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ABSTRACT In this paper, we propose a new hybrid Local Binary Pattern (LBP) based on Hessian matrix
and Attractive Center-Symmetric LBP (ACS-LBP), called Hess-ACS-LBP. The Hessian matrix provides
the directional derivative information of different texture regions, while ACS-LBP reveals the local texture
features efficiently. To obtain the macro- and micro-structure textural changes, Hessian matrix is calculated in
a multiscale schema. Multiscale Hessian matrix presents the intrinsic local geometry of the texture changes.
The magnitude information of the Hessian matrix is used in the ACS-LBP method. A cross-scale joint
coding strategy is used to construct Hess-ACS-LBP descriptor. Finally, histogram concatenation is carried
out. Extensive experiments on eight texture databases of CUReT, USPTex, KTH-TIPS2b, MondialMarmi,
OuTeX TC_00013, XU HR, ALOT and STex validate the efficiency of the proposed method. The proposed
Hess-ACS-LBP method achieves about 20% improvement over the original LBP method and 1%-11%
improvement over the other state-of-the-art hand-crafted LBP methods in terms of classification accuracy.
Besides, the experimental results show that the proposed method achieves up to 32% better results than the
state-of-the-art deep learning based methods. Especially, the performance of the proposed method on ALOT

and STex datasets containing many classes is remarkable.

INDEX TERMS Hessian matrix, feature extraction, local binary patterns, texture classification.

I. INTRODUCTION

Texture analysis is one of the basic operations which is used
in the fields of image processing, pattern recognition, and
computer vision. The texture is one of the most important
characteristics to detect objects in the region of interest in the
image. It is aimed to obtain the distinctive features of different
classes in images by texture analysis. Different textures in
the images can be classified by obtaining unique features
that define each class. However, rotation, illumination, and
perspective changes, especially in the same class in images,
are the most fundamental problems that make texture analysis
and classification difficult [1]. Therefore, analyzing images
using only features such as color and edge information does
not give the desired results. As a result, effective results have
been obtained using feature extraction methods that analyze
images with different and powerful approaches. The main
property of these methods is that they can effectively apply
local texture representations throughout the image.
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Texture classification generally includes two significant
subproblems: texture representation and classification [1].
Texture representation, that is the extraction of the base fea-
tures that define the texture, is the basis building block of tex-
ture analysis. The extraction of strong and distinctive textural
primitives has an important effect. If texture representation
is not performed effectively by feature extraction, the desired
results will not be obtained even if the best classifier is used.
For this reason, the texture classification problem continues
to be an area of intense interest due to the use of different
imagers and constantly developing imaging technologies.
The need for the development and use of effective texture
analysis and representation methods continues, especially in
applications such as medical image analysis, content-based
image retrieval, aerial imagery analysis, biometrics and face
recognition. An excellent review of the texture analysis and
representation paradigm can be found in [1]. As a result,
a representative texture representation and modeling method
are developed in this paper.

In this study, the 2-D Hessian matrix-based LBP method
(Hess-ACS-LBP) was developed in order to better character-
ize the intra-class and inter-class variation in texture images.

54415


https://orcid.org/0000-0002-6828-755X
https://orcid.org/0000-0003-1374-1417
https://orcid.org/0000-0002-8174-6167

IEEE Access

N. Alpaslan, K. Hanbay: Multi-Resolution Intrinsic Texture Geometry-Based LBP for Texture Classification

The Hessian matrix was calculated using Gaussian derivative
filters in Hess-ACS- LBP method. The sigma o parameter
used in the design of Gaussian derivative filters was evaluated
using different values. Thus, for each o value derivative filters
were designed and the Hessian matrix was calculated using
these filters. Consequently, by calculating different Hessian
matrices for different o values, second-order differential fea-
tures of texture images in multiple scales were obtained. The
Hessian matrix was calculated for each o value and the 2-D
joint histogram was computed using the LBP of the gray level
image. The 2-D joint histogram with different resolutions was
concatenated to obtain the final feature vector. The main con-
tributions of the proposed method are highlighted as follows:

e The intra-class and inter-class variation of texture pat-
terns with local and regional pixel variations were determined
by using the Hessian matrix.

e Differential texture characterization was performed with
the multi-resolution Hessian matrix, which works as a cur-
vature tensor, containing information on all directions. The
obtained differential features were combined with the Hess-
ACS-LBP method and textures were effectively classified.

e As an alternative to similar hybrid LBP methods, a novel
LBP method has been developed with higher classification
performance and lower computational complexity.

The outline of the study is given below. Section II sum-
maries previous texture representation and analysis litera-
ture. A brief review of the related methodology used in this
paper, including the Hessian matrix and LBP, is given in
Section III. Section IV describes the proposed texture clas-
sification method. In Section V, the experimental results are
performed on different datasets and the results of the pro-
posed method are compared with the literature. In Section VI,
we present a discussion on the classification results. Conclu-
sions and future work are summarized in Section VII.

Il. PREVIOUS WORKS

The basic characteristics of texture structures in the image
must encode and analyze to perform effective image analysis.
In the literature, there are many texture feature extraction
methods [2]. These methods are generally divided into four
categories: statistical methods [3]-[5], model-based meth-
ods [6], [7], structural methods [8], [9] and filter-based meth-
ods [3], [10]. Statistical and model-based methods often ana-
lyze spatial relations of pixels based on small pixel neigh-
borhoods. The best known of these methods are gray level
co-occurrence matrices (GLCM) [11], Markov random field
model (MRF) [12] and local binary patterns (LBP) [13], [14].
Structural methods characterize the texture based on regular
layouts of textural primitives [8]. The classification of images
with regular texture patterns, with structural texture analy-
sis methods using morphological operators, gives effective
results [9], [15]. Many texture analysis and classification
methods have been developed by using filter-based methods
such as Wavelet transform [16], Gabor transform [17], [18]
and filter banks [3], [10]. Multiple subbands of images are
obtained by using different main wavelet functions in wavelet
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transform-based methods. Different textural information can
be obtained through multiple resolution analysis. Subband
images are modeled with General Gaussian Model (GGM)
or Gaussian Mixture Model (GMM). Thus, parameters with
reduced size and distinctiveness are obtained. However,
the high computational cost and the low classification per-
formance in noise conditions are the major weaknesses of
the wavelet transform method. Gabor filters are linear filters
used in signal analysis. Gabor filters with different scales and
angles designed similarly to the human vision system can
perform rotation invariant texture analysis [17]. In another
recent study in [19], image classification was performed
using texture features obtained from Gaussian derivative fil-
ters. Gaussian (DOG) filters and the difference of offset Gaus-
sian (DOOG) filters were constructed and filter responses
were obtained by convolution. Both the filter responses cor-
responding to the image region and the responses of dif-
ferent texture boundaries were obtained with these filters.
The distinctive and unique features were calculated thanks to
this data. Apart from these methods, very successful texture
classification studies have been carried out with methods such
as histogram-oriented gradients (HOG) and co-occurrence
histogram-oriented gradients (CoHOG) [20], [21] and local
directional number pattern (LDN) [22].

As it is known, texture classification algorithms consist
of two main steps. The first step is to extract the charac-
teristic textural features. In the second step, the classifica-
tion process is carried out by using the obtained features to
distinguish the different texture types. In recent years, fea-
ture extraction and classification procedures have been per-
formed together using convolutional neural networks (CNNs)
approaches. A typical CNN architecture usually consists
of connecting multiple convolution layers, followed by the
fully connected layers and the SoftMax classifier. Unlike
hand-crafted features, fully connected layer features learned
from CNN contain high-level semantic information [23].
Therefore, effective texture classification studies have been
performed using CNN architectures [24], [25]. Qi et al. [24]
developed the CNN architecture as a feature extractor to
classify dynamic texture and scene images. They calculated
the first and second-order statistics on the deep characteristics
of each image. By applying the proposed Transferred Con-
vNet Feature (TCoF) scheme in two different ways, the fea-
tures of consecutive video frames are calculated and it is
given as an input to the classifier. Talo et al. have been
classified as normal and abnormal Magnetic resonance (MR)
images by deep transfer learning methods [26]. ResNet34 was
used as a deep learning model. The boundaries and position
of the object at different positions were calculated using
region-based convolutional neural networks (R-CNNs) for
real-time object detection [27]. When deep learning-based
studies are examined, it is seen that there are some superior
and weak points. Firstly, high accuracy and detailed descrip-
tive information are the most important advantages. However,
the high computational cost, the need for high dimensional
data for the learning process, and the hardware requirement
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seem to be the most important weaknesses. Therefore, the
need for conventional feature extraction methods still con-
tinues. Therefore, studies on the development of traditional
and powerful methods such as Local Binary Pattern, wavelet
transform, curvelet transform and Gabor transform are
ongoing [28].

The LBP, which is developed by Ojala et al., is an effective
gray-level texture operator that calculates the spatial charac-
teristics of gray-level images [13], [14]. Many LBP based
methods have been proposed to improve the performance of
this method [29]. Thus, LBP methods with low computa-
tional complexity and high discrimination power have been
developed. The developed methods make the LBP method
invariant to noise, rotation changes [30]. As a result, it is used
extensively in areas such as texture classification [31], smoke
detection [32], facial expression recognition [33]-[35] and
medical image processing [36].

The center-symmetric LBP (CS-LBP) method developed
by Heikkila et al. compares the central symmetric pairs of
pixels instead of comparing the central pixel with its neigh-
bors [37]. The dominant LBP (DLBP) method was devel-
oped by selecting dominant patterns from all the patterns in
the image experimentally [38]. The DLBP method is more
resistant to rotation, noise, and histogram equalization sit-
uations than the LBP method. In the Weber Local Binary
Pattern (WLBP) method, combines the advantages of Weber
Local Descriptor and LBP [39]. The differential excitation
and the LBP code of input image were obtained according to
both methods. The WLBP histogram was constructed using
these two images. Kaya et al. proposed two different LBP
descriptors [40]. The first method is based on modeling the
relationship between 8 adjacent pixels. The comparisons are
made not only between the adjacent neighboring pixels but
also with the neighbors defined by the distance parameter.
In the second method, a different approach is used to deter-
mine micro-patterns. Assuming that some texture patterns
may not be observed in circular searches, pixel relationships
were analyzed according to different angle values. The local
binary pattern for color images (LBPC) method utilizes a
plane to threshold color pixels in the neighborhood of a local
window into two categories [41]. To increase the distinctive
ability of the method, the LBP of the hue component of HSI
color space was utilized (LBPH). Lee et al. [42] proposed
the local color vector binary patterns (LCVBPs) method for
the face recognition problem. The LCVBPs method consists
of two basic parts, color norm patterns, and color angular
patterns. The color angular pattern computes the high distinc-
tive features of the two-color spectrum and derives the spa-
tial correlation of the local color texture. The local concave
and convex microstructure patterns (LCvMSP and LCxMSP)
have been developed to perform robust texture analysis [43].
Local concave-and-convex features allow all triplets to be
defined and divided as concave and convex micro-structures
around the central pixel. These features reveal the local
fluctuations of texture patterns and express changes. The
obtained concave and convex features are thresholded using
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binary thresholding functions. Thus, the pixels along a closed
path around the central pixel are characterized in detail.
El Khadiri et al. [44] developed two novel LBP methods
called repulsive and attractive local binary gradient contours
(RLBGC and ALBGC). The RLBGC and ALBGC methods
encode differences between local density values around the
center pixel of the 3 x 3 gray-scale image patch. In addition,
the robustness of the method has been increased by modeling
the relationship between the average local and average global
gray levels and the central pixel values. In a recent method
in [45], LBP and principal curvatures were used together
and a different perspective is given to the LBP literature.
The principal curvatures of the gray level image calculated at
different scales and rotation invariant uniform LBP LBP;Dif‘I%
were used together. A 2-D joint histogram was constructed
using LBP matrices with the principal curvatures calculated
on each scale. All the histograms were concentrated to obtain
the PCLBP feature. The experimental results show that the
use of differential operations with LBP method positively
effects the classification performance [45].

lIl. RELATED WORK

In this section, we present an overview of the Hessian
matrix and the LBP-like methods developed for the texture
images. Merits and demerits of each method are explained
below.

A. HESSIAN MATRIX

In many computer vision and image processing applications,
it is important to calculate distinctive and explicit features
from the images. The first step is the detection of different
points in the image. These can be a corner, edge or an
intensity blob of an object in the image. In the next step,
the area around the detected point is defined. In the last
step, matching is done. In the photographs taken from two
different perspectives of the same scene, the information of
the same point is matched using similarity criteria in both
images. There are different algorithms for performing these
steps. From the point of view of the texture classification
problem, the focus will be the detection step. The Hessian
matrix comes to mind at this point. The Hessian matrix was
used by some researchers to detect and analyze the specific
shapes [46].

The Hessian matrix acts as a curvature tensor containing
information in all directions. However, the direction with
the lowest and highest curvature is important. The informa-
tion is available in the eigenvectors and eigenvalues of the
Hessian matrix. In the literature, by analyzing the eigenvec-
tor and eigenvalue of the Hessian matrix, local geometri-
cal feature informations of the images were extracted [47].
The Hessian matrix contains geometric information about
the image surface. The determinant of the Hessian matrix
expresses the positive or negative value of the curvature of
the surface. The geometrical labeling and classification of
the image surface are carried out with the signs of surface
curvatures [48]-[50].
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B. TRADITIONAL LOCAL BINARY PATTERN (LBP)

In the original LBP method, the center pixel is determined by
comparing it with its neighboring pixels [14]. The LBP code
is calculated as in Eq. (1).

P—1
LBPpr =) s(g) — 8)2" (0
p=0
where g represents the gray level intensity value of the center
pixel and g, represents the value of the respective neighboring
pixel of the center pixel. The P is the number of neighbors and
R is the radius of the circular neighborhood. The s(x) is the
indicator function, defined as in Eq. (2).

1 x>0

str) = 0 x<O @
Different versions of the LBP method have been developed
to improve the efficacy in different textural conditions [14].
These are uniform, rotation-invariant, and rotation-invariant
uniform LBP methods. The uniform value of an LBP pattern
refers to the number of circular spatial transitions and is
defined as in Eq. (3).

U(LBPp g) = |s(gp—1 — 8c) — 5(g0 — )|

P—1

+ > |s(ep — 8e) — (g1 —g0)| 3

p=1
In Eq. 3, if U < 2, LBP patterns are assigned to uni-
form patterns. In other cases, LBP patterns are classified as
non-uniform patterns. To achieve the rotation invariance, the
rotation invariant LBP is defined as in Eq. (4).

P—1
; N - U(LBP <2
LBPf;’f‘,% _ IEO (gp — &) UWLBPppR) < @
P+1 otherwise

C. ATTRACTIVE AND REPULSIVE CENTER-SYMMETRIC
LOCAL BINARY PATTERNS (ACS-LBP AND RCS-LBP)

There are many LBP methods based on pixel neighborhoods
that are considered symmetrically around the central pixel.
Although these methods have many advantages, the deter-
mination of the appropriate threshold value is an important
problem. The threshold value leads to undesirable sensi-
tivities especially in flat image regions and images with
shadow. Additionally, local and global textural features in
the image can be ignored by bringing the center pixel to
the foreground. Besides, the conventional LBP operator has
some disadvantages [51]. Although the two center pixels have
different gray-scale values, they have the same LBP code as
shown in Fig. 1. This situation reduces the discriminative
ability of LBP, LTP, and CS-LBP for texture classification.
Besides, it makes LBP sensitive to image rotation, to lose
local textural information due to its quantization procedure.
el Merabet et al. [51] proposed two novel LBP methods called
ACS-LBP and RCS-LBP to solve these problems. In these
methods, the relationship between the center pixel and the
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Sub-image (a) Sub-image (b)

LBP=11110000
CS-LBP=0000

ACS-LBP=1110000
RCS-LBP=1000000

LBP=11110000
CS-LBP=0000

ACS-LBP=1000000
RCS-LBP=1110000

FIGURE 1. lllustration of the code of LBP, CS-LBP, ACS-LBP and RCS-LBP
patterns of central pixels in the two sub-images.
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FIGURE 2. Example of attractive-and-repulsive micro-structures along
with the vertical and horizontal directions, and the two diagonal
directions.

center-symmetric pairs of the pixels in the local window is
expressed. Thus more stable results and texture modeling
were obtained. The proposed methods are similar to LCvMSP
and LCxMSP methods. However, ACS-LBP and RCS-LBP
methods compare the same four pairs of center-symmetric
pixels with the value of the center pixel. The Attractive and
Repulsive Binary Thresholding Functions (ABTF and RBTF)
kernel functions were used for this comparison. The ABTF
kernel function is defined as in Eq. (5) [51].

§(gir 8cr &) = p(gi» 8c) ® p(g), &)

1, ifgi>gcand g > gc
= . (%)
0, otherwise
where g, represents the gray value of the central pixel, g;
and g; represent the gray values of the neighboring pixels of
the central pixel. The RBTF kernel function is defined as in
Eq. (6) [51].

C(gl'v gc: g]) = ﬁ(giv gc) ® ﬁ(gj’ gc)

1, ifgi<gcand g < g
= . (6)
0, otherwise
Fig. 2 shows neighborhood relations of ACS-LBP and
RCS-LBP methods. As seen in Fig. 2, the methods express
the four triple neighborhood relations, namely horizontal,
vertical and two diagonal directions. These methods also
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model the relationship of these pixels to the center pixel
using three virtual pixels. The first virtual pixel is the local
median value (A) calculated over the 3 x 3 neighborhood
of the central pixel. The other two virtual pixels are the
average value of the entire image and the average gray-scale
value of the sub-image taken in 3 x 3 dimensions. A total
of four triple neighborhood relationships, horizontal, vertical
and two diagonal, and virtual pixels are compared with the
central pixel using the Heaviside step function p(.). There
is no need to define any threshold value in these methods.
The ACS-LBP and RCS-LBP features are computed in the
following form using both the £ and ¢ kernel functions and
the Heaviside step function p [51].

ACS — LBP3x3(X) = Wi gACS—LBP 7
RCS — LBP3x3(X) = WA gRCS—LBP 8)

In Eqs. (7) and (8), superscript T and w7 denotes the trans-
pose operation and a vector of weighting factors, respec-
tively. w7 vector is chosen arbitrarily and it is defined as
in Eq.(9).

wl = [26 25 242392 5! 20] ©)

The kernel functions defined in Eqs. (7) and (8) can be
rewritten as follows [51]

L
2
ACS — LBP(x;,yc) = £(gp, 8c» &pyp2) X 2P
p=0
P—1
+;0(P—+1 ng+gc ,8e)x 2P/
p=0
M N
> > I(m,n)
=1 n=1
+ (g0 x 20T
+p(, go) x 2P/DF2 (10)
L
2
RCS — LBP(xc, ye) = ) {(8p 8e» 8prpy2) X 2°
p=0
P—1
+p8e 5T > gptec |)x2?
p=0
M N
> > I(m,n)
m=1n=1 (P/2)+1
, 2
+ p(ge M x N ) X
+ p(ge, ) x 2P/2+2 (11)

where, x. and y. represent the coordinates of the cen-
tral pixel g., while g,(p € {0,1,..., P —1}) denotes the
grayscale values of the peripheral pixels. k represents the
number of ACS-LBP and RCS-LBP patterns. ACS-LBP and
RCS-LBP labels are generated for all pixels of the image, and
then histograms representing the texture are generated as in
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Egs. (12) and (13) [51].

hacs-1p(k) = ) ) 8(ACS — LBP(x,y), k) ~ (12)

X

hres—1ap(k) = ) Y 8(RCS — LBP(x,y), k)~ (13)

X y

IV. PROPOSED METHOD

The effective texture analysis can be carried out by using
different characteristics of texture images. In particular, the
differential features in different scales and directions are
less affected by rotation and noise conditions. In this study,
a novel LBP method has been developed using the statis-
tical texture analysis capabilities of the ACS-LBP method
which is one of the up-to-date LBP methods and differ-
ential texture information of the Hessian matrix together.
In the literature works, eigenvalues of the Hessian matrix
were used to improve the classification performance of LBP
models [47]. However, as far as we know, this work is
the first in applying magnitude information of the Hessian
matrix to state-of-the-art LBP models by means of multi-
scale analysis for texture classification. Similar to the cod-
ing strategy of ACS-LBP, the Hessian matrix is converted
into a binary string and Hessp, p denotes the binary map.
The proposed LBP based method is called Hess-ACS-LBP.
The ACS-LBP and Hessp, p are joined to form a 2-D joint
feature histogram. The proposed method doesn’t contain any
preprocessing algorithm such as normalization and filter-
ing. Initially, the input image is converted from RGB to
grayscale before processing. Then Hessian matrix and LBP
features are calculated on grayscale images. The LBP fea-
tures and Hessian matrix of input image are computed and
used together to perform multi-resolution texture analysis.
Our Hess-ACS-LBP descriptor and its multiresolution frame-
work are shown in Fig. 3. The proposed Hess-ACS-LBP
method consists essentially of three steps: (1) calculation of
Hessian matrix and rotation invariant uniform LBP features,
(2) independent constructions of Hess-ACS-LBP descriptor,
(3) cross-scale joint coding and texture classification.

A. CALCULATION OF HESSIAN MATRIX

In mathematics, the Hessian matrix is a square matrix of
second-order partial derivatives of a scalar-valued function.
Let f (x) be the intensity function of an / image. For the (X, y)
pixel point of a 2-D image, the Hessian matrix of the image
is defined as in Eq. (14).

L le(x,y) 321()6,)’)

x =T o5 = Toxay

_ 9x2 e axay

H(I(X, )’)) - Lo 821()6,)7) _ azl(xv y) (14)
YT Taxay VT a2

where Iy, Iy, Iy, and I, express the four second-order partial
derivatives of the original 2-D image. Gaussian derivative
filters are used to compute the Hessian matrix of the image.
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2-D joint
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Hess — ACS - LBP (PIR)+(PI Ry) :

FIGURE 3. The flowchart of the proposed Hess-ACS-LBP method with cross-scale joint coding.

The Gaussian function is given as [20]:

2 2
()

Glx,y,0) =7 s5)

Second-order horizontal, vertical and diagonal derivatives of
Gaussian function are defined as:

1 x2 7x +y )
o = 2ot (? - 1) 2"2 10
2+y
Gy = %e ~27) (17)
1 2 _x +y
Gy = ol (% - 1> &) (13)

The horizontal, vertical and diagonal derivatives of the
gray-level texture images are calculated by convolution as
follows:

L =1 % Gy (19)
Ly =1 % Gy, (20)
Ly = I %Gy, @n

B. CONSTRUCTION OF HESS-ACS-LBP DESCRIPTOR

The differential information of the Hessian matrix can be used
with different computations to provide valuable information
about the image surface [52]. In literature, the maximum
and minimum curvature directions of the pixel points can be
determined with the eigenvalues and eigenvectors of the Hes-
sian matrix extensively [48]. Thus, local structural features of
the image can be obtained. The structural feature of the image
has been analyzed according to the relationship between the
eigenvalues of the Hessian matrix. Then the image surface
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is classified and distinctive points are determined according
to the sign of the eigenvalues. Besides, the geometric struc-
tures of pixels can be analyzed using a trace with the deter-
minant of the Hessian matrix [18]. Therefore, information
such as curvature, multi-scale image derivative and surface
type, which provides highly distinctive information from the
Hessian matrix, was used in image analysis. The overview of
the proposed method is shown in Fig. 3.

In this study, texture analysis was carried out using up-
to-date LBP method with the Hessian matrix which has strong
differential information hybridly. 2-D joint histogram was
obtained by using magnitude which is obtained from the
Hessian matrix together with ACS-LBP method. The I, and
I,y obtained from the Hessian matrix calculated in Eq. (14)
are the second-order horizontal and vertical derivative on the
scale 0. The magnitude is computed for a texture image and it
is shown in Fig. 4. In this study, the magnitude of the image is
computed only with the second-order horizontal and vertical
derivatives of the Hessian matrix as shown in Eq. (22).

Mag = /1% + I3,

To encode the LBPI’;”I% and Mag hybridly and distinctly, the
operator in the ACS-LBP method was used [51]. However,
unlike the ACS-LBP method, the magnitude (Mag) which
computed from the Hessian matrix is used in the following
form:

(22)

Hess — ACS — LBP(x;, yc)p g
.
2
= Z &(gp> 8cr gp+p/2) X 2P
p=0
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1

Original

1

FIGURE 4. The magnitude information of the texture image with Gaussian standard deviation o = 1.

P—1

to(o— D e +ac|. g x 2™
p=0

P+1

M N
> Z Mag(m, n)

m=1 n=

M N
+p(h, go) x 2P/D+2 (23)

+p( (P/2)+1

,8c) X2

There is a significant difference between Eq. (10) in
section 2 and Eq. (23) used in the proposed method. The
equation in the ACS-LBP method uses the Attractive Binary
Thresholding Function (£(.)) to calculate local pixel neigh-
borhoods through input texture image. In our method, local
pixel neighborhoods are encoded by the Mag instead of
input image. Thus, the Hessian of the image is actively used
to reveal the relationship between the center pixel and the
peripheral pixel. Thanks to the distinctive local difference
information which is provided by the Hessian matrix, distin-
guishing pixel differences were obtained. It should be pointed
that ABTF kernel function in Eq. (23) uses the magnitude
Mag to compare the same four pairs of center-symmetric
pixels with the value of the center pixel. Heaviside step func-
tion p(.) also uses the magnitude Mag to extract four triple
neighborhood relationships compared with the central pixel
in the same way. Furthermore, the proposed method does
not require any threshold parameter, similar to ACS-LBP
method. The Hessian matrix is calculated in a multi-scale
structure and the responses of the different derivative filters
in the image are obtained. Thus, the microstructures in the
horizontal and vertical directions are revealed.

Similar to LBP;’”I%, Hess — ACS-LBP(x,, yc)”"2 7 corre-
sponds to the rotation-invariant pattern of Hess — ACS-LBP
(xc, ye)p g- In this study, the proposed Hess — ACS-LBP

(xcs yc)”“2 7 operator is used with LBP}! iu2 operator. Thus,
the joint information of the Hess — ACS- LBP(xc, yc)””2 7

and LBP;}”,% is encoded. As a result, a 2-D joint histogram
is generated, denoted by Hess-ACS-LBP.

C. CROSS-SCALE JOINT CODING AND REPRESENTATION

The high classification accuracy can be achieved using
multi-resolution texture analysis. Three different Gaussian
derivative filters are used to compute the Hessian matrix
of the texture image. The diameter of these filters is
determined by the Gaussian standard deviation o value.
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The microstructures of the image in horizontal and verti-
cal directions can be obtained at the pixel level when the
o value is selected in the appropriate range. In this study,
the magnitude with three different o values was used in
a cross-scale structure with the rotation-invariant uniform
local binary pattern (LBP), ’”2) method. The multi-resolution
texture analysis was carried out with different (P,R) and o
values. To reduce the feature vector size of the proposed Hess-
ACS-LBP method, only the radius R and Gaussian standard
deviation o values were modified. The value of the sampling
neighborhood P is chosen as 8. The x. and y., in Eq. (23),
which denote the coordinates of the central pixel g, are not
shown in the following steps. The cross-scale joint coding is
performed as follows:

1) LBP{2 and Hess — ACS-LBP(x,y)p%~" with
(P1,R1) and o] are joined. The obtained result is
denoted as Hess — ACS- LBP;1 R

2) In Hess — ACS- LBPP Ry 01 value is replaced by oo,
and the new term is denoted as Hess — ACS- LBP;Z1 R

3) These two variants are combined in concatenation and
the result is defined as Hess — ACS- LBPff1 ;‘72).

4) Similar to step 2 and 3, another variant with (P1 R»), 07
and o3 is obtained, and it is denoted by Hess —

ACS-LBPy 7.

5) Hess — ACS-LBP}'t*” and Hess — ACS-LBP" 17
are further concatenated to construct the mul-
tiresolution scheme. This scheme is denoted by
Hess — ACS-LBP{j 102 (75709,

V. EXPERIMENTAL RESULTS

In order to demonstrate the effectiveness of the proposed
Hess-ACS-LBP method in the texture classification problem,
two different experimental studies were carried out on varied
datasets. The first experimental study was carried out on
commonly used texture databases. The second experiment
was carried out on texture databases that contain a lot of
classes. Thus, the effectiveness of the proposed method in
texture classification problems involving numerous classes
was realized.

The nearest neighbor classifier (1-NN) is used to demon-
strate the distinctive power of the proposed method. 1-NN is
a non-parametric classifier, and it is suitable for comparison
purposes [44]. The accuracy evaluation metric is used to
compare the similarity and diversity of the predicted and true
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TABLE 1. Summary of the texture datasets used in experiments.

No. Name Classes
A CUReT 61

B USPTex 191

C KTH-TIPS2b 11

D MondialMarmi 12

E OuTeX TC_00013 68

F XU HR 25

G ALOT 250

H STex 476

label sets. Average accuracy is defined as follows [53]:

1 i TP; + TN;
accuracy = —
Y= p &< TP; £ TN; + FP; + FN;

(24)
i=1
where TP, FP, FN,TN and p denote the number of true
positives, false positives, false negatives, true negatives and
total number of classes respectively. Chi-square distance is
used to compute the similarity between test and training
histograms [14]. Using Chi-square distance and 1-NN, the
distance between two histograms is defined as in Eq. (25).

N
DU, V)= (Ui = V)* /(Ui + Vi)

i=1

(25)

where N denotes the number of histogram bins, U; and V;
denotes the values at the i-th bin of the histograms of the
original and assigned images, respectively.

A. TEXTURE DATASETS

The CUReT [54], USPTex [55], KTH-TIPS2b [56], Mondial-
Marmi [57], Outex_TC_00013 [58] and XU HR [59] datasets
were used in the first of our experiences. The CUReT dataset
contains 61 texture classes and each class has 205 instances.
The USPTex dataset contains different color texture images
such as rice, vegetation and cloud. It consists of a total
of 2292 texture images, 191 classes and 12 samples in each
class. KTH-TIPS2b dataset contains textures obtained under
different lighting, scale and pose conditions. KTH-TIPS2b
dataset has 11 texture classes with 432 samples per class.
MondialMarmi dataset contains the color images of granite.
It has 12 classes with 64 samples per class. The images have
been obtained under controlled illumination conditions and
9 rotation angles. Outex_TC_00013 dataset contains 68 tex-
ture classes. XU HR dataset has 25 texture classes with
40 high-resolution images per class. This dataset has view-
point changes, scale differences and non-rigid deformations
between different samples of the same class. In the second
stage of the experimental studies, datasets containing a lot
of texture classes and less used than other data sets were
used. The ALOT dataset [60] is a 250-class dataset with
different viewpoints, illumination angles and illumination
color changes. It consists of more than 27500 images and
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Samples per class = Total samples Sample resolution

92 5612 200 x 200
12 2292 128 x 128
16 176 100 x 100
64 768 136 x 136
20 1360 128 x 128
40 1000 1280 x 960
110 27500 512 x 768
16 7616 128 x 128

FIGURE 5. Sample texture images from (a) Stex (b) ALOT databases.

uses different light source colors. STex dataset has 476 color
texture images [61]. It consists of more texture images than
VisTex [62] and Brodatz datasets [63]. In this paper, we use
STex-512-splitted package. It contains 7616 color texture
images of size 128 x 128. The main properties of each dataset
are given in detail in Table 1. 70% and 30% of the images in
the datasets were used for training and testing respectively.
However, to make fair comparison in Table 7, half of the sam-
ples in each dataset (for each class) were randomly selected
for training and the remaining half for testing as in [51].
Some texture samples used in our experiments are shown
in Fig. 5 and 6.

B. PARAMETERS SELECTION AND ANALYSIS

The proposed method Hess — ACS — LBP , contains
3 parameters. These are sampling neighborhood P, Gaussian
standard deviation o and sampling radius R. In this study,
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FIGURE 6. Texture image examples from (a) CUReT (b) KTH-TIPS2-b (c) Outex
TC_00013 datasets.

TABLE 2. Experimental results of the proposed descriptor with different ¢ on XU HR Dataset.

Hess—ACS-LBPG, °=°% =03 o=l
(P,R)=(8,1) 92.76 93.79 94.14
(P,R)=(8,2) 96.55 97.93 95.52
(P,R)=(8,3) 96.90 96.21 97.24
(P,R)=(8,4) 96.55 95.86 96.90
(P,R)=(8,5) 97.24 97.24 96.21

P = 8 is fixed to shorten the feature vector size. However,
using the Gaussian standard deviation o and LBP sampling
radius R parameters in the design of derivative filters, the clas-
sification accuracy of the proposed method was evaluated.
The evaluation of parameters was given using XU HR dataset.

Derivative filters designed using Gaussian function are
used in the calculation of the Hessian matrix. The radius of
these filters is determined by Gaussian standard deviation o.
If the o value is selected too small, the derivative information
will be sensitive to noise. Derivative filters designed using
a larger o value can ignore important fluctuations such as
texture details and edge-to-corner. In this study, the optimal
values of o value were analyzed experimentally and multi-
scale texture analysis was carried out. In different experimen-
tal studies, different o values ranging from 0.25 to 4 were
analyzed. The effect of different parameters on classification
performance was analyzed using XU HR dataset. Firstly, the
effects of different o values on the proposed Hess — ACS —
LBP;’,’ r method were evaluated. As seen in Table 2, the best
results were obtained with & = 0.5 and 1. However, among
the other o values, significant results were obtained.
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o=15 o=2 c=3 oc=4
95.17 96.55 96.21 95.52
94.14 95.17 94.83 93.79
95.86 95.52 95.52 94.83
96.21 95.52 95.17 94.14
96.21 96.90 96.55 94.14

The classification performance of LBP features with two
different o values was observed using Hess — ACS-LBP;EI'QH’2
feature which composes of Hess — ACS—LBP;{ g and Hess —
ACS—LBP;% r features. As seen from Table 3, the best results
are obtained when o} is 0.5 and o, is 1, 1.5 and 2. Fur-
thermore, when the sampling neighborhood P = 8 and
the sampling radius R = 3, the specified o values gives
promising results. Since the Hessian matrix is calculated for
different o values, a multi-scale analysis of the texture image
is performed. The differential information in this study is
evaluated with different neighborhood and radius values and
pixel relationships are discovered.

The third analysis was performed to observe the effect of
both two different o values and two different radius. The

(01+02) .
Hess — ACS — LBP(PI, R)4(P1.Ry) feature vector consists of

two different radius and o values Hess — ACS — LBPE;Ql 4;’12))
and Hess—ACS —LBPS{,‘1 }‘;2)). Table 4 shows the classification

results of Hess—ACS —LBI?E;S;?Q_( P1.Ry) features. Generally,
the best results were obtained with (P, Ry) + (P1,Ry) =

(8, 1)+ (8,4) and (8, 3) + (8, 5) parameters.
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TABLE 3. Experimental results (%) of the Hess — ACS — LBP‘(,H}:GZ) descriptor on XU HR Dataset.
0,=05 0,=0.5 0,=05 o =1 o =1 o =15
Hess-ACS-LBP(7
o, =1 o, =15 o, =2 o,=15 o, =2 o, =2
(P,R)=(8,1) 95.52 95.52 95.86 94.14 95.52 96.21
(P,R)=(8,2) 97.24 95.52 95.86 95.17 95.17 94.14
(P,R)=(8,3) 98.28 97.59 98.28 97.59 97.24 96.55
(P,R)=(8,4) 96.90 97.59 97.59 97.24 96.55 97.24
(P,R)=(8,5) 96.21 96.90 96.21 96.90 96.21 96.90
. _ _ (o7 +02)+(03 +03) .
TABLE 4. Experimental results (%) of the Hess — ACS LBP(”] R)+PyRy) descriptor on XU HR Dataset.
0,=05  o0,=05 0,=05 0,=05 0,=05 o =1 o =1 o =15 o =15 o =1
HCSS_ACS_LBPEQ,;@C;&J}(&:)%) o, =1 o, =1 o,=15  o,=15 o,=2 0,=05 | 0,=05 0,=0.5 o, =1 o,=2
o3=15 o3=2 o3 =2 o3 =2 o3 =1 o3=15 oy =2 o3=2 o3=2 o3=15
(P,R)=(8,1)
98.89 98.52 98.89 99.26 98.52 98.89 99.26 99.26 98.89 99.26
(P,R)=(8,4)
(P,R)=(8,3)
(P.R)=(8,4) 99.26 99.26 99.26 98.89 99.26 98.89 99.26 99.26 98.52 98.52
(P,R)=(8,3)
(P.R)=(8,5) 99.26 99.26 99.26 98.89 99.26 99.63 99.63 98.89 98.89 98.52
(P,R)=(8,4)
99.26 99.26 99.63 98.52 99.26 99.26 99.26 99.63 98.52 98.15
(P,R)=(8,5)

In the last parameter analysis, the classification behavior of
_ _ (01402)+(02403)
Hess —ACS—LBP, 7. p g, feature wasobserved from
different ways. Adjacency and radius analysis was carried
out with 3 different o values and classification performance
was (evalu?tf(:d. A§ seen in Table 5, (the I;Iess — ACS —
o1+02)+(o2+03 o1+o2 .
LBP(P] RO+PI.Ry) ,Hess—ACS—LBP(Pl’RI)HP] Ry) descrip-
tor obtained similar accuracy results. These results show that
analyzes using more o values have no significant effect on
classification accuracy. When all the results were examined
in general, it was found that the descriptors obtained with two
different o and radius values give better results than single o

and radius values.

C. COMPARATIVE PERFORMANCE ASSESSMENT

The proposed Hess-ACS-LBP method was compared with
the up-to-date LBP methods on 6 different datasets. Exper-
imental results are given in Table 7. The results of the
compared methods were taken from the original paper. The
proposed Hess-ACS-LBP method has the highest classifica-
tion accuracy in all datasets. The most important point in
the proposed method is the utilization of Hessian matrix in
a multi-scale manner. The distinctive 2-D joint histogram
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was constructed using the Hessian magnitude hybridly with
the ACS-LBP method in [51]. The generated histograms
were concatenated and texture representation was accom-
plished. Therefore, the texture analysis power of ACS-LBP
method is combined with the Hessian information to cap-
ture second-order textural changes in the image. Thanks
to multi-resolution approach, information such as edges
and corners that express textural changes are represented
in histogram information. As seen in Table 7, the pro-
posed hybrid approach has achieved better results than the
ACS-LBP method in all datasets. The proposed method also
obtained better results than the ARCS-LBP method, in which
ACS-LBP and RCS-LBP method are combined. The classi-
fication accuracy in all datasets was increased about between
2% and 11%. Especially on USPTex dataset, the classification
accuracy was increased by 11% compared to other methods.
Besides the different neighborhood and radius values used in
the proposed method, the horizontal and vertical derivative
information obtained from the Hessian matrix provided infor-
mation in the analysis of rotated images.

The microstructures of texture pixels were revealed out
by multi-scale analysis using the magnitude obtained from
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(07 +02)

TABLE 5. Experimental results (%) of the Hess — ACS — LBP(Pl R+ Py Ry)

Hess-ACS-LBP**) A=2 | o
(RRYHR.R,) P oy =15

(PR=8.1)

(P.R)=(8.2) 97.78 98.89
(PR=8.1)

(P.R)=(8.3) 98.15 98.52
(PR=8.1)

(P.R)=(8.4) 98.89 99.26
(PR=8.1)

(P.R)=(8.5) 98.89 98.89
(PRI=8.2)

(P.R)=(8.3) 99.26 98.15
(PRI=8.2)

(P,R)=(8,4) 98.89 98.52
(PR)=8.2)

(P,R)=(8,5) 98.52 98.52
(PR)=8.3)

(P,R)=(8,4) 98.89 99.63
(PR=8,3)

(P,R)=(8,5) 99.63 99.26
(PR)=8.4)

(P,R)=(8,5) 99.26 99.63

the Hessian matrix in Eq. (22). When o) is chosen as
0.5 and o, is chosen as 1, 1.5 and 2, pixel fluctuation
behavior at micro-level can be computed with a multi-scale
approach. The positive effects of the multi-scale approach
were observed in discrimination of in-class and inter-class
similarity information in datasets. Thus, this situation has an
effect on high classification accuracy especially on CURet
and KTH-TIPS2b dataset.

D. THE EFFECTIVENESS OF THE PROPOSED METHOD ON
DATASETS WITH A HIGH NUMBER OF CLASSES

The effectiveness of the proposed hybrid LBP method has
been evaluated on datasets with a high number of classes such
as ALOT and STex. In the literature, the desired classification
accuracy could not be obtained on these datasets. The high
number of classes and the similarity between the classes
undermine the discrimination of methods. Table 6 gives the
comparison of the proposed methods and the state-of-the-art
methods on the two-color datasets. The proposed method was
compared with both traditional texture analysis methods and
deep learning methods. As seen from Table 6, the traditional
LBP method yields 39.57% and 54.89% results in ALOT and
STex datasets, while the proposed Hess-ACS-LBP method
achieves 97.20% and 92.60% classification results, respec-
tively. Deep learning methods have achieved better results
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descriptor on XU HR Dataset.

0,=05 o =1 o =1 o =15
o, =2 o, =15 o, =2 o, =2
98.52 97.41 97.78 98.15

98.52 98.52 98.52 99.26

99.26 98.52 98.89 99.63

99.26 98.89 98.89 99.26

98.89 97.04 98.15 98.89

98.89 98.52 98.89 99.26

99.26 98.89 98.89 99.26

99.26 98.52 98.52 98.52

99.26 98.89 98.52 98.52

98.89 98.52 98.52 98.15

on datasets than traditional methods. However, the proposed
Hess-ACS-LBP method has achieved better results than deep
learning methods. The Hess-ACS-LBP method, which codes
geometric changes of texture information, revealed the effect
of pixel changes on the texture detaily. The ResNet101 and
ResNet50 methods yielded successful results in the STex
dataset but yielded low results in the ALOT dataset.

As a conclusion, intra-class and inter-class textural struc-
ture could differentiate from both irrelevant background and
other texture types by multiscale Hessian analysis. During
the experimental studies, we noticed that there were some
background responses in the magnitude image, which calcu-
lated from the Hessian matrix. To avoid these background
artifacts, the multiscale Hessian scheme is used. Hessian
matrix is adapted in the LBP methodology, in which it is
calculated pixel by pixel for obtaining most relevant fea-
tures such as edge, corner and texture primitives. The most
relevant features in the texture regions are calculated for
various sigma values. Therefore, integrating the most relevant
features and LBP features can achieve structure-aware texture
classification.

VI. DISCUSSION

The results in section V shows that the proposed method
achieves better results in the texture classification for all
datasets. Although the databases used in experimental studies
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TABLE 6. The comparison of the proposed methods and the state-of-the-art methods on the two color databases ALOT (250) and STex (476).

Texture descriptor

LBP [14]

CLBP [64]

CIF-LBP [65]
CIF-LBP-PSO [65]
DWT-Gamma-KLD [66]
Gaussian-copula-Weibull-ML [67]
Student t Copula Gamma-ML [67]
Multivar. Power Exp. [68]
ODBTC [69]

DDBTC [70]

LECoP [71]

LED+RD [72]

AlexNet [73]

VGG16 [74]

VGG19 [74]

GoogleNet [75]

ResNet101 [76]

ResNet50 [76]
OWT-MDCM [77]
DTCWT-MDCM [77]
Gabor-MDCM [77]
MWavelets-MDCM [77]
Our Hess-ACS-LBP

include many image transformations such as rotation, scal-
ing and viewpoint, the proposed method was able to deal
with these situations. Especially the XU HR dataset consists
of many of these transformations. However, since the pro-
posed Hess-ACS-LBP method is constructed with different
o and R values, it has achieved a very high classification
accuracy (99.6%) on the XU HR database. The o parame-
ter has critical importance for the Hess-ACS-LBP method.
The local changes should be captured for interpretation of
textural primitives in texture images. The Hessian matrix
expresses these local changes. However, different o param-
eters should be used to detect micro-level changes. While
the local changes are captured with these parameters, scale-
invariant texture representation is performed. Table 2-5 show
the classification results of both LBP and local second-order
image components by using 7 different o and 5 different R
values crosswise. In the detailed parameter analysis, the effect
of each parameter was examined and optimal parameters
were determined.

Another point to be emphasized is that each of the Hessian
matrices calculated with different o values combined with the
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Datasets

ALOT (250) STex (476)
39.57 54.89
49.6 58.4
- 40.95
- 45.61
40.7 52.90
54.10 70.06
475 64.3
49.3 71.3
43.62 -
48.64 44.79
- 74.15
- 80.08
59.01 68.32
60.34 72.16
59.15 71.68
60.71 77.60
75.60 91.18
75.68 91.59
48.13 72.28
55.74 77.01
60.36 83.36
61.88 85.46
97.20 92.60

features and provided to be complementary for each other.
Table 7 expresses this situation. For example, the traditional
LBP method has a 91.03% and 79.06% classification accu-
racy on the CUReT and MondialMarmi databases, while the
ACS-LBP method has a 94.72% and 91.99% classification
accuracy, respectively. The proposed Hess-ACS-LBP method
has 97.06% and 100% classification accuracy. The differ-
ence between results is remarkable. As seen in Table 6, the
proposed method has achieved remarkable results in datasets
with high number of classes. It is clear that the feature extrac-
tion procedure is the basis of this performance. Because the
proposed method provides stable learning to classifier even
in datasets with high number of classes.

Although the developed method has high accuracy results,
it is also in a very convenient position in terms of com-
putational cost. It is clearly seen in Fig. 7. We compare
the average running time of different methods to calcu-
late one image descriptor by running on a PC with an
Intel Core i5-7400 CPU and 8GB RAM. The LBP [14],
RALBGC [44], LPQ [102], LCvMSP [43], LDTP [80],
LCxMSP [43], LDN [22], MRELBP [30], PCLBP [45],
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TABLE 7. Comparison of proposed method with the state-of-the-art LBP methods.

Texture descriptor

Hess-ACS-LBP
ARCS-LBP
ACS-LBP
RCS-LBP
LCCMSP
LCvMSP
LCxMSP
RALBGC
RLBGC
ALBGC
CELDP
DSLGS
LDTP
AHP

OTF
LNDP
LQPAT
LDENP
mdLBP
maLBP
NI/LBP
NI/RD/LBP
RD/CI/LBP
NI/CI/LBP
NI/RD/CI/LBP
DCP
DRLBP
ELGS
LMEBP
MMEPOP
SMEPOP
LBPV
LBPD
ALBP
RDLBP
NTLBP
DCLBP
3DLBP
BGCl1
BGC2
BGC3
D-LBP
LOSIB
ID-LBP
LBP

LPQ

MBP

LQP
dLBPa
nLBPd
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Ref.

This paper
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El merabet et al. [51]

El merabet et al. [51]

El merabet and Ruichek [43]
El merabet and Ruichek [43]
El merabet and Ruichek [43]
El-khadiri et al. [44]
El-khadiri et al. [44]
El-khadiri et al. [44]

Faraji and Qi [78]

Dong et al. [79]

Rivera et al. [80]

Zhu et al. [81]
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Dubey et al. [86]

Liuetal. [87]
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Liu et al. [87]

Liu et al. [87]

Ding et al. [88]
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Bashier et al. [90]
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Vipparthi et al. [92]

Guo et al. [93]

Hong et al. [94]

Guo et al. [95]

Liu et al. [87]

Fathi and Naghsh-Nilchi [96]
Ylioinas et al. [97]

Huang et al. [98]

Fernandez et al. [99]
Fernandez et al. [99]
Fernandez et al. [99]
Xiaosheng and Junding [100]
Garca-Olalla et al. [101]
Xiaosheng and Junding [100]
Ojala et al. [13]

Ojansivu and Heikkila [102]
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Kaya et al. [40]

Kaya et al. [40]

A

96.9

94.72
94.29
94.02
94.92
94.22
94.48
94.35
93.19
93.87
76.46
94.54
84.78
93.69
67.71
91.64
91.43
69.26
90.90
90.90
83.14
88.92
89.54
83.25
89.07
87.86
91.29
93.12
88.92
82.03
90.13
82.74
9.87

79.06
89.83
72.27
88.42
85.99
92.76
91.35
88.59
80.62
35.77
78.01
91.03
89.19
88.75
89.66
90.13
92.76

B

98.9

88.88
87.66
87.45
90.01
88.88
88.48
87.71
85.70
85.82
80.61
81.15
76.23
84.88
35.89
80.66
78.32
50.12
82.51
82.51
70.50
82.25
81.45
72.63
83.08
69.54
80.00
85.16
82.49
71.72
79.42
71.78
8.16

60.25
80.37
55.62
82.66
83.09
82.66
80.04
80.65
65.03
37.56
59.94
81.63
79.83
83.51
87.86
56.52
82.66

Dataset

C D
97.9 100
93.61 91.99
93.28 90.73
92.76 89.92
93.51 90.46
93.08 89.98
91.85 88.01
93.95 90.07
93.66 87.74
93.53 86.85
86.70 85.79
87.07 82.45
88.00 81.80
90.64 87.60
56.53 40.96
87.85 80.27
84.25 81.31
71.52 65.11
88.48 81.01
88.48 81.01
81.51 80.72
88.16 85.76
88.51 81.84
82.13 81.75
88.57 85.26
77.76 70.72
91.74 71.47
89.22 87.12
87.55 75.43
81.17 73.30
85.17 76.76
86.74 84.20
26.76 41.33
77.24 70.47
86.42 82.16
70.73 63.25
89.33 89.53
89.62 85.45
90.83 84.49
85.00 77.52
85.59 76.37
85.18 78.00
70.24 64.26
77.36 74.43
89.63 79.96
86.94 84.07
89.09 85.46
92.66 89.34
78.68 64.27
90.83 84.49

94.5

85.72
84.17
84.88
84.78
83.87
84.23
83.06
82.05
80.90
81.02
81.78
72.70
80.79
46.88
77.16
76.87
67.96
78.35
78.35
76.25
79.36
78.79
76.43
79.38
70.83
77.55
81.38
76.65
70.76
77.41
76.53
19.60
69.71
78.25
69.02
78.13
77.34
79.09
76.72
76.32
74.19
46.72
69.91
77.97
77.40
77.54
81.51
72.05
79.09

98.8

97.21
97.19
97.09
96.48
96.15
96.34
95.34
95.27
94.45
89.55
92.62
89.61
96.20
93.06
90.42
90.09
76.08
91.40
91.40
85.52
90.78
94.31
89.09
93.62
87.82
94.12
92.48
94.85
87.95
91.16
85.19
20.73
85.64
90.65
87.39
91.63
91.60
91.64
90.73
90.43
85.89
52.86
82.03
91.59
91.99
90.88
93.15
92.20
91.64
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FIGURE 7. The processing time (in seconds) of the 13 LBP descriptors.

BPPC [35], LGDiP [34], LGBPHS [33] methods are used
for time comparison. While the developed method increased
the classification accuracy of the ACS-LBP method, it has
increased the computational cost partially due to the Hes-
sian matrix calculation. Nevertheless, since hessian matrix
computation isn’t very time-consuming, the proposed Hess-
ACS-LBP method might be suitable both in the scenarios of
content based image retrieval and real time application.

VIl. CONCLUSION

In this study, a LBP based hybrid method with Hessian
matrix and ACS-LBP was proposed. The Hessian matrix
with different scales expresses the pixel fluctuations in the
window detaily. The magnitude of the derivative components
of the Hessian matrix in the horizontal and vertical directions
was calculated. By integrating magnitude into the ACS-LBP
method, more distinctive LBP features of the texture image
were obtained. Thus, a powerful LBP histogram was designed
to analyze multi-resolution and different neighborhood rela-
tions. Unlike traditional LBP methods, geometric pixel anal-
ysis of texture image was performed and the LBP feature
vector was constructed. Experimental studies have shown that
the proposed method gives better results than traditional LBP
and deep learning-based methods.

However, it is worth noting that the performance of the
proposed Hess-ACS-LBP is a bit sensitive to the radius R and
sigma parameter o. Also, the automatic determination of the
radius and sigma parameters has not been fully investigated.
In our future work, we are willing to select the optimal
radius and sigma parameters automatically. Finally, based
on the proposed descriptor, we plan to develop a hybrid
method that uses both graph theory and the proposed Hess-
ACS-LBP for many applications such as object tracking,
semantic segmentation.
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