
SPECIAL SECTION ON CLOUD - FOG - EDGE COMPUTING IN
CYBER-PHYSICAL-SOCIAL SYSTEMS (CPSS)

Received February 2, 2020, accepted February 24, 2020, date of publication March 18, 2020, date of current version March 31, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2981816

Astronomical Data Preprocessing Implementation
Based on FPGA and Data Transformation
Strategy for the FAST Telescope
as a Giant CPS
YUEFENG SONG 1, YONGXIN ZHU 1,2,3, (Senior Member, IEEE),
JUNJIE HOU 1, SEN DU 1, AND SHIJIN SONG 1
1School of Microelectronics, Shanghai Jiao Tong University, Shanghai 200240, China
2Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
3School of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049, China

Corresponding author: Yongxin Zhu (zhuyongxin@sari.ac.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant U1831118, in part by the National Key
Research and Development Program of China under Grant 2016YFE0100600, in part by the Shanghai Municipal Science and Technology
Commission under Grant 17511105002 and Grant 18511111302, and in part by the National Key Research and Development Program of
China under Grant 2017YFA0206104.

ABSTRACT The emergence of cyber-physical-social systems (CPSS) as a novel paradigm has revolution-
ized the relationship between humans, computers and the physical environment. CPSS extend cyber-physical
systems (CPS) to include the social domain, which introduces a challenge of massive data processing. As a
typically giant CPS, the Five-hundred-meter Aperture Spherical radio Telescope (FAST), the world’s largest
filled-aperture radio telescope, generates massive volume of data which poses a huge storage problem
that CPSS face likewise and requires real-time data compressing to reduce data storage and movement
overhead. The recently introduced Bitshuffle preprocessing algorithm is a novel approach towards exploiting
spatial redundancy incorporation to improve the compression ratio with a specific compressor. However,
the existing high-performance CPU-based solutions cannot satisfy the performance requirement and power
budget requirement simultaneously. In the paper, we propose the implementation of this algorithm on Field
Programmable Gate Array (FPGA) and present an unique data transformation strategy to turn raw FAST data
in classic FITS format into another format to support huge file sizes, i.e. Hierarchical Data Format (HDF5).
Evaluation results show that our implementation can achieve 3.2Gbyte/s throughput which can be equipped
with LZ4 compressor to be high performance compressor. This makes Bitshuffle on FPGAs a candidate for
meeting the computational and energy efficiency constraints of radio telescopes and provide reference for
CPSS facing the same situation.

INDEX TERMS CPSS, astronomical data, FPGA, Bitshuffle, FITS, HDF5.

I. INTRODUCTION
With the cyber-physical system (CPS) technologies evolu-
tion [1], lots of interesting application domains have been
explored ranging from industry automation to aeronautics
and astronautics. Taking human social characteristics into
account, an emerging computing paradigm called cyber-
physical-social system (CPSS) has focused on the exploration

The associate editor coordinating the review of this manuscript and
approving it for publication was Zahir Tari.

of digital fusion among human [2], computers and CPS since
last decade [3]. As an emerging computing paradigm, CPSS is
exposed to scale out challenges such as massive data streams
arising from diverse data sources.

As a giant CPS data source, radio telescopes face similar
challenges [4]. Radio astronomical observation technology is
the integration of networks, computing and sharing of data
across multiple nodes or systems in terms of the principles
of CPS. Unlike traditional CPS devices, the development of
the radio astronomy is suffering from challenge of massive

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 56837

https://orcid.org/0000-0001-7383-0812
https://orcid.org/0000-0002-1813-1792
https://orcid.org/0000-0002-3369-2133
https://orcid.org/0000-0001-8414-7998
https://orcid.org/0000-0002-5065-1819


Y. Song et al.: Astronomical Data Preprocessing Implementation Based on FPGA and Data Transformation Strategy

data [5], [6]. In the case of the Parkes multi-beam sky survey
telescope of the 1990s, 2,100 seconds of observations gener-
ated data about 100MB in size which is formed into a 1.3GB
data file [7]. Under the network transmission conditions at
that time, even if 100Mb/s network was used, the data trans-
mission time was shorter than the observation time to obtain
data, which could be transmitted from the telescope location
in real time. With the development of astronomical observa-
tion technology and the improvement of facilities, the scale
of astronomical observation data is growing consequently.

The Square Kilometre Array (SKA) radio telescope project
is an international project to build an unprecedented scale
radio telescope at wavelengths ranging from metre to cen-
timetre. The construction of the Phase-1 SKA telescope
(SKA1)will take place from 2022. SKA1 consists of two tele-
scopes namely a low-frequency aperture array (SKA-LOW)
and a mid-frequency dish array (SKA-MID). It is esti-
mated that the data rate of SKA1 will approach 1TB/s for
the accumulation of SKA-MID and SKA-LOW [8], which
requires very high-performance central computing engines
and long-haul links with a capacity greater than the global
internet traffic. As the precursor facilities of the SKA project,
the Australian Square Kilometre Array Pathfinder (ASKAP)
consists of 36 identical parabolic antennas, expected to
produce 12TB data each day [9], [10]. The Five-hundred-
meter Aperture Spherical radio Telescope (FAST) as the
world’s largest filled-aperture radio telescope currently was
declared fully operational on 11 January 2020 [11]. Using
a 19-beam receiver with 2GB/s observation data from each
beam [12], [13], the FAST must store and maintain a large
amount of data that it collects. The traditional data pro-
cessing methods including data transmission, storage, access
and management, have encountered new problems and faced
severe challenges when dealing with large scale astronom-
ical observation data [14]. In this case, the data compres-
sion algorithm is applied in the field of astronomy. Data
compression can play an important role in controlling data
scale, reducing network resource consumption, adapted to
limited bandwidth and reducing data storage overhead in
exchange for avoidance of data overflow [15], thus signifi-
cantly improve the data processing efficiency when applied
for large scale astronomical data. Nowadays, astronomi-
cal data compression has been extensively concerned and
studied.

The design of an efficient compression algorithm is the
basis of the compression scheme. In order to maintain the
ordinary observation data in high precision for scientific
analysis, the lossless compression algorithms are more valu-
able. The lossless compression algorithms are functioned
based on information entropy and redundancy extraction [16],
indicating that the structure and organization form of the
astronomical data will have a large impact on the compression
performance. The target astronomical data in this research are
collected from FAST which contains complex features and
multiple dimensions. Therefore, the compression algorithm
is supposed to take the data features into consideration, select

a customized preprocessing scheme and combine it with
classical compression algorithms.

Quite a few researchers improved the predecessors to
make the lossless compression algorithms form a developed
and complete system. A lossless compression algorithm is
achieved by the encoding method to reduce effective stor-
age bits. According to the implementation principle, lossless
compression algorithms can be divided into three categories,
namely statistical coding, predictive coding and transform
coding. Among them, LZ4 is a stable and high-performance
compression algorithm making use of statistical coding [17].
The main idea of the algorithm is to find duplicated strings in
the input data and replace them with corresponding matches
in a reduced bit width. After this, the data is encoded using
Huffman tables which can be constructed statically or dynam-
ically. In this research, Bitshuffle preprocessor is equipped
with a LZ4 compressor as the foundation to meet the LZ4
performance requirements [18]. A complete compression
scheme is evaluated by the compression ratio and compres-
sion throughput capacity especially for astronomical big data.
The FPGA device can achieve operation acceleration through
pipeline technology with an on-chip processing unit. And the
FPGA technology is confirmed to be an efficient hardware
acceleration approach with the advantage of high accelera-
tion ratio and low power consumption [19]. In our compres-
sion preprocessing algorithm, FPGA-based implementation
of Bitshuffle fully utilize the acceleration function of FPGA
and avoids the loss of throughput when docking with the
compressor. In this research, the complete preprocessing pro-
cedure is implemented on FPGA and can achieve significant
acceleration ratio when compared to the software which is
implemented on CPU.

The contributions of this paper can be summarized as:
(1) We proposed an implementation of the Bitshuffle data

preprocessing algorithm on FPGAs for data from FAST radio
telescope as a giant CPS; (2) We presented a comprehensive
analysis of the achieved performance; (3) We present a novel
data transformation strategy by using HDF5 for raw FAST
observation data to achieve better support for huge file sizes.

The remainder of the paper is organized as follows. The
section 2 introduces the background. The section 3 introduces
related work. Section 4 describes the Bitshuffle algorithm.
Section 5 illustrates the scheme of the transformation of the
FAST data format. Section 6 demonstrates the FPGA-based
algorithm implementation and optimization. Section 7 shows
the experimental results and analyzes them. We draw a con-
clusion and present the future work in Section 8.

II. BACKGROUND
With the continuous development of information and automa-
tion technology, the volume of data has increased fiercely in
various industries, and the traditional data storage format for
massive data is unable to adapt to the large-scale data storage,
especially for radio astronomical data.

FAST currently uses data files in Flexible Image Trans-
port System (FITS) format [20]–[22], which has enjoyed

56838 VOLUME 8, 2020



Y. Song et al.: Astronomical Data Preprocessing Implementation Based on FPGA and Data Transformation Strategy

widespread usagewithin astronomy for several decades. FITS
which is a general approach to encode both a definition of
the data and the data itself in a machine independent was
adopted on magnetic tape as the standard transport medium.
It provides the unambiguous transfer of images that have
accuracies up to 32 bits. It supports the transformation for
the data type with multi-dimensions. As the advantages of
FITS to transmit astronomical images in a standard format
were gradually recognized, most major observatories used
FITS as the basic format for data exchange. However, data in
FITS format can only be accessed by line and its description
parts of each observation record is set tightly coupled with the
data body where only file read sequentially is supported [22].
Lack of flexibly in layers for datasets management, data
failed to be access in parallel and dataset in single file only to
be processed in serial make FITS files inadequate for the large
amount of astronomical observations collected by FAST.

Several authors have proposed alternative serializations
that have advantages over FITS [22]. Motivated by data
volumes, HDF5 has been proposed or has been implemented
for the LOFAR radio telescope, the CHIME pathfinder [23].
In terms of data size, the HDF5 format can support files in
larger than exabyte level. From the aspect of data format
definition, more ubiquitous and compatible multidimensional
array is adopted in HDF5 with a hierarchical structure similar
to the file nested in folder. In terms of file interface, HDF5
provides parallel I/O support after version 2.2.0 [20], [21],
which makes data better satisfy the requirement of parallel
system. High related heterogeneous data can be put in the
same group of HDF5 to facilitate the rapid search of the data.
Additionally, HDF5 allows for efficient reading of portions
of a dataset, whether they are contiguous or a regular pattern
of points or blocks.

The HDF5 file format not only manages datasets in a
hierarchical manner, but also divides descriptions of datasets
and data body themselves into diverse parts. These advan-
tages make the HDF5 format better than the FITS format for
parallel processing of FAST large-scale data. In this paper,
we suggest HDF5 as the alternative serialization format for
the FITS data model after the discussion about the immediate,
practicable advantages of HDF5 and we present the method
to transform the data model inherent to the FITS file format
to HDF5 in a straightforward manner.

III. RELATED WORK
Many researchers have made extensive and in-depth explo-
rations in the data compression algorithm, especially in the
astronomical data or scientific data domain. Masui et al. [18]
proposed a lossy preprocessing method applied for astronom-
ical radio data. They first adopted a lossy approximation to
the data according to the estimated SNR, and then applied
a bit-level transpose method to complete the preprocessing,
which is confirmed to achieve high compression ratio with
acceptable accuracy loss. A widely applicable lossy compres-
sion algorithm for scientific multi-dimension datasets was
proposed by Tao et al. [24] which assumed the data has

a polynomial regression characteristic in a sliding window.
They performed an efficient predictive encoding method by
means of the linear prediction based on the regression rela-
tionship. The compression algorithm is able to control the
error degree. Amrani et al. [25] proposed a lossless com-
pression algorithm for remote-sensing data through wavelet
transformmethods. The main idea of the research is to extract
approximation and detail components in multiple levels and
use the approximation components to predict the detail com-
ponents with a regression model. Another well-known com-
pression algorithm integrated in HDF5 is Szip propose by
Yeh et al. [26]. The algorithm is based on the extended-Rice
algorithm and has high speed and quick adaptation in space
statistics. The above algorithms have brought in enlighten-
ing ideas and are practical and effective in their specific
aspects. However, there still requires a customized algorithm
to achieve better performance when applied to the FAST
dataset.

In order to enhance the compression speed and data
bandwidth, many researches have succeeded to implement
compression algorithms on different hardware platforms.
Plugariu et al. [27] managed to implement a GZIP com-
pression on the FPGA platform. They design the archi-
tecture to combine the communication, transmission and
operation system for data compression, and achieved high
throughput and speed gain. Other algorithms like run-length
encoding algorithm were also implemented in hardware,
as J. Trein et al. described and analyzed [28]. They used
on-chip dedicate logic to optimize parallel data process-
ing, and achieved high performance through parallel input.
Besides, Banerjee et al. [29] proposed the concept of CAM
and dictionary-based compression technique and imple-
mented it as an FPGA-based data compressor. The experi-
ment indicated that the design has high processing speed and
is suitable for real-time applications.

The experience in the previous researches has reflected the
potential and technology feasibility of FPGA based hardware
acceleration in astronomical data compression. This research
managed to complete the data compression scheme from two
aspects of data transformation strategy design and FPGA
hardware implementation.

IV. BITSHUFFLE
Bitshuffle, as a preprocessing algorithm available in HDF5,
allows optimizing the lossless compression by reordering the
data bits in a more compressible order to enhance the lossless
coding step performance, which exploits this reduction in
entropy to achieve a very high compression ratio [18].

Bitshuffle is subsequently developed after Shuffle algo-
rithm first presented. For typed binary data, where the data
consist of arrays of elements of a fixed number of bytes, it has
been recognized that compression is generally improved by
applying the byte reordering shuffle pre-filter. shuffle breaks
apart the bytes of each data element, grouping all the first
(second, etc.) bytes. To put this in other terms, if you arrange
all the bytes in the array into a matrix with dimensions of

VOLUME 8, 2020 56839



Y. Song et al.: Astronomical Data Preprocessing Implementation Based on FPGA and Data Transformation Strategy

FIGURE 1. Bitshuffle algorithm details and how data bits flow.

the number of elements by the size of each element, shuffle
performs a transpose on this matrix.

Bitshuffle extends the concept of shuffle to the bit level:
it arranges the bits of a typed data array into a matrix with
dimensions of the number of elements by the size of each
element (in bits), then performs a transpose. This is illustrated
in Figure 1.

If the blank part represents bit 0 and the shaded part rep-
resents bit 1, firstly arrange the typical data of the same bit
width in the order of physical storage characteristics.

Secondly, similar to byte transposition, corresponding bits
of each data element needs to be aligned in order. Then logical
view of data bits array normalized is given. Then follows the
entire transposed data matrix. The final step is to place the
data bits in the output sequence from left to right, then top
to bottom, and finally to store them. Bitshuffle is better able
to convert spatial correlations into run-lengths than shuffle
because it can treat correlations within a subset of the bits in
a byte instead of only those which apply to the whole byte.

V. DESIGNING DATA STORAGE FORMATS
As mentioned in Section II, the HDF5 is an open source
file format that supports large, complex, heterogeneous data,
which uses a file directory like structure that allows to
organize data within the file in many different structured
approaches.

In order to convert FAST data in FITS format to HDF5
format which is more suitable for large astronomical data
processing, this section presents a customized conversion
method where the whole information in the original data is
entirely retained. The process is completely reversible for all
components mapped to the new data format.

A FITS file is comprised of segments called Header-Data
Units (HDUs), where the first HDU is called the Primary
HDU. Any number of additional HDUs may follow the pri-
mary array. These additional HDUs are referred to as FITS
extensions.

The FAST telescope is equipped with a 19-beam, dual
polarized, cryostat receiver system where each beam can

FIGURE 2. A tree diagram describing an example implementation of FAST
data transformation from FITS to HDF5.

TABLE 1. Detailed key parameters characterize FAST data.

produce 2.1GB of data per second in the drift mode and store
it in a FITS file which contains two HDUs. The primary HDU
defines the regular file information and context information
of the data in the header, without theHDU-DATA section. The
second HDU stores the core observations within a column in
the DATA part. This is the body of the entire file, as shown in
the Figure 2, which is a (256,1024,2,4096) four-dimensional
matrix. Each data sampling point represents the power flow
density at the specified time-frequency band and polarization.

In order to improve Bitshuffle compressing performance,
data are commonly accessed along the time axis. That is, it is
generally most efficient for the axis representing time to be
the fastest varying once loaded into memory. To meet the
requirements for Bitshuffle, data transposition and dimension
reduction are needed. The key parameters in FAST data is
detailed in Table 1.

CFITSIO is a library of C and Fortran subroutines for
reading and writing data files in FITS data format, which

56840 VOLUME 8, 2020



Y. Song et al.: Astronomical Data Preprocessing Implementation Based on FPGA and Data Transformation Strategy

has become the standard widely adopted within the large
community of software for astronomers. CFITSIO provides
simple high-level routines for reading and writing FITS files
that insulate the programmer from the internal complexities
of the FITS format. CFITSIO also provides many advanced
features for manipulating and filtering the information in
FITS files. CFITSIO was released as an ANSI-C version
after FITSIO was originally written in Fortran-77. Callable
CFITSIO wrappers were then packed as libraries in various
programming languages like C, C sharp, Python and R, et al.,
to provide interfaces for CFITSIO access. We select the
python3.7 version as programming approach.

The progress is as follows: Firstly, create the hdf5 file to
get the file handle that will serve as the top-level directory for
the entire hierarchical storage mode. The file consists of two
groups used to preserve the contents of the primary HDU and
the second HDU, respectively. Every record is fetched except
COMMENT and HISTORY records, with key concatenated
by a specific prefix to identify the original name of the
current field. At the same time, in order to satisfy possible
order requirements, the sequence number is spliced into the
wrapped name. The approach needs to be applied to the
comment portion of each record likewise. For COMMENT
and HISTORY records in the header, since there may be
multiple items in the two records, this means that we need to
scan the entire HDU-header section to ensure the integrity of
COMMENT and HISTORY. Specifically, taking HISTORY
as an example, we need to save one or more histories into an
array, then encode them with ASCII, and save them in the
form of the dataset to the group corresponding to primary
HDU. The advantage of this method is that the information in
the COMMENT and HISTORY can be searched and updated
instantly, and the data can be effectively tracked to update the
change record through the burying point, thus ensuring data
backtracking and tracking.

The conversion of the header part has been completed
above. The core data of FAST observation is collected in the
DATA part of the second HDU, which contains 17 columns.
All the entries within a given column of an ASCII or
Binary table extension have the same datatype. However,
datatypes vary from column to column and are required
to be specified when memory space is requested, which
means datatypes in all columns need to be retained in
transformation to ensure data recovery. So, we record the
type information for the 17 columns of data through the
DATA_TYPE field and store it in the second group. Next
step, by default, we place 17 columns of data in the group
as 17 datasets, and the keywords and sequence numbers
must be recorded as attributes in the corresponding datasets.
If data of specific frequency band or polarization need to be
accessed instantly, the column containing real observation
data can be divided into distinct datasets in HDF5 output
file.

In terms of how HDU is arranged in the HDF5 file.
As HDF5 allows hierarchy, then the groups of related HDUs
are allowed to be stored in the same layer. It is required

FIGURE 3. System architecture showing data format transformation,
host-kernel communication, Bitshuffle preprocessing and compressing.

that each HDU is attached to the root group to keep the
compatibility between two file formats.

To be compatible with legendary program libraries, the
storage format for FAST was standardized by astronomy
scientists with the metadata description and the data body in
the classic FITS format instead of HDF5. Additional stan-
dardization work has been done in this paper for modern
format HDF5. HDU in FITS is placed within a corresponding
HDF5 group, with each record in HDUwritten as an attribute
into a group to document the metadata. The core data body is
split into multiple datasets attached by a file handler or one
group, depending on the data access method. Nonetheless,
the values of the data contained within the original file are
required to be unchanged.

VI. FPGA-BASED HARDWARE DESIGN
In this section, we discuss implementation details of the Bit-
shuffle algorithm on FPGAand show how accelerator engines
are integrated into hardware architecture to realize a complete
system theoretically.

To evaluate the feasibility of the hardware system acceler-
ating Bitshuffle algorithm, the FPGA implementation of the
algorithm has been carried out in the form of multiple engines
design with the optimized modules, which fully utilizes the
data throughput and operation capability of FPGA.

FPGA can potentially deliver tremendous acceleration in
high-performance servers and embedded computation appli-
cations with large scale arithmetic logic units and pipeline
design technology. In this work, in consideration of better
performance and flexibility of the low-level design approach
of the language, we introduce languages on RTL level to
describe the algorithm on our design.

In our design, we first evaluate the parallelization feasi-
bility of the operations units, and then continue to distribute

VOLUME 8, 2020 56841



Y. Song et al.: Astronomical Data Preprocessing Implementation Based on FPGA and Data Transformation Strategy

FIGURE 4. Framework of Bitshuffle engine showing how data elements flow and how data outputted from FIFO sliced.

them to the host and FPGA devices. The complete system
architecture design is shown in Figure 3.

The total system architecture consists of two parts: the
CPU-based host and the FPGA-based device. The host is
responsible for transferring data in the form of FITS to HDF5
and delivering data between the host and the FPGA device
via PCIe. The mainstream PCIe-based CPU-FPGA platforms
use direct memory access (DMA) for an FPGA to access
the data from a CPU. The FPGA typically needs a memory
controller IP to read the data from the CPU’s DRAM to its
own DRAM through PCIe [30]. In fact, this communication
is limited by restrict bandwidth in practice to make it imprac-
tical to implement full-speed acceleration even if we have a
high throughput preprocessing accelerator on the FPGA side.
In this design, high-bandwidth PCIe device is required to
eliminate the potential throughput bottleneck to ensure data
flow transmission in maximum volume.

FAST data of specified frequency channel and polarization
is transmitted to FPGAwith time dimension as the sequential
reference, and an instantiated FIFO is customized to utilize
block RAM to receive this part of data which supports up
to 1024 bits. The maximum data transfer efficiency supported
by FIFO should not be a bottleneck in the total system. Data
in buffer needs to be handed over to the Bitshuffle engine
for processing, and larger data bandwidth requires multiple
Bitshuffle engines.

To improve the compression throughput and overall sys-
tem efficiency of the FPGA Bitshuffle accelerator design,
we exploit a multi-way parallel design, where each accel-
erator engine can process a relatively small amount of data
concurrently. The framework of Bitshuffle engine is shown in
Figure 4. Data then is handed over to the LZ4 compressor for
further compression. The last step is that the output data will

be buffered in the output buffer while waiting to be transferred
via DMA.

Due to pieces of data located in nearby regions on the
timeline in a file typically share similar ranges of values.
The power flux density data at specific frequency channel
and polarization is designed to be successively divided into
pieces of the size of (l∗m∗n) bits in a time sequence and then
delivered into FIFO. l represents the number of Bitshuffle
engines, which is equal to the number of slices taken from
FIFO in one cycle; m represents the number of the typed
data element in the engine; n refers to the bit width of
each element. Note that fetched (l∗m∗n) bits data is hard
to process, in consideration of limited hardware calcula-
tion capacity in one clock and the potential requirement for
higher computing frequency, throughput should be restricted
precisely.

After taken over by engine, multiple slices fetched during
one clock will be processed concurrently. According to the
output element position, the computation unit will locate the
corresponding bit of target in the original data and sets it.
Similarly, this process is executed in parallel and outputs n
m-bits blocks.

VII. EXPERIMENT RESULTS AND ANALYSES
After the theoretical analysis of the Bitshuffle and
FPGA implementation of the preprocessing algorithm, this
section concentrates on validating data transformation and
evaluating the complete compression scheme through simu-
lations and experiments on different platforms. The exper-
iment results confirm that the work not only shows the
feasibility of the algorithm in specific astronomical dataset,
but also achieves significant improvement through FPGA
implementation.

56842 VOLUME 8, 2020



Y. Song et al.: Astronomical Data Preprocessing Implementation Based on FPGA and Data Transformation Strategy

A. DATA TRANSFORMATION
Radio astronomy data is required to be transformed from
FITS format into HDF5, which is used as the raw data format
before data preprocessing. The size of original FITS file
for one beam observation by FAST is 2,172,683,520 bytes.
Besides, the size of HDF5 file created by transfor-
mation is 2,172,683,520 bytes with additional informa-
tion of COMMENT and HISTORY cards updated which
has just increased by less than 0.002%. However, the
integrity of the data is guaranteed and that data access
interface is equipped with more superior features, such
as efficient reading of portions of datasets, parallel I/O
support, etc.

B. EXPERIMENTAL DATASET
The data set of this work is the radio astronomy data col-
lected and quantified by the Five-hundred-meter Aperture
Spherical radio Telescope (FAST), which is derived from the
PSR B1257+12 pulsar. The pulsar is a millisecond pulsar,
which is a research hotspot in astronomy and has important
significance in research on exploring the evolution process
of celestial bodies, analyzing the composition and state of
matter, etc. It has been observed successfully by astronom-
ical telescopes due to the pulsed particle radiation, which
has become one of the important discoveries in the field of
astronomy.

The target observation data was collected by the central
beam among 19 beams of the FAST radio telescope in drift
mode, which indicates that the signal has typical characteris-
tics and is classified as the representative strong pulsar signal.
It contains the pulsar signal distribution characteristics with
a certain universality. After the sampling and quantification
process of the national observatory, the original data set
contains four dimensions, which respectively represent the
following information:

• The first two dimensions represent the time sample
block and the time sample point in each sample block,
respectively.

• The third dimension represents the polarization informa-
tion of the radio signal, including two polarization terms.

• The fourth dimension represents the flux density signify-
ing signal strength collected by each frequency channel.

Since the limited buffer depth of input data and the large
dataset, we select the Block RAM as an approach for data
initialization on the chip in the form of a COE file, in order to
evaluate the total hardware acceleration process started from
the buffer queue staging data.

In order to keep the sequential order of the data, 4 dimen-
sions of data set is reduced to 3 dimensions which contains
time domain, frequency distribution and the two polariza-
tions. And the data are stored in the type of 8-bit unsigned
integer (uint8). Bitshuffle is applied according to the internal
correlation and redundancy. The data value distribution of the
original dataset is shown in Figure 5.

FIGURE 5. Data value distribution in grey-scale map.

FIGURE 6. The effect bit-width distribution of the dataset.

From the Figure 5, it is evident that the data value reaches
a peak around a specific frequency band, and presents an
attenuation trend in the time domain. Since the data are stored
in the bit-width of 8 bits, we made a further step to collect
the effect bit width (defined as the minimum bit-width to
cover the value range) of the dataset. The result is shown
in Figure 6.

According to the two figures, the original astronomical
data presents the feature that most data are component with
low effect bit-width. Additionally, the data volume on the
time dimension is 10 times that on the frequency dimen-
sion, since data accessed along the time axis typically helps
improve Bitshuffle compressing performance.

C. EXPERIMENTAL SETUP
Although current work is aimed at the evaluation on the
hardware acceleration effect of Bitshuffle preprocessing at
this stage, considering that the implementation of LZ4 on
FPGA still needs to consume a lot of resources, we chose the
accelerator with abundant resources on chip as far as possible.
The target platform we select is Xilinx Virtex UltraScale+
VCU1525 FPGA where I/O resource and block RAM are
sufficient and 16-lane PCIe connector is implemented which
performs data transfer at the rate of 8.0 GigaTransfers
per second at maximum [31], since Bitshuffle on FPGA
is an I/O-intensive application and FPGA-based LZ4 is a
compute-intensive application.

VOLUME 8, 2020 56843



Y. Song et al.: Astronomical Data Preprocessing Implementation Based on FPGA and Data Transformation Strategy

TABLE 2. Optimal parameters of maximum performance for Bitshuffle
processing.

D. BITSHUFFLE ACCELERATOR PROCESSING
The generalized hardware implementation method is given
in the previous section, without specific parameters. How-
ever, reasonable parameters can make full use of hardware
resources to improve the speed performance, so we need as
fully as possible the use of buffer queue data bandwidth.
The maximum bandwidth of the FIFO is 1kbit/s, supporting
the throughput of 12.8GB/s in 100MHz working frequency.
Unfortunately, as single Bitshuffle engine in both input and
output needs to be a large amount of I/O resources, once
the number of tasks an engine processing and the number of
engines created exceeds the ceiling board of FPGA resources,
failure of the experiment will be led. Through repeated
experiments, we give a reasonable parameter configuration
scheme, as follows in Table 2.

E. RESULTS AND ANALYSIS
Our scheme is for the Bitshuffle algorithm targeting data
preprocessing before compressing, and the implementation
effect is needed of the current optimal LZ4 compressor as
a reference to infer whether the performance of the com-
pressor integrated with Bitshuffle accelerator can reach the
theoretical optimal result. We refer to the optimal implemen-
tation effect of LZ4 based on FPGA. Xilinx FPGA-based LZ
data-compression architecture contains multiple compression
engines which run concurrently to get higher throughput.
Each compression engine is designed to process 1byte/clock
with a clock frequency of 250MHz. So if design contains N(8)
compression engines, overall throughput will be Nx250MB/s
(8× 250 = 2GB/s) [32]. For Bitshuffle parts, each compres-
sion is designed to process 16byte/clock with a frequency
of 100MHz. Dual engines created will achieve 3.2GB/s for
overall throughput.

We also measure the throughput performance of a
CPU-based implementation with basic X86 instructions and
another implementation scheme of Bitshuffle compiled with
SSE2 (Streaming SIMD Extensions 2) respectively [18]
in comparison with FPGA-based implementation. CPU we
selected is Intel Core i7-3770 at a 3.40GHz clock rate.
Comparison results shown in Table 3 indicate that Bitshuf-
fle implemented on FPGA outperforms the state-of-the-art
implementations based on CPU.

Table 4 shows that I/O accounts for the majority of the
power consumption, which indicates that FPGA-based Bit-
shuffle is an I/O intensive application. Table 5 illustrates the

TABLE 3. Performance (Throughput) of FPGA implementation compared
with CPU implementation with basic X86 instructions and CPU
implementation compiled with SSE2 instructions.

TABLE 4. Report of power.

TABLE 5. Report of utilization.

resource utilization for our Bitshuffle design on theVCU1525
FPGA, which demonstrates that multiple engines executing
in parallel is limited by the over-utilization problem.

VIII. CONCLUSION
To handle huge data stream processing challenges, the pend-
ing issue in the emerging CPSS paradigm, we proposed
the FPGA-based prototype of Bitshuffle preprocessing algo-
rithm with a classic LZ4 compressor. We also presented an
approach for data file format transformation from FITS to
HDF5, which is able to support huge files. This work would
be the leading attempt to accelerate Bitshuffle on FPGA
for radio telescope observation data processing. Through
the analysis of the algorithm behavior and bottlenecks,
we customized and optimized the system architecture and
computing logic to maximize the bandwidth efficiency and
computing performance. The Bitshuffle prototype achieves
3.2GB/s performance on the target FPGA.

This work demonstrates the performance optimization
strategy of Bitshuffle on the target FPGA board. The opti-
mizations presented in the paper can be further applied to
future higher performance hardware design, such as Xilinx
Alveo and achieve even higher performance.

Additionally, from the research on the preprocessing and
compression of massive data flow oriented to FAST, unprece-
dented methods to deal with the processing challenges of

56844 VOLUME 8, 2020



Y. Song et al.: Astronomical Data Preprocessing Implementation Based on FPGA and Data Transformation Strategy

mass data stream can be generalized and transferred among
other application scenarios of CPSS.

ACKNOWLEDGMENT
The authors would like to thank the Xilinx University
Program (XUP) for their support of Xilinx EDA tools and
hardware. They are very grateful for the warm reception and
skillful help that they have received. Our deepest gratitude
goes to the editor and anonymous reviewers for their careful
work.

REFERENCES
[1] J. Zeng, L. T. Yang,M. Lin, H. Ning, and J.Ma, ‘‘A survey: Cyber-physical-

social systems and their system-level design methodology,’’ Future Gener.
Comput. Syst., vol. 105, pp. 1028–1042, Apr. 2020.

[2] G. Xiong, F. Zhu, X. Liu, X. Dong, W. Huang, S. Chen, and K. Zhao,
‘‘Cyber-physical-social system in intelligent transportation,’’ IEEE/CAA J.
Automatica Sinica, vol. 2, no. 3, pp. 320–333, Jul. 2015.

[3] E. K. Wang, Y. Ye, X. Xu, S. M. Yiu, L. C. K. Hui, and K. P. Chow,
‘‘Security issues and challenges for cyber physical system,’’ in Proc.
IEEE/ACM Int. Conf. Green Comput. Commun. Int. Conf. Cyber, Phys.
Social Comput. (CPSCom), Dec. 2011, pp. 733–738.

[4] T. M. Fernández-Caramés, P. Fraga-Lamas, M. Suárez-Albela, and
M. A. Díaz-Bouza, ‘‘A fog computing based cyber-physical system for the
automation of pipe-related tasks in the Industry 4.0 shipyard,’’ Sensors,
vol. 18, no. 6, p. 1961, Jun. 2018.

[5] D. L. Jones, K. Wagstaff, D. R. Thompson, L. D’Addario, R. Navarro,
C. Mattmann, W. Majid, J. Lazio, R. Preston, and U. Rebbapragada, ‘‘Big
data challenges for large radio arrays,’’ in Proc. IEEE Aerosp. Conf.,
Mar. 2012, pp. 1–6.

[6] X. Cai, L. Pratley, and J. D. McEwen, ‘‘Online radio interferometric imag-
ing: Assimilating and discarding visibilities on arrival,’’ Monthly Notices
Roy. Astronomical Soc., vol. 485, no. 4, pp. 4559–4572, Jun. 2019.

[7] D. G. Barnes, F. H. Briggs, and M. R. Calabretta, ‘‘Postcorrelation ripple
removal and radio frequency interference rejection for Parkes Telescope
survey data,’’ Radio Sci., vol. 40, no. 5, pp. 1–10, Oct. 2005.

[8] H. Barwick, ‘‘SKA telescope to generate more data than entire Internet in
2020,’’ Computerworld Australia, North Sydney, NSW, Australia, Tech.
Rep., 2011. [Online]. Available: https://www.computerworld.com/article/
3484960/ska-telescope-to-generate-more-data-than-entire-internet-in-
2020.html

[9] G. Hampson et al., ‘‘ASKAP PAF ADE—Advancing an L-band PAF
design towards SKA,’’ in Proc. Int. Conf. Electromagn. Adv. Appl., 2012,
pp. 807–809.

[10] A. R. Duffy, M. J. Meyer, L. Staveley-Smith, M. Bernyk, D. J. Croton,
B. S. Koribalski, D. Gerstmann, and S. Westerlund, ‘‘Predictions for
ASKAP neutral hydrogen surveys,’’ Monthly Notices Roy. Astronomical
Soc., vol. 426, no. 4, pp. 3385–3402, 2012.

[11] R. Nan, ‘‘Five hundred meter aperture spherical radio telescope (FAST),’’
Sci. China Ser. G, vol. 49, no. 2, pp. 129–148, Apr. 2006.

[12] D. Li, P. Wang, L. Qian, M. Krco, A. Dunning, P. Jiang, Y. Yue, C. Jin,
Y. Zhu, Z. Pan, and R. Nan, ‘‘FAST in space: Considerations for a
multibeam, multipurpose survey using china’s 500-m aperture spherical
radio telescope (FAST),’’ IEEE Microw. Mag., vol. 19, no. 3, pp. 112–119,
May 2018.

[13] H. Li, J. Sun, G. Pan, and Q. Yang ‘‘Preliminary running and performance
test of the huge cable robot of FAST telescope,’’ in Cable-Driven Par-
allel Robots (Mechanisms and Machine Science), vol. 53, C. Gosselin,
P. Cardou, T. Bruckmann, and A. Pott, Eds. Cham, Switzerland: Springer,
2018.

[14] W. B. March, K. Czechowski, M. Dukhan, T. Benson, D. Lee,
A. J. Connolly, R. Vuduc, E. Chow, and A. G. Gray, ‘‘Optimizing the
computation of n-point correlations on large-scale astronomical data,’’ in
Proc. Int. Conf. High Perform. Comput., Netw., Storage Anal., Nov. 2012,
pp. 1–12.

[15] I. H. Witten, R. M. Neal, and J. G. Cleary, ‘‘Arithmetic coding for data
compression,’’ Commun. ACM, vol. 30, no. 6, pp. 520–540, 1987.

[16] A. F. Heavens, R. Jimenez, and O. Lahav, ‘‘Massive lossless data com-
pression and multiple parameter estimation from galaxy spectra,’’Monthly
Notices Roy. Astronomical Soc., vol. 317, no. 4, pp. 965–972, 2002.

[17] A. Farruggia, P. Ferragina, and R. Venturini, ‘‘Bicriteria data compression:
Efficient and usable,’’ in Proc. Eur. Symp. Algorithms, 2014, pp. 406–417.

[18] K. Masui, M. Amiri, L. Connor, M. Deng, M. Fandino, C. Höfer,
M. Halpern, D. Hanna, A. D. Hincks, G. Hinshaw, J. M. Parra,
L. B. Newburgh, J. R. Shaw, and K. Vanderlinde, ‘‘A compression scheme
for radio data in high performance computing,’’ Astron. Comput., vol. 12,
pp. 181–190, Sep. 2015.

[19] M. Bartik, S. Ubik, and P. Kubalik, ‘‘LZ4 compression algorithm on
FPGA,’’ in Proc. IEEE Int. Conf. Electron., Circuits, Syst. (ICECS),
Dec. 2015, pp. 179–182.

[20] D. C. Price, B. R. Barsdell, and L. J. Greenhill, ‘‘HDFITS: Porting the FITS
data model to HDF5,’’ Astron. Comput., vol. 12, pp. 212–220, Sep. 2015.

[21] K. Anderson, A. Alexov, L. Bähren, J.-M. Grießmeier, and M. Wise,
‘‘LOFAR and HDF5: Toward a new radio data standard,’’ in Proc. Astro-
nomical Data Anal. Softw. Syst. Astronomical Data Anal. Softw. Syst.,
2011, p. 53.

[22] E. W. Greisen, ‘‘FITS: A remarkable achievement in information
exchange,’’ in Information Handling in Astronomy—Historical Vistas.
Dordrecht, The Netherlands: Springer, 2003.

[23] E. W. Greisen, M. R. Calabretta, F. G. Valdes, and S. L. Allen, ‘‘Repre-
sentations of spectral coordinates in FITS,’’ Astron. Astrophys., vol. 446,
no. 2, pp. 747–771, Feb. 2006.

[24] D. Tao, S. Di, Z. Chen, and F. Cappello, ‘‘Significantly improving lossy
compression for scientific data sets based on multidimensional prediction
and error-controlled quantization,’’ in Proc. IEEE Int. Parallel Distrib.
Process. Symp. (IPDPS), May/Jun. 2017, pp. 1129–1139.

[25] N. Amrani, J. Serra-Sagristà, V. Laparra, M. W. Marcellin, and J. Malo,
‘‘Regression wavelet analysis for lossless coding of remote-sensing data,’’
IEEE Trans. Geosci. Remote Sens., vol. 54, no. 9, pp. 5616–5627,
Sep. 2016.

[26] P.-S. Yeh, W. Xia-Serafino, L. H. Miles, B. Kobler, D. A. Menascé,
and J. H. Day, ‘‘Implementation of CCSDS lossless data compression in
HDF,’’ in Proc. Earth Sci. Technol. Conf., 2002.

[27] O. Plugariu, A. D. Gegiu, and L. Petrica, ‘‘FPGA systolic array GZIP com-
pressor,’’ in Proc. 9th Int. Conf. Electron., Comput. Artif. Intell. (ECAI),
Jun. 2017, pp. 1–6.

[28] J. Trein, A. T. Schwarzbacher, B. Hoppe, and K.-H. Noffz, ‘‘A hardware
implementation of a run length encoding compression algorithm with
parallel inputs,’’ in Proc. IET Irish Signals Syst. Conf. (ISSC), 2008,
pp. 337–342.

[29] T. P. Banerjee, A. Konar, and A. Abraham, ‘‘CAM based high-speed
compressed data communication system development using FPGA,’’ in
Proc. World Congr. Nature Biologically Inspired Comput. (NaBIC), 2009,
pp. 959–964.

[30] W. Qiao, J. Du, Z. Fang, M. Lo, M. C. F. Chang, and J. Cong, ‘‘High-
throughput lossless compression on tightly coupled CPU-FPGA plat-
forms,’’ in Proc. IEEE 26th Annu. Int. Symp. Field-Program. Custom
Comput. Mach. (FCCM), Apr. 2018, pp. 37–44.

[31] H. Kavianipour, S. Muschter, and C. Bohm, ‘‘High performance FPGA-
based DMA interface for PCIe,’’ IEEE Trans. Nucl. Sci., vol. 61, no. 2,
pp. 745–749, Apr. 2014.

[32] Xilinx LZ4. Accessed: Nov. 8, 2019. [Online]. Available:
https://github.com/Xilinx/Applications

YUEFENG SONG received the B.S. degree in
mechanical and electronic engineering from the
Changchun University of Science and Technology,
in 2013, and the M.S. degree in mechanical and
electronic engineering from theUniversity of Elec-
tronic Science and Technology of China, in 2017.
He is currently pursuing the Ph.D. degree with
the School of Electronic Information and Electri-
cal Engineering, Shanghai Jiao Tong University,
Shanghai, China. His current research interests

include high-performance computing, big data, and machine learning.

VOLUME 8, 2020 56845



Y. Song et al.: Astronomical Data Preprocessing Implementation Based on FPGA and Data Transformation Strategy

YONGXIN ZHU (Senior Member, IEEE) joined
the Shanghai Advanced Research Institute,
Chinese Academy of Sciences (CAS), as a Full
Professor, in 2017. He is also an Adjunct Professor
with the School of Microelectronics, Shanghai
Jiao Tong University (SJTU). Prior to his tenure
with CAS and SJTU, he worked as a Research
Fellow with the National University of Singapore,
from 2002 to 2005, a Senior Consultant with S1
Incorporation (inventor of the 1st Internet banking

in the world), from 1999 to 2002, and a Teaching Assistant with the
Department of Computer Science and Engineering, SJTU, from 1994 to1995.
He was also a Visiting Professor with the National University of Singapore,
from 2013 to 2017. He has published over 150 English journal articles
and conference papers, 50 Chinese journal articles, and 20 Chinese patent
approvals in the areas of computer architecture, embedded systems, big
data processing, and blockchain. He has received over 20 million RMB
in grants from various funding agencies and industrial partners in China.
He is a Distinguished Member of China Computer Federation (CCF) and
Blockchain Technical Committee of CCF. With over 1000 citations of these
works in recent years, he has received recognition in China and Asia with
the IEEE Best Paper Awards and Shanghai Innovation Award. He is a Guest
Editor of Journal of Systems Architecture.

JUNJIE HOU received the B.S. degree in
mechanical and electronic engineering from the
Changchun University of Science and Technology,
in 2013, and the M.S. degree in mechanical and
electronic engineering from theUniversity of Elec-
tronic Science and Technology of China, in 2016.
He is currently pursuing the Ph.D. degree with
the School of Electronic Information and Electri-
cal Engineering, Shanghai Jiao Tong University,
Shanghai, China. His research interests include

high-performance computing and big data.

SEN DU received the bachelor’s degree in elec-
tronic science and technology from Wuhan Uni-
versity, Wuhan, China, in 2016. He is currently
pursuing the Ph.D. degree with the School of
Electronic Information and Electrical Engineer-
ing, Shanghai Jiao Tong University, Shanghai,
China. His current research interests include edge
computing and customized computing.

SHIJIN SONG received the bachelor’s degree
from the School of Optical and Electronic Infor-
mation, Huazhong University of Science and
Technology, Wuhan, in 2017. She is currently
pursuing the Ph.D. degree with the School of
Electronic Information and Electrical Engineer-
ing, Shanghai Jiao Tong University, China. Her
current research interests include object detection,
machine learning, and neutral networks.

56846 VOLUME 8, 2020


	INTRODUCTION
	BACKGROUND
	RELATED WORK
	BITSHUFFLE
	DESIGNING DATA STORAGE FORMATS
	FPGA-BASED HARDWARE DESIGN
	EXPERIMENT RESULTS AND ANALYSES
	DATA TRANSFORMATION
	EXPERIMENTAL DATASET
	EXPERIMENTAL SETUP
	BITSHUFFLE ACCELERATOR PROCESSING
	RESULTS AND ANALYSIS

	CONCLUSION
	REFERENCES
	Biographies
	YUEFENG SONG
	YONGXIN ZHU
	JUNJIE HOU
	SEN DU
	SHIJIN SONG


