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ABSTRACT Video surveillance system is the integration of computers, networks, communications, and
video CODEC, etc. Because of its distributed architecture, parallel image processing and ease of installation
and expansion, it is widely used in many fields such as education, transportation and industry. However, there
are some challenges of video surveillance applications in smart cities such as large scale of video events, low
quality and big delay of video data transmission, and the loss of video surveillance data integrity. In order to
solve the above problems, this paper designs a series of optimization algorithms and scheduling strategies
based on Unmanned Aerial Vehicle (UAV) cluster. Firstly, we construct a full device coverage network
with UAV cluster in heterogeneous communication environment of smart cities. Secondly, we formulate
the scheduling problem of UAV cluster as bi-objective fragile bin packing problem, and design an optimal
scheduling algorithm with constant approximation performance ratio. The simulation experimental results
fully demonstrate the effectiveness, feasibility and robustness of the proposed solution in terms of system
life cycle, video decodable frame rate, the ratio of UAV flight time to system life cycle, throughput and delay.

INDEX TERMS Smart city, video surveillance, unmanned aerial vehicle (UAV) cluster, scheduler, bin
packing, heterogeneous communication.

I. INTRODUCTION
Video surveillance system [1] includes front-end camera,
transmission cable, video surveillance platform and its con-
trol system. Camera [2] is used to collect front-end video
image signals, as well as video data transmission, control,
display and calculation functions. Large-scale cameras are
interconnected by wired or wireless networks to transmit and
process video data. They are widely used in many fields, such

The associate editor coordinating the review of this manuscript and
approving it for publication was Ying Li.

as safety production monitoring [3], automatic pipeline [4],
automatic driving [5], and intelligent transportation [6], etc.

It is well known that Smart City is a strategic for effectively
solving the problems of economic and social development,
urban infrastructure [7], quality of resident life, environmen-
tal ecology [8]. Its evolution has entered a period of in-depth
development, implementation and application, and technical
support. The above issues have become the current research
hot-spots. In order to meet the needs of comprehensive per-
ception, extensive interconnection and intelligent process-
ing of urban services [9] and monitoring [10], scenic spots,
environmental pollution, sustainable video surveillance [11],
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a large number of intelligent sensors and terminals of the
Internet of Things (IoT) need to be deployed in and / or around
the city. However, these video surveillance devices are gen-
erally deployed inside severe environment and depopulated
zone such that they cannot provide stable and reliable sus-
tainable data communication [12], [13] and video event pro-
cessing.

To solve these problems, academia and industry have
proposed a series of effective and sustainable solutions, such
as energy sustainable IoT [14], emote microgrids [15], fog
data centers [16], self-sustainable wireless sensor node [17],
dense mobile crowd-sensing [18], sustainable data-link [19],
[20], etc.

Specially, the assistant application of Unmanned Aerial
Vehicle (UAV) is particularly prominent [21]–[25]. However,
there are still a series of challenges: (1) how to schedule
UAVs according to random video surveillance events; (2)
how to improve the scheduling efficiency of UAV cluster and
the efficiency of video data processing; (3) how to balance
the flight efficiency of UAVs and the response efficiency
of video events; (4) how to schedule the UAVs, wireless
base stations and video surveillance devices. Our motivation
is to design a robust, efficient and effective video surveil-
lance system for smart cities. Therefore, we proposed a
UAV cluster-based video surveillance optimization scheme
for heterogeneous communication in smart cities, which can
provide reliable, real-time and feasible services for large
scale video surveillance application in smart city. The pro-
posed solution not only can prolong the system life cycle
but also enhance the video heterogeneous communication
performance of the surveillance network. Specially, it can
also improve the throughput, video quality and delay of the
video surveillance system.

The main contribution of our research are as follows: (1)
we construct a full device coverage network with UAV clus-
ter; (2) we define the sustainable video surveillance guarantee
problem as bi-objective minimum bin packing problem; (3)
we design a constant approximation algorithm to address the
above problem.

The rest of the paper is organized as follows. In Section II,
we give the related work. Section III describes the UAV-
cluster assisted video surveillance network. In Section IV,
we present the heterogeneous communications schemes for
UAV-cluster following the fragile bin packing problem.
Section V presents the simulation results, and concluding
remarks are given in Section VI.

II. RELATED WORK
In this section, we will introduce some key issues and
researches of video surveillance, smart city and UAV sched-
ule.

First, A dynamic partial-parallel data layout was proposed
in [26] for green video surveillance storage. It adopts partial-
parallel strategy, which dynamically allocates the storage
space with appropriate degree of partial parallelism accord-
ing to performance requirement. Reference [27] presented

a new video sensor for multi-measurements in an aircraft
cargo compartment. Reference [28] presented a novel intelli-
gent processing and utilization solution for big surveillance
video data transmission based on the event detection and
alarming messages from front-end smart cameras. Reference
[29] introduced a new deep multi-channel residual networks-
based metric learning method for video surveillance by
considering the metric learning problem in moving human
localization. In [30], a unique approach was presented to
utilize the existing video surveillance infrastructure and opti-
mize electricity consumption in large indoor spaces.

Second, [31] provided an overview of the theoretical prob-
lems of video surveillance application, and some feasible
approaches. Reference [32] proposed an approach for traffic
monitoring that does not rely on probe vehicles, and do not
require vehicle localization through GPS. An architecture for
smart health monitoring system was proposed and imple-
mented by creating a basic test-bed [33]. The authors of [34]
proposed a novel video visual analytical system for interac-
tive exploration of surveillance video data, which consists of
providing analysts with various views of information related
to moving objects in a video.

Third, [35] investigated how to simultaneously ensure the
reliability of the remote-control signal for multiple UAVs.
Reference [36] proposed a methodology with a heuristic
based on earliest available time algorithmwhich assigns tasks
to UAVs with an objective of minimizing the make span.
The UAV enabled secure communication system proposed
in [37] can maximize the worst-case secrecy rate among the
users within each period by jointly adjusting UAV trajec-
tories and the users scheduling under the maximum UAV
speed constraints, the UAV return constraints, etc. Reference
[38] proposed a multi-objective path planning framework to
explore a suitable path for a UAV operating in a dynamic
urban environment.

III. UAV CLUSTER ASSISTED VIDEO SURVEILLANCE
SYSTEM
In the urban area, large-scale video surveillance devices are
deployed randomly. Here, there is a difficulty, i.e., using
wired power supply and replacing batteries for them. Then,
a series of wireless Base Stations (BS) would be deployed
in the region to collect the data from the above devices. And
these BSs form a rectangular boundary, as shown in Figure 1.
The coverage area of each BS is represented by a diskmodel.
Thus, it is the coverage area of the BS that the intersection
of the circular rectangular area of the outer boundary and
the rectangular red border of the inner boundary in Figure 1.
If the video surveillance device is deployed in this area,
it can establish direct connection with the BS. The triangle
represents a video surveillance device that cannot be covered1

by a BS. We connect several BSs to all video surveillance
devices by deploying someUAVs. The black circle in Figure 1

1A device can be covered by a BS when their distance is smaller than the
communication distance of the BS.
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FIGURE 1. Coverage and reachable area of BS.

shows the coverage disk of the BS as the center and the com-
munication radius as the reachable radius. The accessibility
of the coverage area of a BS is defined in the Lemma 1 and
its inverse proposition shown in Lemma 2.
Lemma 1 (Accessibility of the Coverage Area of a BS):

For each pair of randomly deployed video surveillance
devices e.g. di and dj in a ring area, there always exists a
UAV route {di, aiL , aiB, dj} with some BSs, which guarantee
the UAV can connect the above devices with energy and time
constraints. Here, aiL represents the BS for UAV launching
and aiB represents the BS for UAV landing.

Proof: The following issues are independent of each
other: (1) deploying devices di and dj, (2) initiating data of
video surveillance, (3) forwarding and collecting video data.
The di generates an independent Group Of Picture (GOP)
Xi(k) and its length is n, i.e., there are n video frames in the
GOP. Here, k ∈ {1, 2, . . . , 2nRi}. The n video frames of each
GOP are subject to the distribution

∏n
k=1 pixi(k). Similarly,

the dj generates 2nRj independent n-length GOP Xj(k). The
n video frames of each GOP are subject to the distribution∏n

k=1 pjxj(k). Here, P
(n)
ε represents all UAV feasible paths

between devices di and dj. According to the topology of
BSs and the characteristics of video data transmission, each
feasible path can be formalized as (xi(k), xj(k + ε), y) ∈ P

(n)
ε .

Any small integer ε represents the difference of video data
collected by two devices. The parameter y represents the set
of BSs accessed by UAVs.
Define video computing events as Mij = {(xi(k), xj(k +

ε), y) ∈ P(n)ε }. The success processing probability of the video
event P(n)M = P(

∑2
i=1Mij) ≤

∑2
i=1(P(

∑n
j=1Mij)) ≤ 2−

ε
n .

Similarly, P(n)Xi(k) ≤
2−

ε
n

|Xi(k)|
and P(n)Xj(k) ≤

2−
ε
n

|Xj(k)|
.

In summary, each pair of devices deployed randomly, e.g.
di and dj, always have a UAV route {di, aiL , aiB, dj}. The UAV
can guarantee the success of video computing eventMij, i.e.,
to maintain the connectivity of any two devices. �
Lemma 2 (Inverse Proposition): For all UAV routes
{di, aiL , aiB, dj} with BSs that meet the energy constraint2

of UAV. The devices at both ends of feasible routs must

2The energy consumption of UAV on its route does not exceed the residual
energy of UAV.

be deployed in the circular rectangular annular area con-
strained by the BS and its coverage area.

Proof: Suppose there is a video event Mij, satisfying
the following inequalities P(n)M ≤ 2−

ε
n . There is an UAV fea-

sible path {ai1, ai2, . . . , ai(q−1), aiq}. Because the monitoring
events of the video surveillance devices deployed in the annu-
lar area are independent of each other and follow the same dis-
tribution. The joint distribution of any two video surveillance
time slot is expressed as follows, p(xi, xj, x

(n)
i , x(n)j , yn) =

p(x(n)i |xi)p(x
(n)
j |xj)(

n∏
k=1

p(yk |xi, xj))/(2n(Ri+Rj)). When the

video data difference between two endpoints of UAV path
satisfies this inequality ‖X (ai1) − X (aiq)‖ ≤ ε, these two
endpoints must be video surveillance devices at the same
time. �

Some assumptions about UAV route planning based on BS
are given below.

(1) Planar Area: It is assumed that the video surveillance
device is randomly deployed in the coverage area of the
BS and the circular rectangular ring area of the accessi-
bility plane.

(2) Disc Reachable Area: The reachable area of video
surveillance device and UAV is a disc, which can be
defined by their position and reachable radius. The cov-
erage area of BS means that if the video surveillance
device is in this area, at least one BS can establish direct
connection with it. Reachable area ofBSmeans that UAV
can launch from the current position directly to the target
monitoring device for collecting and computing the video
data in real time, and returning the computing results to
the device. The reachable area of the video surveillance
device means that the device is at least an endpoint of the
UAV route containing the BSs, indicating that the UAV
can connect the device with another device.

(3) Predictable Routes: The bandwidth, forwarding speed
and computing power of video data from BSs are known
and predictable. For example, bus routes are divided
into segments according to their temporal and spatial
characteristics. The BS network NAP consists of m BSs,
denoted as api , i=1, 2, . . . , m and

∑m
i=1 api = NAP. The

flight, forwarding and computing time of UAV on NAP is
divided into u time slots, denoted as tv, v=1, 2,. . . , u and∑u

v=1 t
v
= T . A binary 〈api , t

v
i 〉 is defined to represent

the spatial and temporal characteristics of the BS visited
by the UAV, i.e., the UAV accesses the i-th BS at the v-th
time slot.

(4) Video Surveillance Network Of UAV: The network con-
sists of several UAVs, BSs and video surveillance
devices.

(5) Video Event Processing Process: The video event pro-
cessing progress concludes the following steps: (1) the
UAV launches from the initial BS, (2) the UAV accesses
the target video surveillance device, and (3) the UAV
returns to the initial BS and waits for the next round of
video events.
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(6) Direct Video Surveillance: When the UAV moves to the
coverage of the video surveillance device, the device uses
a single-hop mode to cooperate with the UAV in video
processing procedure.

(7) Stop Waiting Progress: The UAV first moves to the des-
ignated location of the video surveillance device. Then,
the device and the UAV establish a direct connection
and collaboratively deal with the video events. Finally,
the UAV leaves the current location and goto the next
device after finding the feasible path.

Then, the path planning constraints of UAV cluster based
on BS network and the pre-processing scheme of its running
time are given.

(1) D = {d1, d2, .., dp}. This constraint defines the set D of
all video surveillance devices covered byBS network and
UAV cluster.

(2) NAP = {ap1 , ap2 , . . . , apm} and T = t1, t2, . . . , tu. This
constraint defines the spatial and temporal characteristics
of BS network and UAV cluster.

(3) AP(dk ) = {api | ‖M(api ,dk )
‖ ≤ ε}. The constraint

represents the set of allBSs that can complete video event
processing for video surveillance device dk .

(4) D(api ) = {dk | ‖M(bri,dk )‖ ≤ ε}. This constraint
represents the set of monitoring devices that success-
fully handle video events for UAV from the BS api .
Here, the weights of data processing differences for video
events ε ≤

∑|D(api )|
i=1 P(

∑n
j=1Mij).

Based on the above constraints, the definition of video
surveillance network based on UAV cluster is given below.

Definition 1 (UAV Available Network): Select a subset of
the BS network in the reachable area of the video surveil-
lance device as the UAV launching or landing position of the
surveillance device, which is called UAV Available Network.

UAV accessing every uncovered video surveillance device
must pass through the UAV available network. Thus, it is
important to find the available UAV network points for each
video surveillance device. But in the intensively deployed
wireless video surveillance network, the reachable areas
between video surveillance devices may overlap. Therefore,
the available network of two or more devices may overlap.
Available network points for UAVs can be anywhere in the
disk communication area of device. Since, the choice of
available network points for UAVs is particularly important,
which is defined as UAV route as Definiton 2 and we can
provide the feasible UAV paths constructed by multiple BSs
for video events processing with UAV cluster,a s shown in
Lemma 1.
Definition 2 (UAV Route): The route is a connection

between the initial position of UAV and the available network
points as well as video surveillance device. The line segment
between the available network points of UAV on the route is
simplified to a straight-line segment.

FIGURE 2. An example of Lemma 3.

Lemma 3: UAV can process video events and heteroge-
neous communication of video surveillance devices deployed
on the plane through UAV paths constructed by multiple BSs.

Proof: Based on accessibility and its inverse proposi-
tion, the video data forwarding speed ofBS and its bandwidth
can be controlled completely. The feasible UAV paths can be
generated. Starting from the initial position, UAV accesses all
the video surveillance devices that are not directly covered by
some BSs, and then returns to the initial position. Ensure that
all video surveillance devices are accessed by deploying min-
imal UAVs. Therefore, the route planning problem of UAVs
can be attributed to the bin packing problem. The problem
refers to the scenarios including the video surveillance device,
cooperative processing of video events, direct communica-
tion between device and UAV, and indirect communication
with BS network. �
In Figure 2, the triangle represents the video surveillance

device and the black arrow represents the UAV route. Graph
G is composed of vertices (video surveillance devices and
BSs) and their edges. By simplifying the graph G, we obtain
the graph G′ = (V ′,E ′). Here, V ′ = {UAV , d1, d2, . . . , dp}
and E ′ represents the shortest path between any two vertices
on G. There may be three paths between any two devices
as shown in Figure 3. So, we define the UAV scheduling
problem onG′ as bi-objective bin backing problem following
the Definition 3.
Definition 3 (Bi-Objective Bin Packing Problem): Given

some UAVs, p video surveillance devices and graph G′ in
a rectangular plane area, the problem is to determine the
number of UAVs for determining the access sequence of all
devices, i.e., D = {d1, d2, . . . , dp} and minimize the time cost
of UAV clusters.

The problem ofDefinition 3 can be formulated as follows:

min {|S|, g(S)} s.t. g : S → R+ (1)

Here, S represents the task allocation set of the UAV
cluster. Each UAV accesses each device of the bound
set and completes video event processing. Here, S =

{sq|(dp−1, ap(p−1)L , ap(p−1)B , dp)}. Function g(S) denotes the
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FIGURE 3. Candidate UAV paths.

time cost for all UAVs in S to complete video event process-
ing. In G′, the edge e′(di, dj) ∈ E ′ is {di, apiL , apiB , dj}. The

time cost on this edge is g(e′) = t
di,apiL
flying + t

apiL ,apiB
comm + t

apiB ,dj
flying +

t
dj
comp. Here, t

di,apiL
flying represents the flying time from the current

device di to the BS apiL . t
apiB ,dj
flying represents the flying time of

UAV from theBS apiB to the device dj; t
apiL ,apiB
comm represents the

communication time cost of video data between apiL and apiB
in a BS; t

dj
comp represents the computing time cost of UAV for

handling video events at the device dj.

IV. OPTIMIZATION ALGORITHM FOR HETEROGENEOUS
COMMUNICATION
In order to solve the bi-objective optimization problem in
Definition 3, we consider the following three constraints:

(1) UAV must complete all video events assigned to it and
access all video surveillance devices within a specified
time.

(2) Based on the distribution of rechargeable device, each
UAV has its own task set. It is very important to plan
the UAV route for ensuring the efficient access to video
surveillance devices and timely completion of video
event processing tasks.

(3) The data storage and processing capability of UAV loca-
tion and video surveillance device is limited.

Based on the above constrains, we give the following items
of fragile packing problem: (1) items is the video surveil-
lance devices, (2) item size is the current data storage and
processing capability of device, (3) a bin is an UAV, and (4)
bin capacity is the lifetime of UAV.

UAVs will access all devices before its data storage and
processing capabilities are exhausted. Therefore, for these
devices, UAV video event processing time is the life cycle
of the device. The life cycle of a device is determined by its
data storage and processing capabilities, e.g., the device will
be dead when these capabilities are exhausted. The deploy-
ment and scheduling of UAV cluster is based on the princi-
ple of periodic video event processing. In a specified time,

the scheduled UAV accesses all video surveillance devices
and completes video event processing tasks with the lowest
energy cost.

We define J as a set of video event tasks. e(j) represents the
execution time of video events on the j-th video surveillance
device, 0<e(j) ≤ 1. The function f (j) denotes the fragile
weight of video events completed by the j-th video surveil-
lance device. The weight can be obtained by computing the
difference of data processing in video events. Based on fragile
weight, we partition all devices into m subsets U1, . . . ,Um
and

∑
j∈Ui e(j) ≤ 1, 1 ≤ i ≤ m. If and only if β+e(j)+ t(j) ≤

1 is satisfied, item j can be packed in a bin bk . Here, β
represents the current capacity of the bin bk and 0<β ≤ 1.
T (j) represents the time cost of UAV arriving at the video
surveillance device dj. Then, UAV can complete the video
event processing task from device dj in a specified time if
β + t(j) ≤ e(j). In addition, UAV can complete its all video
event tasks before the life cycle end of the device if β+ t(j) ≤
1
2 . So, e(j) ≤

1
2 and t(j) ≤ 1

2 . The real-time requirements for
UAV accessing all devices can be formulated as the following
inequations, e(j)/

∑
bik
∈ bk t(i)+

∑
bik
bke(i) ≥ εj > 1.

Without loss of generality, we assume e(j) ≤ f (j). Other-
wise, the task of the video surveillance device will never be
completed. Fragile weights can be obtained by the following
equation.

f (j) = e(j)+
e(j)
εj
−

∑
bik∈bk

t(i) (2)

We have e(j)/εj −
∑

bik∈bk
t(i) ≥ 0 following f (j) − e(j) ≥

0, and e(j)/εj −
∑

bik∈bk
t(i) ≤ 1

2 following e(j) ≤ 1
2 ,

as well as εj>1. So, 0<f (j) ≤ 1. The smaller the fragile
weight f (j), the more fragile in the item. When

∑
dj∈bke(j) ≤

min{f (1), f (2), . . . , f (|bk |)}, the above allocation scheme is
feasible. Moreover, each item in bk satisfies the inequality
conditions shown in the following equation.

β + t(j) ≤
1
2

e(j) ≤
1
2

t(j) ≤
1
2

(3)

Above all, the weights sum of all items in bk will not exceed
the sum of fragile weights of the items. Since, we can solve
the bin packing problem following solution L which can be
obtained from the solution L ′, as shown in Lemma 4.
Lemma 4: Bin packing solution L = (e(1), e(2), İ, e(n)) is

equivalent to solution L ′ = (t(1), t(2), . . . , t(n)).
Proof: From Lemma 2, the problem of Definition 3 is

the same as that of Bi-objective Fragile Bin Packing (BFBP).
�

Thus, the greedy fragile bin packing algorithm for solving
the single objective sub-problem of Definition 3 is described
as Algorithm 1 and its performance bound is demonstrated in
Theorem 1.
Theorem 1: wAlgorithm1 ≤ 5.4w∗
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Algorithm 1 FBP-Greedy Algorithm
1: Sort and label all the items according to non-increasing
e(j), e.g. e(1) ≤ e(2) ≤ . . . ≤ e(n);

2: i← 1, j← 1, e← 0, f ← f (i);
3: while i ≤ n do
4: if bj ∪ {i} is feasible then
5: bj← bj ∪ {i};
6: e← e+ e(i);
7: f ← min{f , f (i)};
8: else
9: j← j+ 1;
10: bj← {i};
11: e← e(i);
12: f ← f (i);
13: i++;
14: end if
15: end while

Algorithm 2 BFBP Algorithm
1: obtain the complete graph G← (V ,E);
2: G′← G;
3: portioningG′ intU1, . . . ,Um by using the graph coloring

algorithm [40];
4: apply algorithm 1 to each Ui;
5: all UAVs access the packed items according to the pack-

ing reverse order;

Proof: Let U1, . . . ,UX (G) be a minimum partition of
G into independent sets. We define a weighting function
W [0, 1]→ [0, 85 ] [39].

w(α) =



6
5
, 0 ≤ α ≤

1
6

9
5
α −

1
10
,

1
6
<α ≤

1
3

6
5
α +

1
10
,

1
3
<α ≤

1
2

6
5
α +

4
10
,

1
2
<α ≤ 1

(4)

Furthermore, let W̄ (U ) =
∑
α∈U W (e(α)), W̄ =∑

α∈J W (e(α)), T̄ (U ) =
∑
α∈U W (t(α)), and T̄ =∑

α∈J W (t(α)). Using a result about the weighting function
[3], the number of bins generated by First Fit (FF) on a setUi
is bounded by W̄ (Ui)+ T̄ (Ui)+ 1+ 1. This implies that the
total number of binswAlgorithm1 ≤

∑X (G)
i=1 (W̄ (Ui)+T̄ (Ui)+2).

We assume that w∗(L) denotes the minimum number of
bins in a packing for all items without the incompatibility and
fragility constraint. It is clear that w∗(L) ≤ w∗(G). Therefore,
wAlgorithm1 ≤ W̄ + T̄ + 2X (G) ≤ 1.7w∗(G) + 1.7w∗(G) +
2X (G) ≤ 1.7w∗(G)+ 1.7w∗(G)+ 2w∗(G) = 5.4w∗(G). �
After algorithm 1, we give the algorithm 2 for solving the

problem ofDefinition 3. In addition, we give the Algorithm 3
to obtain the complete graph G required by Algorithm 2.

Algorithm 3 Circles for Complete Graph
1: for i=1 to |P| do
2: while P 6= ∅ do
3: P← P/Pi;
4: Ck+1

i ← cycle (Pi as a center and kR as radius);
5: if ∃ points ∈ P and covered by C1

i then
6: connect Pi with the above points;
7: end if
8: P← P/ the above points
9: Ring← the ring between Ck+1

i and Ck
i ;

10: VDC ←the video devices covered by Ring;
11: for j = 0 to |P/Pi| do
12: connect Pi and Pj with the directed line PiPj;
13: for u = 1 to d |Pi|PjR e do
14: OPT kj ← intersections of PiPj with Ck

i ;

15: VDu,jok ← algorithm 4 (OPT kj ,VD
u−1,j
ok );

16: end for
17: end for
18: if (VDu,jok ,Pj)≥ R then
19: VDu+1,jok ← algorithm 4 (Pj,VD

u,j
ok );

20: end if
21: end while
22: end for

Algorithm 4 Refine the Candidates
1: for m = 1 to |VDC| do
2: compute the distance between VDCm and OPT kok ;
3: end for
4: for n = 1 to |VDC| do
5: resort BSC with ascending order of distance;
6: end for
7: for q = 1 to |VDC| do
8: if (VDCq,VD

u−1,j
ok ) ≤ R then

9: VDu,jok ← VDq;
10: return VDu,jok ;
11: end if
12: end for

The notations in the above algorithms are demonstrated by
Table 1.

V. EXPERIMENTAL ANALYSIS AND VERIFICATION
In order to verify the performance of the proposed algo-
rithm in real-time and reliability of video surveillance net-
work, we designed a series of simulation experiments which
are implemented by using MATLAB and C, the video data
in Table 2 are processed according to the experimental envi-
ronment in Table 3.

We compare the video surveillance network without UAV
(UAV-NULL), distance greedy UAV scheduling strategy
(UAV-DG) and the proposed algorithm (UAV-CO) in terms
of system life cycle, video decodable frame rate, UAV flight
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TABLE 1. Notations.

TABLE 2. Settings of environment.

TABLE 3. Settings of video.

time ratio, throughput and delay. The detailed description of
the above comparison algorithms are given as follows:

(1) UAV-NULL. In this algorithm, video surveillance
devices are divided into two categories: some covered by
BS network and others uncovered. At this time, the col-
lection, forwarding and processing of video data are com-
pleted by the cooperation of BS and monitoring device.

(2) UAV-DG. In this algorithm, UAV prefers to serve the
nearest video surveillance device. At this time, there
will be the worst case: the video surveillance event of

FIGURE 4. System life cycle vs. Number of video devices.

the nearest monitoring device is the monitoring state,
e.g., no video data. Devices in urgent state, i.e., they
have urgent UAV data service requirements, cannot be
responded because of their long distance.

(3) UAV-CO. This algorithm is based on Algorithms 1, 2, 3
and 4.

The comparative performance metrics mentioned above
are as follows:

(1) System life cycle. The time between the first video frame
sent by the video surveillance device and the last video
frame received by the BS.

(2) Video decodable frame rate. The ration of the correct
decoded video frames received by BSs to the total video
frames received.

(3) Flying time ratio. The ratio of the flying time of UAV to
the system time.

(4) Throughput. The ratio of decodable video data received
by BSs to the total video data.

(5) Delay. The average time cost between the BSs to decode
the video frame correctly.

Figure 4 and 5 show the lifecycle of video surveillance
network system of three algorithms with different number of
devices and BSs. The results show that the system cycle of
UAV-NULL is the shortest, and this conclusion is obvious.
The lifetime of UAV-CO is prolonged by about 50% com-
pared with that of UAV-DG. This is because UAV-CO can
find a feasible UAV route between every pair of devices. The
UAV can ensure the success of the video computing event
Mij, i.e., to maintain the connectivity of any two devices.
This connectivity enables UAVs to provide data collection,
forwarding and computing services, as well as effectively
prolong the life cycle of the system.

Figure 6 and 7 show the video decodable frame rates with
different number of devices and BSs. The decodable frame
rate of UAV-NULL is not only very jittery, but also very low.
There always exist some devices which cannot be covered
by BSs and submit the complete video frames. According
to Lemma 1 and 2, the proposed algorithm UAV-CO can
respond to events in time and obtain video surveillance data
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FIGURE 5. System life cycle vs. Number of base stations.

FIGURE 6. Video decodable frame rate vs. Number of video devices.

FIGURE 7. Video decodable frame rate vs. Number of base stations.

with high probability. And, it can detect the difference of
video data between two positions of UAV path in time.
According to the problem described in equation (1), it can
fully maximize the video surveillance events per unit time,
collect and decode video frames. So, the decodable frame rate
of the proposed algorithm is always high. We also found that
the decodable frame rate of the proposed algorithm is about
20% higher than that of UAV-DG.

FIGURE 8. Flying time ratio of UAV vs. Number of video devices.

FIGURE 9. Flying time ratio of UAV vs. Number of base stations.

Figure 8 and 9 show the flight time ratio of UAV between
two algorithms in different number of devices and BSs. It is
found that UAV-NULL not only has longer flight time than
the proposed algorithm, but also has more flight time in large-
scale video surveillance network. Although we find that the
flight time of UAV based on the proposed algorithm is on the
rise, the increase is relatively low. This is because the execu-
tion time of Algorithm 1 is complex, whichmakes UAV hover
in the air for a certain time. But it will not exceed the energy
limitation of UAV. In addition, the simplification of G is
helpful to improve the efficiency and accuracy of UAV route
decision-making. We found that the UAV flight time of the
proposed algorithm is about 10% less than that of UAV-DG.
Figure 10 and 11 show the throughput of the three

algorithms for video communication. From Figure 11,
the throughput of UAV-NULL is very close to that of UAV-
DG when the number of BS equals to 8. This is a very
interesting result. Because there are some uncovered devices
in UAV-NULL, the throughput is always at a low level.
However, the UAV-DG focuses on distance greed. When
multiple UAVs serve the same video surveillance device
simultaneously or sequentially, the throughput is equivalent
to UAV-NULL. In addition, we find that the throughput of
the proposed algorithm is always above 95%. This is because
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FIGURE 10. Throughput vs. Number of video devices.

FIGURE 11. Throughput vs. Number of base stations.

the implementation of Algorithm 3 makes the mapping effi-
ciency between UAV and video surveillance device high, and
improves the throughput of video communication. We found
that the throughput of the proposed algorithm is at least 15%
higher than that of UAV-DG and 35% higher than that of
UAV-NULL.
Figure 12 and 13 show the average delay of video com-

munication under different number of devices and BSs. It is
found that the delay of UAV-NULL is very close to the delay
of UAV-DG. This is also a very interesting result. Because
there are some BSs in UAV-NULL scheme. There are some
video frames waiting for forwarding in the buffer queues of
theseBSs, which leads to the increase of the forwarding delay
of some video frames. Similarly, UAV-DG scheme takes
distance greed as its core, which can make some UAVs play
the role of cooperative BSs with large buffer queues. When
multiple UAVs serve the same video surveillance device
simultaneously or sequentially, the communication between
the BS and the UAV is congested for a long time, which
leads to the increase of transmission delay. The delay of the
proposed algorithm is reduced by at least 150% compared

FIGURE 12. Delay vs. Number of video devices.

FIGURE 13. Delay vs. Number of base stations.

with UAV-DG and increased by at least 45% compared with
UAV-NULL.

VI. CONCLUSION
In this paper, we designed an efficient and reliable UAV
cluster-based video surveillance system optimization algo-
rithm in heterogeneous communication of smart cities. At
first, we show the video surveillance network based on UAV
cluster by using the BSs network and accessibility of UAV
cluster. Then, we defined the bi-objective bin packing prob-
lem for resolving the optimization of UAV cluster. And,
the algorithm 1 was given by using the greedy fragile bin
packing algorithm. It has a constant approximation ratio
following the Theorem 1. Additionally, algorithm 2, 3 and
4 were given for addressing the BFBP problem, obtaining
the circles for complete graph, and refining the candidates
of UAV route, respectively. Finally, our simulation results
demonstrate that our proposed solution can be efficiently and
feasibly applied to video surveillance application in smart
city. Specially, the proposed algorithms can achieve about
50% system life cycle extension compared to that of UAV-
DG, 20% video decodable ratio improvement compared to
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that of UAV-DG. In addition, the UAV flying time ratio of
the proposed algorithm is 10% less than one of UAV-DG.
Throughput is at least 15% higher than that of UAV-DG and
35% higher than that of UAV-NULL. Delay is reduced by at
least 150% compared with UAV-DG.
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