of proposed optimization tools is verified by real-world data and benchmark
functions.

INDEX TERMS V2X, MEC, field tests, deep learning, swarm intelligence, cuckoo search.

I. INTRODUCTION
Vehicle-to-Everything (V2X) communications have drawn
great attention in both industrial and academic fields for
more than ten years. The V2X applications in the 3GPP
specification contain the following four different types (see
Fig.1): vehicle-to-vehicle (V2V), Vehicle-to-Infrastructure
(V2I), vehicle-to-network (V2N), and vehicle-to-pedestrian

The associate editor coordinating the review of this manuscript and

approving it for publication was Rongbo Zhu .

(V2P) [1]. Today, there are two key classes of radio
access technologies (RATs) enabling V2X communications,
which are standardized respectively in 3GPP and IEEE. The
V2X from 3GPP is called Cellular-V2X (C-V2X), includ-
ing LTE-V2X, LTE-eV2X, and 5G-V2X (NR-V2X). While
IEEE 802.-11p and its evolution version 802.11bd are the
foundation of V2X systems such as dedicated short range
communications (DSRC) in the U.S. and cooperative intel-
ligent transport systems (C-ITS) in Europe. V2X systems
based on IEEE 802.11p have similar communication types.
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FIGURE 1. Types of V2X applications defined in 3GPP.

The Multi-hop communication type is supported in some
IEEE 802.11p V2X systems, such as C-ITS, which lead to
the research area of routing in Vehicular Ad-hoc Network
(VANET) [2], [3].

There has been tremendous interest in the development
of vehicles capable of autonomous driving, from both the
research community and industry. In 2014, the SAE orga-
nization published the J3016 standard [4], which aims at
providing a common terminology and classification levels
for autonomous driving. Five levels of autonomous driving
are defined according to their relative extent of automation,
ranging from level 1: Driver Assistance to level 5: Full
Automation. In the past two years, several Level 4 (High
Automation) autonomous driving vehicles and applications
have been developed, of which the most typical one is
‘‘Waymo One’’. Most autonomous vehicles currently in
development depend on a perception subsystem consisting
of onboard sensors of the vehicle itself. Although this self-
only method has already been demonstrated in field tests,
it presents some drawbacks: the limited perception range of
onboard sensors and lack of collaborative maneuvers with
related vehicles.

The combination of V2X and autonomous driving enables
the creation of cooperative autonomous driving, which has
two key cooperative features: sensing and maneuvering.
Based on these features, cooperative autonomous driving
allows vehicles to exchange information gathered from local
sensors and permits inter-vehicle coordination of maneuvers.
The integration of onboard sensors and V2X communication
could also result in a solution that is more cost-effective
than an approach based on high-quality sensors only [5].
Thus, we should set the target that the combination of V2X
and autonomous driving is to greatly improve the traffic
safety, efficiency, driver comfort and cost performance of
autonomous driving vehicles.

To achieve this target, cooperative autonomous driving
needs to impose stringent latency, reliability, throughput and
mobility requirements on the V2X system. Studies indicate
that both LTE-V2X/eV2X and IEEE 802.11p can reliably
support safety applications that demand an end-to-end latency
of around 100 milliseconds as long as the vehicular density
is not very high but fall short of supporting more stringent
communication requirements of many advanced vehicular

TABLE 1. QoS requirements of advanced V2X applications supported by
5G-V2X.

applications, which are believed to be critical in enabling fully
autonomous vehicles [6]. NR-V2X and IEEE 802.11bd now
being in the standardization process are expected to diminish
the performance gap. For example, NR-V2X are designed to
provide an end-to-end latency of 3ms and high reliability up
to 99.999% [7] and support the advanced V2X applications
categorized into four groups: vehicle platooning, advanced
driving, extended sensors, and remote driving [8]. The quality
of service (QoS) requirements of these applications defined
by 3GPP are summarized in Table 1.

In this paper, we present a prototype system design and
field tests for cooperative autonomous driving oriented V2X.
As introduced in our previous work [9], the development
of this prototype system is a part of an ongoing research
project named ‘‘The Research and Demonstration of 5G
Key Technology Oriented Autonomous Driving’’, which is
funded by National Science and Technology Major Project
of China. The QoS requirements are to achieve as low as
1ms delay between user planes of air interface, 99.999% air
interface reliability through retransmissions limited in 10ms
duration, at least 2000 vehicles per kilometer for low speed,
200 vehicles per kilometer for high speed, 50Mbps cell edge
throughput for V2I, and 10Mbps rate for V2V.

Comparing with Table 1, it can be seen that the ultra-
reliable low latency (URLLC) requirement of this V2X
prototype system is more stringent than NR-V2X. Since
NR-V2X standardization starting in 3GPP Release 16 has
not yet been completed, our work can be regarded as a
proof of concept prior to the commercial development of
5G-V2X based cooperative autonomous driving. To the best
of the authors’ knowledge, only a few field tests integrate
5G-V2X and autonomous driving. Field trial activities focus
on the V2V latency of an NR-V2X prototype system applying
to truck platooning are presented in [10]. An earlier field
test for 5G-V2X enabling automated emergency braking is
presented in [11].

Although the capability of 5G-V2X is proved to meet the
requirements of cooperative autonomous driving through the
development and test of our prototype system, we find that
there are still some challenges in the development and deploy-
ment of commercial systems and the research of 5G-V2X
evolution which have not been fully studied at present.

In our opinion, the first challenge is how to effectively
reduce the CAPEX and OPEX costs in the commercial
deployment and operation of 5G-V2X networks. The reason
lies in that URLLC is considered to be the most critical
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requirement for 5G-V2X, but it has to be meet at the cost of
spectral efficiency [12]. Coping with the simultaneous high
traffic requirement, it is necessary to implement the ultra-
dense network (UDN) with multi-carrier aggregation for
commercial 5G-V2X services, which brings high deployment
and operational costs. During the solutions, more attention
should be paid to the technique for precise user numbers
and network traffic predicting. Because it is a key tech-
nique to reduce the costs, which can be used in base station
deployment density and location optimization, minimizing
the energy consumption by switching off under-utilized carri-
ers and base stations, improve resource allocation efficiency
and user experience and so on.

The second challenge is how to solve the increas-
ingly complex optimization problems in the evolution of
5G-V2X. Multi-hop communication, cognitive radio, and
other technologies should be considered to enhance net-
work coverage and application scenarios, and improve the
contradiction between low spectrum efficiency and insuf-
ficient spectrum resources. These technologies bring addi-
tional complex optimization problems in routing, resource
allocation, interference management, etc. It is necessary to
study some widely applicable tools for solving these complex
optimization problems.

FIGURE 2. Percentage of AI techniques used in V2X applications
according to [13].

Rapid progress in artificial intelligence (AI) techniques
open up new opportunities to solve these challenges. AI has
been used to address the complex and dynamic challenges
of the V2X paradigm. In a survey of AI for V2X given by
Tong et al in [13], Deep Learning and Swarm Intelligence
are showed to be two popular and widely used AI techniques,
occupying nearly half of the referenced 151 research articles
(see Fig.2). The representative application fields of deep

learning and swarm intelligence in V2X researches include
the prediction of network and road traffic, resource allocation,
congestion control, routing, and clustering, etc., which can
be found in [14]–[21]. This paper also focuses on these two
techniques. Accordingly, two AI-based optimization tools are
proposed to solve the two challenges mentioned above, one
related to Deep Learning, and the other related to Swarm
Intelligence.

For the first challenge, we propose a deep-learning-based
tool to optimize predictions based on unique properties of
spatio-temporal data including vehicle trajectories and net-
work traffic, which are called deep spatio-temporal residual
networks with a permutation operator (PST-ResNet). The
primary consideration is that energy reduction schemes like
switching off under-utilized base stations need not only the
spatio-tempral prediction result of a single cell but also
each and every cell of the city-wide network. PST-ResNet is
designed to employ convolution-based residual networks to
model the nearby and distant spatial dependencies between
any two regions in a city and the closeness, period, and
trend properties of temporal dependencies, which is sim-
ilar to the methodology adopted in ST-ResNet proposed
by Junbo Zhang et al in [22]. The main improvement is
that with permutation operation PST-ResNet can support
irregular regions dividing including dividing by cell cov-
erages, whereas ST-ResNet can only support grid-based
regions dividing which should be regarded as a special case
in PST-ResNet. Experiments on Beijing taxicabs’ trajecto-
ries and meteorological data demonstrate that the proposed
PST-ResNet outperforms ST-ResNet and several other well-
known methods.

For the second challenge, we provide a widely applicable
optimization tool based on Swarm Intelligence to solve com-
plex optimization problems in the research of 5G-V2X and
its evolution. This tool is called Subpopulation Collaboration
based Dynamic Self-adaption Cuckoo Search (SC-DSCS).
SC-DSCS is designed to improve the convergence rate and
optimization precision of Cuckoo Search (CS), which is
very effective in solving global optimization problems. The
global convergence of CS has been proved using a Markov
chain framework in [23]. Studies show that CS could out-
perform other Swarm Intelligence methods including Differ-
ential Evolution (DE), Simulated Annealing (SA), Particle
Swarm Optimization (PSO), Genetic Algorithm (GA) and
Artificial Bee Colony (ABC) [24]. In fact, DE, SA, and PSO
are special cases of CS [25]. The applications of CS in V2X
related researches have producedmany achievements, mainly
focusing on routing, spectrum allocation, clustering and other
technical fields, some of which can be found in [19]–[21],
[26]–[35]. In SC-DSCS, the population of cuckoos is divided
into two subgroups, and a collaboration mechanism is intro-
duced between the two groups to enhance the local search
capability. Borrowing the idea of Grey Wolf Optimizer
(GWO) that the alpha (best candidate solution), beta and
delta have better knowledge about the potential location of
prey [36], SC-DSCS creates an additional new bird’s nest
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based on the comprehensive assessment of the first three
best bird’s nests being found after each searching round.
Nine benchmark functions are adopted to evaluate the perfor-
mance of SC-DSCS. Simulation results show that SC-DSCS
has better convergence speed and optimization precision
than CS, ABC, DE, PSO, and RC-SSCS (an improved CS
proposed in [37]).

A summary of the main contributions of this work are:
• Provide the design of a cooperative autonomous driving
oriented 5G-V2X prototype system and conduct field
tests to verify the promotion effect of 5G-V2X service
on autonomous driving.

• Propose a deep-learning-based tool called PST-ResNet
to optimize predictions based on spatio-temporal data
including vehicle trajectories and network traffic, and
demonstrate that PST-ResNet outperforms ST-ResNet
and several other well-known methods by experiments
on real-world data.

• Propose a widely applicable optimization tool called
SC-DSCS based on Swarm Intelligence to solve com-
plex optimization problems in the research of 5G-V2X
and its evolution, and evaluate the performance of
SC-DSCS and some other Swarm Intelligence methods
adopting benchmark functions.

The remainder of the paper is organized as follows.
Section II presents the design of the prototype sys-
tem. Section III presents the field test process and results.
Section IV describes the proposed deep-learning-based tool
called PST-ResNet and the proposed widely applicable opti-
mization tool called SC-DSCS based on Swarm Intelligence.
Section V presents the evaluation results of PST-ResNet
and SC-DSCS. Finally, we conclude and make a summary
in section VI.

II. PROTOTYPE SYSTEM DESIGN
A. SYSTEM OVERVIEW
Ourwork is a part of ‘‘TheResearch andDemonstration of 5G
Key Technology Oriented Autonomous Driving’’ project.
We built a field test environment for cooperative autonomous
driving oriented 5G-V2X communication using a 5G-V2X
prototype system, an autonomous driving vehicle platoon and
a mobile edge computing (MEC) server used as a map server
providing high precision 3D map dynamic reconstruction
service. According to the QoS requirements described in the
introduction part, the 5G-V2X prototype system is designed
and developed based on a next-generation radio access net-
work (NG-RAN) experimental platform consisting network
side devices including the core network (CN), baseband units
(BBUs), remote radio units (RRUs) and antennas, and the
user side devices i.e. user equipments (UEs). System frame
structure, physical channels, network architecture and system
procedure of the platform are modified to satisfy the stringent
QoS requirements.

The autonomous driving vehicle platoon consists of
five autonomous driving vehicles. Equipped with one UE,
an autonomous driving vehicle supports sending environment

FIGURE 3. The overall configuration for field tests.

perception information to the map server, receiving map
update information from the server and broadcasting infor-
mation to neighbors. The map server gives the over-the-
horizon perception ability of the autonomous driving vehicle
and plays an important role in the cooperation of vehicle
and vehicle. Fig.3 illustrates the overall configuration for
field tests of the prototype system with the view of applying
5G-V2X to cooperative autonomous driving.

FIGURE 4. Using 60 kHz Subcarrier Spacing and 7 symbol mini-slot.

B. TECHNOLOGY PILLARS IN THE PROTOTYPE TO
SATISFY STRINGENT QOS REQUIREMENTS
1) ULTRA RELIABLE AND LOW LATENCY DESIGN
In order to meet the low latency requirement of a one-time
transmission delay (1ms) of the user plane (UP) for V2X
communication, the short transmission-time-interval (TTI)
design is the first technology being adopted. On the other
hand, the use of higher sub-carrier spacing also facilitates
latency reduction. Assuming one transmission block (TB)
requires a fixed number of sub-carriers in a TTI, the length of
TTI decreases as the sub-carrier spacing increases. Consider-
ing the flexible OFDM numerology introduced in 5G NR and
the propagation characteristics of 3.5GHz band, 60 kHz sub-
carrier spacing is used in the prototype system, the length of
TTI is set to 7 symbols. The contrast effect of different sub-
carrier spacing and TTI length can be found in Fig.4.
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FIGURE 5. Overview of V2V physical channel processing in the prototype system.

FIGURE 6. The optimization of the DMRS location for processing delay
reduction.

In the prototype system, theV2Vphysical channel process-
ing is similar to the physical uplink shared channel (PUSCH)
in the NG-RAN platform (see Fig.5). An additional delay
optimization for the DMRS is developed. The main reason is
that based on the legacy design of the demodulation reference
signal (DMRS) for the PUCSH, the BS has to buffer the
OFDM symbols of data received before the DMRS symbol
and cannot demodulate them until the DMRS being received,
which compromises the processing delay. In our prototype
system, the DMRS is divided into two parts: the odd part
is placed at the first symbol of the slot and the even part
remains in the middle. Thus it seems that the BS can obtain
the DMRS at the beginning of a subframe and demodulate
the data symbol immediately after it being received (see
Fig.6). But this effort is not enough, because there is still an
obstacle caused by the channel interleaving of PUSCH. In the

FIGURE 7. The fast retransmission mechanism based on time and
frequency bundling.

NG-RAN platform, due to the increasing order that coded
bits are written into the interleaving matrix, which is first the
column number then the row number, the BS cannot decode
the data until it receives all the SC-FDMAsymbols of the TTI.
This channel interleaving arrangement is disadvantageous for
the reduction of the processing delay. A new interleaving
method is developed in the prototype system, in which the
coded bits are written into the interleaving matrix first the
row number, then the column number. Based on the opti-
mizations on the DMRS and interleaving, the BS and VMS
can decode the data transmitted on the uplink (V2N) or the
sidelink (V2V) immediately after receiving the first DMRS
which is very helpful to the reduction of processing delay.

The ultra-reliability mainly depends on the joint design
of conservative modulation coding schemes (MSCs) and fast
retransmission mechanism. A fast retransmission mechanism
based on time and frequency bundling is developed. Firstly,
different redundancy versions (RVs) of a TB are transmitted
in the first TTI on all available carriers (see Fig.7). If the
available carriers in the TTI were not sufficient to transmit
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all of the RVs, the residual RVs should be transmitted in the
next TTI, repeating this until all the RVs are transmitted.
Based on this operation, the developed fast retransmission
mechanism can make full use of the multi-carriers resource
in the frequency domain to transmit as much as possible RVs.
It not only improves the reliability through retransmission
technology but also reduces the transmission delay caused by
retransmission as much as possible.

2) HIGH TRAFFIC AND HIGH MOBILITY DESIGN
It is a very challenging problem to meet the requirements of
high traffic andmobility at the same time. That is because: for
high traffic, the cell coverage needs to be as small as possible
to reduce the number of terminals competing for bandwidth
in a cell; while for high mobility, the cell coverage needs to be
as large as possible to avoid the detrimental impact caused by
frequent handovers. To cope with this contradiction, a hier-
archical heterogeneous network architecture is adopted in
the prototype system (see Fig.8). In this architecture, Macro
eNodeB (MeNB) is configured with low frequency and high
power to extend the coverage of a macro cell, which could
avoid system performance degradation with frequent han-
dovers. Meanwhile, there are several small eNodeBs (SeNBs)
configured with high frequency and low power within the
coverage of MeNBs to provide high system capacity. The
V2V communications are allocated dedicated frequency to
avoid interference from V2N.

FIGURE 8. The hierarchical heterogeneous network architecture in the
prototype system.

Dual connectivity is one of the key technologies to support
this architecture, which has been supported in the existing
LTE-Advanced pro platform. Base on dual connectivity, serv-
ing cells of a user equipment (UE) is composed of two
groups, a Master Cell Group (MCG) associated with the
MeNB and a Secondary Cell Group (SCG) associated with
the SeNB. In the existing SeNB addition/removal method,
Radio resource control (RRC) reconfiguration procedure is
used to add or remove the serving SeNB of a UE by the
serving MeNB. Two RRC messages including RRC recon-
figuration and RRC reconfiguration complete need to be
exchanged between the UE and MeNB. During this process,
data transmission is interrupted. In high mobility scenario,

since addition and removal operations happen frequently,
the impact of data transmission interruption is more serious.

Combined with the hierarchical heterogeneous network
architecture, an improved SeNB addition/removal method
based on trajectory prediction is developed in the prototype
system. When a UE enters the coverage of a MeNB, several
potential serving SeNBs calculated by the result of trajectory
prediction are configured to the UE by the MeNB through
the RRC configuration procedure. Instead of RRC messages,
the MAC control element is used to indicate which SeNB
is used for data transmission. With this improved SeNB
addition/removal method, the signaling overhead and data
interruption caused by high mobility can be mitigated
(see Fig.9).

FIGURE 9. The improved SeNB addition/removal method based on
trajectory prediction.

The V2X service has a strong localization attribute, which
means that the content sent to adjacent vehicles may be the
same, such as the local dynamic map (LDM) service and
emergency broadcast. Broadcast/multicast technology can
distribute the same content to multi-users, which notably
have high spectral efficiency. Based on the existing evolved
multimedia broadcast multicast service (eMBMS) of the
NG-RAN platform, the data gathered from vehicles have to
be first transferred to the server outside the core network
and then to the eBM-SC of the core network, which is
responsible for the broadcast of processed data. The delay
caused by traversing the core network makes this mecha-
nism unsuitable for V2X services which are sensitive to the
delay. To cope with this problem, in the prototype system,
a broadcast/multicast services management entities playing
a role similar to the eBM-SC is established within the BS,
and an MEC server is deployed close to the BS. A radio
bearer of broadcast/multicast services are created between
the VMS and BS (see Fig.10). Through this radio bearer,
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FIGURE 10. Local MBMS entity and MBMS radio bear.

the huge amount of downlink data produced by high precision
3Dmap dynamic reconstruction service provided by theMEC
server can be sent to vehicles in the coverage of a BS more
efficiently.

FIGURE 11. The map and real photo of the field tests environment for
cooperative autonomous driving oriented 5G-V2X prototype system.

III. FIELD TESTS
A. FIELD TESTS CONFIGURATION
The field tests were conducted at ShanghaiTech University,
Shanghai, China. Fig.11 shows the map and real photo of the
field tests environment. As shown in Fig.11, there were three
sectors located at three sites covering the test route with a
length of about 1.3 km. To construct the hierarchical hetero-
geneous network architecture, cell splitting and cell merging
were implemented in these three sectors. Specifically, for
a relatively low-frequency carrier, cell merging technology
was implemented to make these three sectors form a macro

cell to cover the whole test route. Under the coverage of
the merged cell, i.e. MeNB in the architecture, handover did
not occur on the test route. For the rest higher frequency
carriers, cell splitting technology was implemented to form
three small cells, i.e. SeNBs in the architecture, to increase
network capacity.

FIGURE 12. The network-side devices used in the field tests.

Fig.12 shows the network side devices used in the field
tests, including the BBU,MEC server, Core Network, and the
RRU and antennas of the three sites. A total of 5 autonomous
driving vehicles participated in the field tests. Each vehicle
was equipped with an on-vehicle terminal which is developed
based on the terminal emulator for 5G-V2X UE (see Fig.13).

FIGURE 13. The autonomous driving vehicles in the platoon and
on-vehicle terminals.

A set of high definition (HD) 3D map of the test field
was created, which contains all-round elements of the test
field such as road lane line and surrounding environment,
with an accuracy of 3cm. The location position, azimuth
angle, speed, acceleration, and warnings of the vehicle, and
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processed perception results base on the on-vehicle sensors
were transmitted to the map server for map updating through
the V2N link and broadcasted to nearby vehicles through
V2V link. The map server dynamically reconstructs the 3D
map according to the received information and transmits the
reconstructed data to all test vehicles through the optimized
MBMS service.

FIGURE 14. The result of a reconstruction of the HD 3D map.

TABLE 2. Major radio parameter of the prototype system for field test.

Fig.14 shows the result of a dynamic reconstruction of the
HD 3D map.

TABLE 2 summarizes the major radio parameters of the
prototype system.

B. FIELD TEST PROCESS AND RESULTS
Field tests were conducted to achieve the following two goals:
(1) to evaluate whether the key performance indicators (KPIs)
of the prototype system meet the strict QoS requirements;
(2) to verify the promotion effect of 5G-V2X on autonomous
driving. For the first goal, performance tests were conducted
to evaluate the end-to-end delay, reliability, and throughput
of V2X links. For the second goal, functional tests of cooper-
ative autonomous driving technologies such as cooperative
lane changing, real-time map updating and path planning
were performed.

In the first test case, an autonomous driving vehicle trav-
eled along the test route at a speed of 30-60km/h. Using Xcap

FIGURE 15. Test results for the reliability and delay of the V2N link.

software, the MEC server sent data packets with a rate
of 20packets per second (PPS) to the vehicle, with a size
of 64 bytes. The vehicle then continuously sent ping packets
to the MEC server with a size of 64 bytes. Fig.15 shows the
test result. It can be seen that the MEC server sent a total
of 2000 data packets to the UE on the test vehicle with zero
packet loss. The average Round Trip Time (RTT) between
the UE and the MEC server was 3.5ms, and the minimum is
2.4ms. None of the ping packets were lost. It should be noted
that RTT is twice the end-to-end delay, and V2V physical
channel processing is the same as PUSCH, so the results
prove that V2N and V2V of the prototype system can meet
the 5G-V2X QoS requirements in terms of low latency (3ms)
and high reliability (99.999%).

The second test case was mainly for rate evaluation. In the
first step, five autonomous driving vehicles traveled along
the test route at a speed of 30-60km/h, and simultaneously
download data from the MEC server using ftp software. One
rate sampling point was recorded every 250ms using IPOP
software. Fig.16 shows the cumulative distribution function
(CDF) of download rate samples for each vehicle. It can be
seen that each vehicle achieved a download rate of more than
50 Mbps over 95% of the time. In the second step, the two
autonomous driving vehicles were 200m apart. The front
vehicle used XCAP software to generate full buffer data and
broadcast them to the rear vehicle, to test the receiving rate
of the rear vehicle. To ensure the reliability, each transmis-
sion block was transmitted 4 times fixedly, corresponding to
redundant versions 0, 2, 3, and 1 in turn. The test results are
shown in Fig.17. It can be seen that the generation rate of the
data source of the front car is 34.7mbps, and the reception
rate of the rear car is 14.7mbps. These results show that to a
certain extent, this field test system can provide services that
meet the 5G-V2X QoS requirements in terms of data rate.

The third test case was mainly to evaluate the coop-
erative autonomous driving function enabled by 5G-V2X.
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FIGURE 16. The CDF of downlink rate samples with each vehicle.

FIGURE 17. V2V reception rate between two vehicles 200m apart.

A cooperative scenario of five autonomous driving vehi-
cles supported by 5G-V2X and HD 3D dynamic map was
designed (see Fig.18).

In the design of this scenario, vehicle 1 simulated a fault
during driving, gradually decelerated and stopped, broadcast
the current speed and position through V2V, and reported
to the map server through V2N. Located within the V2V
communication range of vehicle 1, vehicle 4 received the
broadcast, slowed down and changed lanes with the cooper-
ation of vehicle 2. Vehicle 3 found the temporary construc-
tion blocking of the road ahead, broadcast the information
through V2V, and reported it to the map server through V2N.
After receiving the V2V broadcast, vehicle 2 began to slow
down gradually. The map server sent an incremental update
message to all vehicles after real-time map reconstruction
of the new information received. Although vehicle 5 was
not within the V2V communication range of vehicle 1 and
vehicle 3, it could still sense these abnormal events in a very

FIGURE 18. The cooperative scenario of five autonomous driving vehicles
supported by the 5G-V2X prototype system and HD 3D dynamic map.

short time through the dynamically updated HD 3Dmap, and
then re-planed the path to turn at the intersection to avoid the
blocked road. The actual test results are basically consistent
with the scenario design. The effect can be seen in the 3D
map display system shown in Fig.18. The test result proves
that with the support of 5G-V2X and HD 3D dynamic map,
the cooperative autonomous driving technology can effec-
tively solve the shortcomings of limited perception range and
lack of collaborativemaneuvers in the traditional autonomous
driving technology.

The field test results prove that the prototype system
achieved the design goals, and 5G-V2X has a significant pro-
motion effect on autonomous driving technology. However,
it can also be seen that in order to meet the requirements
of ultra-reliable, low latency, high traffic, and high mobil-
ity, a large investment in resources such as equipment and
frequency is required. As mentioned in the introduction part,
there is an urgent need for some optimization tools to reduce
CAPEX and OPEX costs during the commercial deployment
of 5G-V2X. Besides, some optimization tools are needed to
promote the research work of 5G-V2X evolution, such as
the introduction of multi-hop technology and cognitive radio
technology with the effect of expanding the V2V communi-
cation range and increasing frequency resources.

IV. AI-BASED OPTIMIZATION TOOLS
A. DEEP LEARNING BASED PST-RESNET
1) PROBLEM DEFINITION
As described in the introduction, accurate user and network
traffic prediction are of great significance to reduce CAPEX
and OPEX of the 5G-V2X system. Simultaneously forecast-
ing the number of users or the network traffic of each cell
of a city-wide 5G-V2X network, however, is very challeng-
ing, affected by the three complex factors including spatial
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dependencies, temporal dependencies and external influence
such as weather conditions and events. Junbo Zhang et al con-
structed deep spatio-temporal residual networks (ST-ResNet)
for city-wide crowd flows prediction in [22]. ST-ResNet can
segment the regions of a city into a regular grid structure, and
then give the prediction results of each grid. In the predic-
tion of spatio-temporal data in city-wide regions, ST-ResNet
shows good performance. However, in general, because all
the cells of the 5G-V2X network cannot form a regular grid
structure, ST-ResNet cannot be used directly to solve our
prediction problem. To this end, based on ST-ResNet, we con-
struct a tool called deep spatio-temporal residual networks
with a permutation operator (PST-ResNet), which can predict
spatio-temporal data for not only grid based segmentation but
also irregular segmentation (see Fig.19).

FIGURE 19. PST-ResNet supports not only grid based segmentation but
also irregular segmentation.

We assume that the city-wide 5G-V2X network is seg-
mented into N regions and the region group is a finite set
� = {r1, r2, · · · , rN }. Each region ri has a geospatial position
and time-varying attributes C. The time-varying attributes C
can be defined differently depending on the task and types
of spatio-temporal data, e.g. the user number, the network
traffic, or the inflow and outflow defined in [22]. At the
tth time interval, the time-varying attributes C of all regions
can be denoted as a tensor V0

t ∈ R�×C , where V0
t =

[V0
t,r1 ,V

0
t,r2 , · · ·V

0
t,rN ]. Thus, the observation of attributes at

any time can be represented by an attribute tensor V0
=

[V0
r1 ,V

0
r2 , · · · ,V

0
rN ].

Problem 1: Given
{
V0
t | t = 0, · · · ,n− 1

}
as the histori-

cal observations, predict V0
n.

2) METHODOLOGY
In the grid based segmentation method adopted by [22], since
the finite set � can be represented by an I × J matrix,
where I and J are the number of rows and columns of the
grid respectively, convolution-based residual networks can
be used to model nearby and distant spatial dependencies
between any two regions in a city. In the case of more general
irregular segmentation, the finite set� cannot be represented
directly by a matrix, which leads to the failure of convolution-
based residual networks. To solve this problem, we introduce
a permutation operator to reconstruct the set � into a matrix
form, so as to reuse the proven effective network architecture
of ST-ResNet.

The permutation function σ for� can be expressed by (1),
where i1, i2, · · · , iN is an arrangement of 1, 2, · · · ,N .

σ =

(
r1, r2, · · · , rN
ri1 , ri2 , · · · , riN

)
(1)

We define the permutation operator PM as a set of per-
mutation functions, i.e. PM = {σ 1, σ 2, · · · , σM }. After
M times permutation operations using PM , � becomes an
(M + 1) × N matrix. Fig.20 shows an example in which
an irregular segmentation region group is transformed into
a matrix form after permutation. Fig.20 shows the difference
in the process and result of generating the final� for the grid
based segmentation supported by ST-RESNET and the irreg-
ular segmentation supported by PST-RESNET for the same
area.

FIGURE 20. The difference in the process and result of generating the
final � between ST-ResNet and PST-ResNet.

For the (K + 1) × N order � matrix obtained by K times
of permutation operation of the original region group, its
corresponding attribute tensor PXK can be expressed by (2),

where V k
=

[
V k
ri1
,V k

ri2
, · · · ,V k

riN

]
and Vk

rim
is the attribute

corresponding to region rim .

PXK
=

[
V0,V1, · · · ,VK

]T
, PXK ∈ R(K+1)×N×C (2)

Then the problem 1 is transformed into: Given
{
PXK

t | t =
0, · · · , n− 1} as the historical observations, predict PXK

n .
Fig.21 shows an observed instance of the attribute of regions
in a city area and the instance after region group generation
and permutation. The instance after permutation is a PXK

t .
In PST-ResNet, we use the same network structure as

ST-ResNet, which can be seen in Fig.22. The difference is
that the input of PST-ResNet is the attribute matrix sequence
being permutated, while the input of PST-ResNet is the
original attribute matrix sequence. In the temporal hand, the
time axis is divided into three fragments, denoting recent
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FIGURE 21. An observed instance of the attribute of regions in a city area
and the instance after region group generation and permutation.

FIGURE 22. PST-ResNet architecture. Conv: Convolution; ResUnit:
Residual Unit; FC: Fully-connected.

time, near history and distant history. The attribute tensors
of intervals in each time fragment are then fed into three
components separately to model the three temporal prop-
erties: closeness, period and trend, respectively. The three
components (i.e. closeness, period, and trend) share the
same network structure, which is composed of two sub-
components: convolution and residual unit. In the external
component, some features from external datasets, such as
weather conditions and events are manually extracted and
fed into a two-layer fully-connected neural network. Finally,
the aggregation is mapped into [−1; 1] by a Tanh function.
More details on the components of this architecture can be
found in [22].

The three attribute tensors of the time fragments are[
PXK

t−lc ,PX
K
t−(lc−1)

, · · · ,PXK
t−1

]
, [PXK

t−lp·p,PX
K
t−(lp−1)·p

,

· · · ,PXK
t−p], and [PXK

t−lp·q,PX
K
t−(lq−1)·q

, · · · ,PXK
t−q],

where lc, lp and lq are the length of the closeness depen-
dent sequence, the period dependent sequence and the trend
dependent sequence respectively. The attribute tensor is

followed by a convolution (i.e. Conv1 shown in Fig.22) as:

PXK (1)
= f

(
W (1)
∗ PXK (0)

+ b(1)
)

(3)

where ∗ denotes the convolution; f is an activation function
e.g. the rectifier f (z) = max(0, z), W (1) and b(1) are the
learnable parameters in the first layer.

We stack L residual units following Conv1 as:

PXK (l+1)
=PXK(l)

+F
(
PXK(l)

; θ(l)
)
, l=1, · · ·L (4)

where F is the residual function (i.e. two combinations of
‘‘ReLU + Convolution’’), and θ(l) includes all learnable
parameters in the lth residual unit. The Lth residual unit
is followed by a convolutional layer (i.e. Conv2 shown in
Fig.22). The outputs of the Conv2s of the three components
are PXK (L+2)

c , PXK (L+2)

p , and PXK (L+2)

q respectively. The three
outputs are fused as follows

PXK
Res = W c

◦PX
K (L+2)

c +Wp
◦PXK (L+2)

p +Wq
◦PXK (L+2)

q (5)

where ◦ is Hadamard product (i.e. element-wise multiplica-
tion), andW c,Wp, andWq are the learnable parameters that
adjust the degrees affected by closeness, period and trend,
respectively.

Finally, the predicted value at the tth time interval, denoted
by P̂XK

t is defined as

P̂XK
t = tanh(PXK

Res + PX
K
Ext) (6)

where tanh is a hyperbolic tangent that ensures the output

values are between −1 and 1. It should be noted that P̂XK
t is

actually
[
V̂0
, V̂1

, · · · , V̂K
]T
. We can get the final solution

of the original problem 1 by averaging the elements corre-

sponding to the same region ri in
[
V̂0
, V̂1

, · · · , V̂K
]T
. Our

PST-ResNet can be trained to predict PXK
t by minimizing the

mean squared error between the P̂XK
t and PXK

t :

L (θ) =
∥∥∥PXK

t − P̂X
K
t

∥∥∥ (7)

where θ are all learnable parameters in the PST-ResNet.
Algorithm 1 outlines the PST-ResNet training process.
We first transform every training instance by a permutation
operator (line 1) and then construct the training instances
from the permutated sequence data (lines2-7). After that,
PST-ResNet is trained (lines 8-12) via backpropagation and
Adam [38].

B. SWARM INTELLIGENCE BASED SC-DSCS
As one of the popular swarm intelligence tools, cuckoo search
(CS) is powerful for solving complex global optimization
problems and has been successfully applied to the researches
of V2X related technology. However, CS is a highly random
search by employing the Levy flight mechanism, and infor-
mation of good nest locations (solutions) that have been found
is not fully utilized in the search process. The step length does
not change according to the position of the nest due to the
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Algorithm 1 PST-ResNet Training Algorithm

Input: Historical observations:
{
V0

0,V
0
1, · · · ,V

0
n−1

}
external features: {E0, · · · ,En−1}
lengths of closeness, period, trend sequences:
lc, lp, and lq
period: p; trend q.

Output: Learned PST-ResNet model
// permutation operation

1 Permutate
{
V0

0,V
0
1, · · · ,V

0
n−1

}
into{

PXK
t | t = 0, · · · , n− 1}

2 D←− ∅

3 for all available time interval t(1 ≤ t ≤ n − 1) do
4 Sc =

[
PXK

t−lc ,PX
K
t−(lc−1)

, · · · ,PXK
t−1

]
5 Sp = [PXK

t−lp·p,PX
K
t−(lp−1)·p

, · · · ,PXK
t−p]

6 Sq = [PXK
t−lp·q,PX

K
t−(lq−1)·q

, · · · ,PXK
t−q]

//PXK
t is the target at time t

7 put an training instance({SC , Sp, Sq,Et}, PXK
t )

into D
// train the model

8 initialize all learnable parameters θ in PST-ResNet
9 repeat
10 randomly select a batch of instancesDb fromD

11 find θ by minimizing the objective (7) with Db
12 until stopping criteria is met

fixed step length control mechanism, which results in a lack
of adaptability. These defects limit the performance of CS in
convergence efficiency. In order to improve the convergence
rate and optimization precision of CS, we proposed the sub-
population collaboration based dynamic self-adaption cuckoo
Search (SC-DSCS) in [39]. In this paper, the specific steps of
SC-DSCS are briefly described, and some evaluation results
of computational complexity are added.

The specific steps of SC-DSCS are described as follows.
Step 1: Initialization setting. There is a population

of N birds, and N nest locations (solutions) X t ={
xt1, x

t
2, · · · , x

t
N

}
, t = 0. Then a special subpopulation con-

sists ofM birds is isolated from the population.
Step 2: Optimal nest sequence generation. The N nest

locations X t are arranged in descending order in terms of
the fitness value (objective function value). The first K
elements are extracted to form the optimal nest sequence
X t
Best = {x

t
best1

, xtbest2 , · · · , x
t
bestK

, xtnew,where x
t
new is cal-

culated according to (8), and K < M . The remaining nest
sequence is X t

Res = {x
t
res1 , x

t
res2 , · · · , x

t
resN−K }.

xtnew = 1
/
3
(
λ1 ∗ xtbest1 + λ2 ∗ x

t
best2 + λ13 ∗ x

t
best3

)
(8)

Step 3: Searching operation. The N birds update their nest
locations according to (9-13). For each of the M birds in
the special subpopulation, the start location xti is succes-
sively chosen from X t

Best in a round-robin manner. For the

rest (N-M) birds in the population, each bird chooses a dif-
ferent element in the X t

Res as the start location xti . αmin and
αmax are the minimum step length control and maximum step
length control respectively. dmax is the maximum distance
between xtnew and other nest locations. During Levy flight,
the search direction is uniformly distributed, and the search
step length s is obtained by Mantegna’s algorithm, which is
given in (12), where u and v obey the normal distribution,
i.e. u ∼ N

(
0, σ 2

u
)
, v ∼ N

(
0, σ 2

v
)
, and σ u = 1. σ v is

calculated by (13), where 0(1 + β) is the gamma function,
and 1 < β ≤ 3. Then, compare the fitness of X t , xtnew and
X t+1. The best nest location xt+1best is chosen and entered the
next step.

xt+1i = xti + αj ⊗ Levy (λ) (9)

αj = αmin + (αmax − αmin)d i (10)

d i =

∥∥xti − xtnew∥∥
dmax

(11)

s =
u

|v|1/β
(12)

σ v =

{
0(1+ β) sin(πβ/2)

0 [(1+ β)/2]β2(β−1)/2

}1/β
(13)

Step 4: Selection of nest locations. Generate the ran-
dom number r ∈ [0, 1], which obeys the uniform distribu-
tion. Contrast it with the detection probability Pa = 0.25.
If r > Pa, change xt+1i randomly, otherwise unchanged. Test
the changed nest locations, compare them with locations of
the last step and update the best nest location xt+1best .
Step 5: Judgment operation. Calculate the fitness value of

xt+1best and judge whether it achieves the termination condition.
If it is satisfied, xt+1best is the optimal solution, otherwise, return
to step 2 and start the next iteration.

It can be found from the above steps that unlike all birds in
the original CS, which perform the same search rules, a spe-
cial subpopulation is isolated in SC-DSCS, which will make
the best use of good nest locations, and an additional new nest
location is created based on the comprehensive assessment of
the first three best nests, the idea of which is borrowed from
Grey Wolf Optimizer (GWO) that the alpha (best candidate
solution), beta and delta have better knowledge about the
potential location of prey (see step2). Adaptive step length
control is adopted to improve the adaptability of SC-DSCS
(see step 3).

V. EVALUATIONS OF PST-RESNET AND SC-DSCS
A. PST-RESNET
It can be seen from Fig. 21 that PST-ResNet is not sensitive
to how the regions are segmented. Therefore, we can use the
data set provided in [22] for evaluating ST-ResNet to evaluate
PST-ResNet. The advantage of this is that the existing results
of ST-RESNET can provide a reference for the performance
evaluation of PST-ResNet.

The TaxiBJ dataset (see Table 3) is used to predict the
inflow and outflow of each region in the 32 × 32 grid
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TABLE 3. Dataset (holidays include adjacent weekends).

regions of Beijing. It means that in this evaluation, the time-
varying attributes C are inflow and outflow, which are the
number of taxi entering and leaving a region over 30 minutes.
TaxiBJ dataset includes trajectory data of the taxicab GPS
and meteorology data in Beijing from four time intervals: 1st
Jul. 2013 - 30th Otc. 2013, 1st Mar. 2014 - 30th Jun. 2014, 1st
Mar. 2015 - 30th Jun. 2015, 1st Nov. 2015 - 10th Apr. 2016.
The data processing and the selection of hyperparameters
are the same as those of ST-ResNet (For details, see [22]).
The difference is that based on the processed data in the
ST-ResNet evaluation, we first convert the 32 × 32 inflow
and outflow matrices corresponding to each time interval
into two 1 × 1024 vectors, and then carry out 9 times
(i.e. K = 9) of permutation operations and transform the
inflow and outflow matrices into 10× 1024. In order to com-
pare the impact of different permutations on the prediction
results, we select 1×1024, 2×1024, · · · , 10×1024 elements
from the 10× 1024 matrices to form training samples, so as
to obtain different models and prediction performance.

We first give the result of PST-ResNet on TaxiBJ under
different models and the number of permutations, as shown
in Table 4.

The evaluation Metric is also the root mean square error
(RMSE). We give 4 variants of PST-ResNet with different
layers and different factors. Taking L12-E for example, it con-
siders all available external factors and has 12 residual units,
each of which is comprised of two convolutional layers.
Based on the results in Table 4, it is not that the larger K is,
the better the prediction accuracy is. We need to try different
permutations to get better prediction results and models.

We compare the results of our PST-ResNet with the results
of other 6 baselines (includingHA,ARIMA, SARIMA,VAR,
SA-ANN, and DeepST) and ST-ResNet provided by [22],
as shown in Table 5. The best error result of ST-ResNet
given in [22] is 16.69, while PST-ResNet further reduces
it to 13.37. The reason why ST-ResNet can achieve better
prediction accuracy than baselines is partly that the network
architecture design considers the spatial dependency between

TABLE 4. Result of PST-ResNet on TaxiBJ under different models and
number of permutations.

TABLE 5. Comparison among different methods on TaxiBJ.

different regions, so it could be inferred that although the
replacement operation disrupts the arrangement relationship
of different regions, the space dependencies can still be cap-
tured by PST-ResNet. Permutation statistical methods are
data-dependent and provide either exact or highly-accurate
approximate probability values [40]. This may be why PST
ResNet performs better.

The evaluation results show that by introducing the per-
mutation operator, PST-ResNet not only solves the problem
that ST-ResNet cannot be applied to the prediction of spatio-
temporal data in the case of irregular segmentations but
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TABLE 6. Evaluation of computational complexity.

also further improves the prediction accuracy of ST-ResNet,
which makes PST-ResNet a powerful tool for 5G-V2X net-
work optimization.

B. SC-DSCS
The performance of SC-DSCS has been evaluated based on
nine benchmark functions in [39]. Compared with CS, PSO,
ABC, and DE, experimental results show that the SC-DSCS
algorithm has better convergence speed and optimization pre-
cision. The comparison results of SC-DSCS and RC-SSCS
proposed in [37] in terms of computational complexity are
given here. In order to make the evaluation result of computa-
tional calculation complexity more intuitionistic, the running
time required for the algorithm to search the specified preci-
sion value is compared under the same running environment
(a PC running Matlab). The shorter the running time is, the
higher the efficiency of the algorithm is. The nine benchmark
functions are the same as in [39].

Results are shown in Table 6. SC-DSCS-noGW means
SC-DSCS without Grey Wolf (i.e. without xtnew). In F2 func-
tion evaluation, RC-SCCS cannot reach the accuracy value of
1.0e-4 within a preset time limit and converges to 21.53 when
the average operation is 54.2s. In F8 function evaluation,
RC-SCCS cannot converge to −10000 within a preset time
limit and can converge to −7000 at an average running time
of 4.2s, and to 17.50 at 17.88s. It can be seen from the
running time ratio of SC-DSCS and RC-SSCS that SC-DSCS
is significantly better than RC-SSCS. SC-DSCS performs
slightly better than SC-DSCS-noGW. Existing evaluation
results show that SC-DSCS is an excellent CS variant, which
provides a powerful tool for solving complex optimization
problems in subsequent research of 5G-V2X.

VI. CONCLUSION
In this paper, we present a cooperative autonomous driv-
ing oriented MEC-aided 5G-V2X prototype system design,
the rationale behind the design choices and the field
test results of the prototype system. As we have demon-
strated, the combination of 5G-V2X, MEC and cooperative
autonomous driving can be pretty powerful. In order to reduce
the CAPEX and OPEX costs of the commercial 5G-V2X
networks and solve the complex optimization problems in
the subsequent researches, we proposed the PST-ResNet and

SC-DSCS, which are two widely adaptive AI-based tools.
The evaluation results verify the excellent performance of
these two tools. In the future, we will try to introduce cogni-
tive radio, multi-hop communication, and other technologies
into our experimental system, and use permutation static
methods and Markov chain framework to analyze these two
tools theoretically.
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