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ABSTRACT With the fast development of new array technology and intelligent antenna, it is easier to
obtain angle of arrival (AOA) measurements. Hybrid received signal strength (RSS) and AOA measurement
techniques are proposed for the position computing in sensor networks. By converting the measurement
equations and relaxing the optimization function, range-based square semidefinite programming (RLS-SDP)
and squared range-based square semidefinite programming (SRLS-SDP) algorithms are put forward to
obtain the source position estimate by considering the transmit power to be known or unknown. The proposed
RLS-SDP and SRLS-SDP algorithms provide accurate solution to the source position estimate and avoid
the initialization process of numerical calculation. The simulations show that the proposed RLS-SDP and
SRLS-SDP algorithms perform better than the linear estimator and provide the accuracy performance which
is very close to the Cramér-Rao Lower Bound (CRLB) of position estimation. The proposed SRLS-SDP
algorithm shows its advantages in the computational complexity compared with the RLS-SDP, since the
complexity of SRLS-SDP is independent of the number of anchor nodes.

INDEX TERMS Localization, received signal strength, angle of arrival, semidefinite programming.

I. INTRODUCTION
Sensor network has been playing a key role in many applica-
tions, such as surveillance, emergency services, friend find-
ing, and tracking of the elderly [1]–[5]. Position obtaining
is an indispensable component of sensor network since the
readings from a large number of sensor nodes are meaningful
only when the positions of these readings are known. So posi-
tion computing becomes a crucial problem when all kinds of
information resources will be automatically collected from
the sensor nodes or terminals [6]–[8]. To obtain the posi-
tion information, sensor nodes are categorized into anchor
node with known position and source node which is required
to be localized. A localization scheme tries to localize the
source node using the ranging information extracted from the
signaling between anchor node and source node [9], [10].
Most of the accurate localization techniques are based
on the ranging information by using the techniques such
as, time of arrival (TOA) [11], [12], time difference of
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arrival (TDOA) [13], [14], received signal strength (RSS)
[15]–[17], and angle of arrival (AOA) [18], [19].

Among these ranging methods, RSS-based localization
scheme is very popular for its easier implementation and
less complexity [16], [20], [21]. However, the noise of RSS
measurements is large, so the positioning performance is
not very well. Hybrid positioning techniques can greatly
improve the reliability of the position estimation and reduce
the dependence on the number of anchor nodes, so they are
becoming a popular positioning method [22], [23]. Due to the
limitations of RSS ranging method, some hybrid technolo-
gies are also proposed in recent years, such as hybrid RSS
and TDOA [24], RSS and TOA positioning methods [25].
Electronic compass or vision sensor provides the possibility
of AOA measurements [26], [27], but it requires additional
hardware configuration and adds the hardware cost of the
node. Recently, AOA measurement becomes easier with the
development of new array technology and smart antenna, so it
provides a broad space to realize the position obtaining [28],
[29] in sensor networks. Some new hybrid AOA positioning
methods are also put forward and include the hybrid AOA and
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TDOA [30], AOA and TOA [22], [31], and the hybrid AOA
and RSS positioning methods [32], [33].

To locate the source node by using these different ranging
methods, some algorithms including maximum likelihood
(ML) estimator [34], [35], linear estimator [14], [36], and
convex semidefinite programming (SDP) method [37], [38]
are proposed. The ML estimator is always solved by the
numerical method which requires initial solution to ensure
the convergence. When the selected initial solution is far
from the actual, it will be trapped in the local optimum [39].
To overcome the shortcoming of the ML estimator, the lin-
ear estimator and convex SDP algorithms are proposed to
obtain the position estimate of the source node. The lin-
ear estimator provides a closed-form solution for the source
position estimate, but the constraint conditions are difficult
to be exploited. So the solution of linear estimator is often
suboptimal. By relaxing the non-convex optimization model
into convex problem, the convex SDP method also provides
robust solution to the position estimation problem [40]–[42].
However, the computational complexity of SDP is higher than
that of linear estimator.

The received RSS is determined by the transmit power
which depends on the height and orientation of the node
antenna, antenna gain, and its battery [43] and will be sub-
ject to a large fluctuation. In many cases, the RSS-based
localization problem always assumes the transmit power to
be unknown. When the transmit powers are unavailable and
assumed to be unknown, the RSS-based scheme is designed
to estimate the positions of the source nodes in [44]. The
convex optimization algorithms are proposed to estimate the
position parameters by considering the transmit powers to
be known or unknown [21]. In [45], the linear least square
approach is designed to determine the positions of the source
nodes, when path loss model parameters are unknown.

Recently, some researches focus on the localization by
using the hybrid RSS and AOA measurements [32], [46].
Compared with the single RSS or AOA method, the hybrid
RSS and AOAmeasurements provide more ranging informa-
tion which leads to more accurate position estimate. In non-
cooperative or cooperative approach, the convex relaxation
algorithms are proposed for hybrid RSS and AOA localiza-
tion [33]. However, the correlation between RSS and AOA
measurements is not exploited in [33]. The linear estima-
tor [47] is also proposed for the hybrid RSS and AOA source
position estimate problem. However, the proposed linear esti-
mator performs not very well, since the constraint condition
is not considered in the optimization model.

In this paper, range-based least square SDP (RLS-SDP)
and squared range-based least square SDP (SRLS-SDP) algo-
rithms are proposed for the hybrid RSS and AOA local-
ization problem. Then the RLS-SDP and SRLS-SDP algo-
rithms are also extended to the situation of unknown transmit
power. By relaxing the non-convex optimization problem
into the convex optimization, the proposed RLS-SDP and
SRLS-SDP algorithms provide a solution for the source posi-
tion estimate and avoid the initialization of the numerical

calculation. The main contributions of this paper are listed as
follows,

1) By exploiting the correlation between RSS and AOA
measurements, weighted least square (WLS) solution
is proposed to obtain the source position estimate. Then
two robust SDP algorithms (i.e., RLS-SDP and SRLS-
SDP) are put forward to estimate the source position by
availing of the RLS or SRLS-based cost function.

2) When the transmit power is unavailable and assumed
to be an unknown parameter, the RLS-SDP and
SRLS-SDP algorithms are redesigned by relaxing the
optimization problem into convex form. The RLS-SDP
and SRLS-SDP algorithms are extended to the situation
of unknown transmit power.

3) The computational complexity of these proposed algo-
rithms are compared by using the variables, equality
constraints, and SDP cones produced in the process of
convex relaxation.

The rest of this paper is structured as follows. Section II
presents the problem specification of hybrid RSS and AOA
localization. Section III in detail describes the proposed
RLS-SDP and SRLS-SDP algorithms by assuming trans-
mit power to be known. In Section IV, the RLS-SDP
and SRLS-SDP algorithms are extended to the situation of
unknown transmit power. Section V derives the computa-
tional complexity of these proposed algorithms. Section VI
analyzes the simulation results. The conclusion is presented
in Section VII. This paper contains a number of symbols.
Following the convention, we represent the matrices as bold
case letters. If the matrix is denoted by (∗), (∗)−1 and (∗)T

represent the matrix inverse and transpose operator, respec-
tively. ‖ ∗ ‖ denotes `2 norm. Ai,j denotes the element at
the ith row and jth column of matrix A. diag{ai} constructs
a diagonal matrix with principal diagonal element ai. For
arbitrary symmetric matrixA,A � 0 means thatA is positive
semidefinite.

II. PROBLEM SPECIFICATION
In a three-dimensional space, N anchor nodes are deployed
with known positions which are denoted as ai =

[ai,x ai,y ai,z]T , i = 1, 2, . . . ,N . In the same region,
a source node is required to be located. The position of the
source node is denoted as x = [xx xy xz]T . To derive
the position of the source node, the signals transmitted by
the source node reach the anchor nodes, then the RSS of
the signals is received and measured by the anchor nodes.
Assuming that the RSS obeys the logarithmic decay model,
the received RSS in anchor node i is denoted as pi, which is
given by [13], [15]

pi = p0 − 10βlog10di + ni,p (1)

where i = 1, 2, . . . ,N , β is called as path loss exponent
(PLE) and generally varied from 2 to 5. p0 is called as transmit
power and related with the antenna gain and energy supply of
the source node. di is the range of the source node respect to
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FIGURE 1. AOA measurements between anchor node and source node.

the ith anchor node. ni,p represents the noise which conforms
to the Gaussian distribution with zero mean and variance δ2i,p.
In the three-dimensional space, the unknown source posi-

tion parameter includes three direction of x, y and z. It is
possible to be unreliable for the position obtaining only by
using the RSS measurements. To ensure the reliability of the
position estimation and improve the positioning performance,
the direction angle and elevation angle are also measured and
shown in Fig. 1. The direction angle and elevation angle are
denoted as φi and αi, respectively. By using the geographical
position relationship between the nodes, the direction angle
φi and elevation angle αi can be written as

φi = arctan(
ai,y − xy
ai,x − xx

)+ ni,φ (2)

αi = arccos(
ai,z − xz

di
)+ ni,α (3)

where ni,φ and ni,α are noise of the direction and elevation
measurements, respectively. Without loss of generality, it is
assumed that the noise ni,φ and ni,α are gaussian with zero
mean and variance δ2i,φ and δ2i,α , respectively.
To derive the unknown position of the source node, the well

known weighted least square (WLS) solution to hybrid RSS
and AOA localization is given by

min
x

eT6−1e (4)

where 6 = E(nnT ), n = [nTp nTφ nTα ]
T , np = [n1,p

n2,p . . . nN ,p]T , nφ = [n1,φ n2,φ . . . nN ,φ]T , nα =
[n1,α n2,α . . . nN ,α]T , e = [eTp eTφ eTα ]

T , ep =
[e1,p e2,p . . . eN ,p]T , eφ = [e1,φ e2,φ . . . eN ,φ]T ,
eα = [e1,α e2,α . . . eN ,α]T , i = 1, 2, . . . ,N , ei,p, ei,φ ,
and ei,α denote the error of the RSS, direction and elevation
measurements, respectively. ei,p, ei,φ , and ei,α are written as

ei,p = pi − p0 + 10βlog10di

ei,φ = φi − arctan(
ai,y − xy
ai,x − xx

)

ei,α = αi − arccos(
ai,z − xz

di
)

(5)

where i = 1, 2, . . . ,N , it is obviously noted that di =
‖x−ai‖. Problem (4) is a nonlinear and non-convex optimiza-
tion model, so it always be solved by numerical calculation
method which requires an initial point. When the initial point
is not enough close to the actual solution, the estimate will be
trapped in the local optimum. To overcome the shortcoming
of the numerical calculation method and fasten the iterative
calculation, the non-convex model of (4) is relaxed into
the convex optimization problem when the transmit power
p0 is assumed to be known in section III and unknown in
section IV.

III. KNOWN TRANSMIT POWER
In the section, the source position x is estimated by using
the hybrid RSS and AOA measurements when the transmit
power p0 is assumed to be available. It is possible to con-
vert the WLS formulation to a convex SDP optimization
problem, to provide an approximate solution that can be
obtained in a globally optimum fashion with reduced com-
putational efforts. To obtain the convex SDP optimization
form, the RSS, direction and elevation angle measurement
equations are approximately linearized by considering the
small noise level. In the following, we in detail describe the
proposed convex RLS-SDP and SRLS-SDP algorithms for
the hybrid RSS and AOA localization.

A. RLS-SDP ALGORITHM
Firstly, (1) is rewritten as

di = 10
p0−pi+ni,p

10β (6)

where i = 1, 2, . . . ,N . Expanding right side of (6) with
Taylor series and neglecting the high order terms at small
noise level, we can obtain that

di ≈ λi +
λiln10
10β

ni,p (7)

where λi = 10
p0−pi
10β , i = 1, 2, . . . ,N . (7) is obtained by

linearizing (1) and considered as an equivalent RSS mea-
surement equation. A new unknown vector is defined by
u = [xT dT 1]T ∈ RN+4 and d = [d1 d2 . . . dN ]T .
Then stacking the N equivalent RSS measurement expres-
sions of (7), we can obtain the linear matrix form

C1u = ε1 (8)

where C1 = [0N×3 1iN − λ] ∈ RN×(N+4), 1iN is an
N ×N square matrix with 1 at the ith row and the ith column
element and 0’s elsewhere, λ = [λ1 λ2 . . . λN ]T , ε1 =
[ε1,p ε2,p . . . εN ,p]T , εi,p =

λiln10
10β ni,p, i = 1, 2, . . . ,N .

By moving ni,φ to the left side and doing the tangent
operation, (2) is also rewritten as

tan(φi − ni,φ) =
ai,y − xy
ai,x − xx

(9)

Expanding both sides of (9) and neglecting the high order
terms, we can obtain that

− sinφixx + cosφixy + bi,φ ≈ λi sinαini,φ (10)
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where (aix − xx) cosφi + (aiy − xy) sinφi ≈ λi sinαi, bi,φ =
sinφiai,x − cosφiai,y, i = 1, 2, . . . ,N . (10) is derived from
the direction expression of (2) and considered as an equiv-
alent direction measurement equation. Then by stacking the
equivalent direction measurement equation of (10), the linear
matrix form is written as

C2u = ε2 (11)

where C2 ∈ RN×(N+4), and

C2 =


− sinφ1 cosφ1 0 . . . 0 b1,φ
− sinφ2 cosφ2 0 . . . 0 b2,φ

...
...

...
...
...

...

− sinφN cosφN 0 . . . 0︸ ︷︷ ︸
N+1

bN ,φ

 (12)

ε2 = [ε1,φ ε2,φ . . . εN ,φ]T , εi,φ = λi sinαini,φ , i =
1, 2, . . . ,N .
Similarly, by transforming the elevation measurement

equation of (3), it yields

di cos(αi − ni,α) = ai,z − xz (13)

Substituting (7) into (13) and expanding the left side of
(13), we can obtain that

−xz + bi,α ≈ λi sinαini,α +
λi cosαiln10

10β
ni,p (14)

where bi,α = aiz − λi cosαi, i = 1, 2, . . . ,N . (14) is
obtained with the elevation expression of (3) and considered
as an equivalent elevation measurement equation. Similarly,
the linear matrix form of (14) is expressed as

C3u = ε3 (15)

where C3 ∈ RN×(N+4), and

C3 =


0 0 −1 0 . . . 0 b1,α
0 0 −1 0 . . . 0 b2,α
...

...
...

...
...
...

...

0 0 −1 0 . . . 0︸ ︷︷ ︸
N

bN ,α

 (16)

ε3 = [ε1,α ε2,α . . . εN ,α]T , εi,α = λi sinαini,α +
λi cosαiln10

10β ni,p, i = 1, 2, . . . ,N . The equations (8), (11),
and (15) provide the equivalent RSS, direction, and elevation
measurement expressions, so the WLS solution to the hybrid
RSS and AOA localization can be formulated as

min
u

(Cu)TP−1(Cu)

s.t. di = ‖x− ai‖ = ‖Aiu‖ i = 1, 2, . . . ,N (17)

where C = [CT
1 CT

2 CT
3 ]
T , Ai = [I3 03×N − ai] ∈

R3×(N+4), P = E(εεT ), ε = [εT1 εT2 εT3 ]
T , P is further

given by

P =

E(ε1ε
T
1 ) E(ε1εT2 ) E(ε1εT3 )

E(ε2εT1 ) E(ε2εT2 ) E(ε2εT3 )

E(ε3εT1 ) E(ε3εT2 ) E(ε3εT3 )

 (18)

ε2 is independent of ε1 and ε3, so E(ε1εT2 ), E(ε2ε
T
1 ), E(ε2ε

T
3 ),

and E(ε3εT2 ) are all equal to 0N×N . The others in P are

E(ε1εT1 ) = diag
{λ2i ln210
100β2

δ2i,p

}
E(ε2εT2 ) = diag

{
λ2i sin

2 αiδ
2
i,φ

}
E(ε3εT3 ) = diag

{
λ2i sin

2 αiδ
2
i,α +

λ2i cos
2 αiln210

100β2
δ2i,p

}
E(ε1εT3 ) = E(ε3εT1 ) = diag

{λ2i cosαiln210
100β2

δ2i,p

}
(19)

where i = 1, 2 . . . ,N . To relax the optimization problem (17)
into a convex model, we defineU = uuT . Then problem (17)
can be rewritten as

min
U

Tr(DU)

s.t. Tr(BiU) = U3+i,3+i i = 1, 2, . . . ,N (20a)

U � 0N+4,UN+4,N+4 = 1 (20b)

rank(U) = 1 (20c)

where D = CTP−1C, Bi = AT
i Ai. Dropping the rank

1 constraint of (20c), we can obtain a range-based least square
SDP (RLS-SDP) form

min
U

Tr(DU)

s.t. (20a), (20b) (21)

It is fortunately found that matrix U must be rank 1 when the
SDP solution is an optimal solution of the original problem
(21). In Appendix, we demonstrate that matrix U must be
rank 1 even if dropping the constraint of (20c). The RLS-
SDP optimization problem of (21) can be solved with well
known algorithms such as interior point methods which are
self initialized and require no initialization from the user.
Extracting from defined vector U, we can obtain the source
position estimate x = U1:3,N+4.

B. SRLS-SDP ALGORITHM
By squaring both sides of (7) and neglecting the second order
terms, it yields

d2i ≈ λ
2
i +

λ2i ln10

5β
ni,p (22)

Since d2i = ‖x− ai‖2, (22) can be further rewritten as

−2aTi x+ xT x+ aTi ai − λ
2
i ≈

λ2i ln10

5β
ni,p (23)

To derive the source position, a new unknown vector v is
defined by v = [xT xT x 1]T ∈ R5. Then by stacking the
expressions of (22), the linear matrix form is given by

G1v = γ1 (24)
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where G1 ∈ RN×5, and

G1 =



−2aT1 1 aT1 a1 − λ
2
1

−2aT2 1 aT2 a2 − λ
2
2

...
...

...

−2aTN 1 aTNaN − λ
2
N

 (25)

γ1 = [γ1,p γ2,p . . . γN ,p]T , γi,p =
λ2i ln10
5β ni,p, i =

1, 2, . . . ,N .
When the unknown vector v is defined, the linear matrix

forms of direction and elevation measurement equations (10)
and (14) are given by {

G2v = γ2
G3v = γ3

(26)

where G2 ∈ RN×5, G3 ∈ RN×5, and

G2 =


− sinφ1 cosφ1 0 0 b1,φ
− sinφ2 cosφ2 0 0 b2,φ

...
...

...
...

...

− sinφN cosφN 0 0 bN ,φ

 (27)

and

G3 =


0 0 −1 0 b1,α
0 0 −1 0 b2,α
...

...
...

...
...

0 0 −1 0 bN ,α

 (28)

γ2 = ε2, γ3 = ε3.
By using the linear expression forms of (24) and (26),

a constrained WLS optimization problem is formulated as

min
v

(Gv)TQ−1(Gv)

s.t. v4 = ‖v1:3‖2 = ‖Ev‖ (29)

where G = [GT
1 GT

2 GT
3 ]
T , E = [I3 03×2], Q =

E(γ γ T ), γ = [γ T1 γ T2 γ T3 ]T , Q is further given by

Q =

E(γ1γ
T
1 ) E(γ1γ T2 ) E(γ1γ T3 )

E(γ2γ T1 ) E(γ2γ T2 ) E(γ2γ T3 )

E(γ3γ T1 ) E(γ3γ T2 ) E(γ3γ T3 )

 (30)

where E(γ1γ T2 ), E(γ2γ T1 ), E(γ2γ T3 ), and E(γ3γ T2 ) are all
equal to 0N×N . The others in Q are

E(γ1γ T1 ) = diag
{λ4i ln210

25β2
δ2i,p

}
E(γ2γ T2 ) = diag

{
λ2i sin

2 αiδ
2
i,φ

}
E(γ3γ T3 ) = diag

{
λ2i sin

2 αiδ
2
i,α +

λ2i cos
2 αiln210

100β2
δ2i,p

}
E(γ1γ T3 ) = E(γ3γ T1 ) = diag

{λ3i cosαiln210
50β2

δ2i,p

}
(31)

where i = 1, 2 . . . ,N . To relax the optimization problem (29)
into the convex model, we define V = vvT . Then problem
(29) can be rewritten as

min
V

Tr(HV)

s.t. Tr(FV) = V4,5 (32a)

V � 05,V5,5 = 1 (32b)

rank(V) = 1 (32c)

where H = GTQ−1G, F = ETE.
Dropping the rank 1 constraint in (32), we can also obtain

a convex squared range-based least square SDP (SRLS-SDP)
form

min
U

Tr(GV)

s.t. (32a), (32b) (33)

Similar to (21), we can found that matrix V must be rank 1
when the SDP solution to (33) is an optimal solution for
Fi,i > 0 (i = 1, 2, . . . , 5). So the SDP solution to (33) is
also an optimal solution to the original problem (32) even
if dropping the rank 1 constraint. Extracting from defined
vector V, we can also obtain the source position estimate
x = V1:3,5.

IV. UNKNOWN TRANSMIT POWER
According to the description of RSS measurement in (1),
the received RSS value pi is determined by the transmit power
p0. However, the transmit power is unavailable in many cases,
since it depends on the battery and antenna gain of transmit-
ting node. In addition, the transmit power might change with
time, e.g., when the battery would begin to exhaust. Conse-
quently, if each transmitting node has to report its transmit
power to anchor nodes constantly during RSS measurements,
it also requires additional communication overhead in both
anchor nodes and source nodes and makes the network more
convoluted. In this section, the transmit powers are consid-
ered as nuisance parameters and assumed to be unknown,
then the transmit power of the source node is estimated jointly
with the source position.

A. RLS-SDP ALGORITHM
When the transmit power of source node is assumed to be
unknown, the convex SDP optimization follows the same
procedure as described previously for the known transmit
power case but with a slightly different expression. When the
transmit power is considered as to be unknown, we define a
new RSS-related parameter µi and a new variable ρ0, which
are given by µi = 10

−pi
10β

ρ0 = 10
p0
10β

(34)

So (7) can be rewritten as

di = µiρ0 +
λiln10
10β

ni,p (35)
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where λi = µiρ0, i = 1, 2, . . . ,N . By defining a new
unknown vector ũ = [xT dT ρ0 1]T ∈ RN+5 and
d = [d1 d2 . . . dN ]T , the linear matrix form of (35) is
rewritten as

C̃1ũ = ε1 (36)

where C̃1 = [0N×3 1iN − µ 0], µ = [µ1 µ2 . . .

µN ]T , ε1 is same with that in (8).
The direction expression is unrelated with the transmit

power, so we do not need rewrite the equivalent direction
equations. Using the equivalent direction measurement equa-
tion of (10), we can obtain with

C̃2ũ = ε2 (37)

where ε2 has been defined in (11), C̃2 ∈ RN×(N+5), and

C̃2 =


− sinφ1 cosφ1 0 . . . 0 b1,φ
− sinφ2 cosφ2 0 . . . 0 b2,φ

...
...

...
...
...

...

− sinφN cosφN 0 . . . 0︸ ︷︷ ︸
N+2

bN ,φ

 (38)

By assuming the transmit power to be unknown, the equiva-
lent elevation measurement equation of (14) is modified as

−xz − µi cosαiρ0 + ai,z ≈ λi sinαini,α +
λi cosαiln10

10β
ni,p

(39)

So the linear matrix form of (39) is given by

C̃3ũ = ε3 (40)

where ε3 is same with that in (15), C̃3 ∈ RN×(N+5), and

C̃3=


0 0 −1 0 . . . 0 −µ1 cosα1 a1,z
0 0 −1 0 . . . 0 −µ2 cosα2 a2,z
...

...
...

...
...
...

...
...

0 0 −1 0 . . . 0︸ ︷︷ ︸
N

−µN cosαN aN ,z


(41)

So by using the matrix expressions of (36), (37), and (40),
the WLS solution can be written as

min
ũ

(C̃ũ)TP−1(C̃ũ)

s.t. di = ‖x− ai‖ = ‖Ãĩu‖ i = 1, 2, . . . ,N (42)

where C̃ = [C̃T
1 C̃T

2 C̃T
3 ]
T , Ãi = [I3 03×(N+1) − ai],

P = E(εεT ) is same with the definition in (18).
To obtain the convex SDP form, a new matrix is defined by

Ũ = ũ̃uT . So problem (42) can be rewritten as

min
U

Tr(D̃Ũ)

s.t. Tr(B̃iŨ) = Ũ3+i,3+i i = 1, 2, . . . ,N (43a)

Ũ � 0N+5, ŨN+5,N+5 = 1 (43b)

rank(Ũ) = 1 (43c)

where D̃ = C̃TP−1C̃, B̃i = ÃT
i Ãi. Dropping the rank

1 constraint of (43c), we can also obtain a squared range-
based least square SDP (SRLS-SDP) form

min
Ũ

Tr(D̃Ũ)

s.t. (43a), (43b) (44)

Similar to (21), Ũmust be rank 1 when the solution to (44) is
optimal for D̃i,i > 0 (i = 1, 2, . . . ,N + 5).
By extracting from defined vector Ũ, the source position

is estimated by x = Ũ1:3,N+5 along with ρ0 = ŨN+4,N+5
which is further used to derive the transmit power.

B. SRLS-SDP ALGORITHM
When the transmit power p0 is unknown, the expression of
(22) is rewritten as

−2aTi x+ xT x− µ2
i ρ

2
0 + aTi ai ≈

λiln10
5β

ni,p (45)

Then a new unknown vector is defined by ṽ =

[xT xT x ρ0 ρ20 1]T ∈ R7, so the linear matrix form
of (45) is expressed by

G̃1̃v = γ1 (46)

where γ1 is same with that in (24), G̃1 ∈ RN×7, and

G̃1 =


−2aT1 1 0 −µ2

1 aT1 a1
−2aT2 1 0 −µ2

2 aT2 a2
...

...
...

...
...

−2aTN 1 0 −µ2
N aTNaN

 (47)

When the new unknown vector ṽ is defined, the linear matrix
forms of direction and elevation expressions are also writ-
ten as {

G̃2̃v = γ2
G̃3̃v = γ3

(48)

where γ2 and γ3 have been defined in (26), G̃2 ∈ RN×7, G̃3 ∈

RN×7, G̃2 and G̃3 are defined by

G̃2 =


− sinφ1 cosφ1 0 . . . 0 b1,φ

...
...

...
...
...

...

− sinφN cosφN 0 . . . 0︸ ︷︷ ︸
4

bN ,φ

 (49)

G̃3 =


0 0 −1 0 −µ1 cosα1 0 a1,z
0 0 −1 0 −µ2 cosα2 0 a2,z
...

...
...

...
...

...
...

0 0 −1 0 −µN cosαN 0 aN ,z


(50)

Using the linear forms of (46) and (48), we obtain theWLS
optimization problem

min
ṽ

(G̃̃v)TQ−1(G̃̃v)

s.t. ṽ4 = ‖̃v1:3‖2 = ‖Ẽ̃v‖

ṽ25 = ṽ6 (51)
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where G̃ = [G̃T
1 G̃T

2 G̃T
3 ]
T , Ẽ = [I3 03×4], Q =

E(γ γ T ) has been defined in (30).
A new unknown matrix is defined by Ṽ = ṽ̃vT , then

problem (51) is rewritten as

min
Ṽ

Tr(H̃Ṽ)

s.t. Tr(̃FṼ) = Ṽ4,7 (52a)

Ṽ5,5 = Ṽ6,7 (52b)

Ṽ � 07, Ṽ7,7 = 1 (52c)

rank(Ṽ) = 1 (52d)

where H̃ = G̃TQ−1G̃, F̃ = ẼT Ẽ. Similarly, by dropping
the rank 1 constraint, an SDP optimization problem of (52) is
expressed by

min
V

Tr(H̃Ṽ)

s.t. (52a)-(52c) (53)

It can also be demonstrated that Ṽ must be rank 1 when the
solution to (53) is optimal for H̃i,i > 0 (i = 1, 2, . . . , 7).
The detailed proof process of rank 1 is not listed here due
to too many similarities. Extracting from the estimated Ṽ,
we can obtain the source position estimate x = Ṽ1:3,7 and
the transmit power.

The weight P and Q are determined by λi. However, λi
is determined by the transmit power and not available in the
beginning. Preliminarily considering λi to be identical we
obtain the initial estimate λi. Then putting the initial estimate
into the optimization problem would produce better solu-
tion for the source position estimate along with the transmit
power.

V. COMPLEXITY ANALYSIS
In the section, the computation complexity of the proposed
convex SDP algorithms is analyzed. Firstly, when the transmit
power is considered to be known, three unknown parameters
are required to be estimated in 3-dimensional scenario. Only
if the number of measurements is larger than the unknown
parameters, the unknown parameters can be uniquely deter-
mined. Since three measurements including RSS, direction,
and elevation are provided for each anchor node, the source
position can be estimated theoretically only by using one
anchor node. When the transmit power is considered as an
unknown parameter and estimated along with source posi-
tion, there are totally four unknown parameters. So at least
two anchor nodes are required to obtain the unique solutions
to the source position and transmit power.

A convex optimization problem can be solved by iter-
ative optimization techniques, e.g., interior-point methods.
As is known that the worst-case complexity of solving the
SDP algorithm is O

(
(m2∑Nsdp

i=1 (n
sdp
i )2 + m

∑Nsdp
i=1 (n

sdp
i )3 +

m3)
√
ψ log(1/ε)

)
, whereNsdp is the number of SDP cone con-

straints, nsdpi is the corresponding dimension of the ith SDP
cone, m is the number of equality constraints in the convex
optimization model, ε is the accuracy of convex optimization

TABLE 1. Parameters in computing the computational complexity.

TABLE 2. Positions of four anchors (m).

solution. ψ is called as barrier parameter and measures the
geometric complexities of the cones involved. If only existing
the SDP constraints, ψ is given by

ψ =

Nsdp∑
i=1

nsdpi (54)

The parameters in the computational complexity are listed
in Tab. 1 where KTP or UTP represents the situation of
known or unknown transmit power, respectively. It can be
seen from Tab. 1 that the variables in RLS-SDP-KTP and
RLS-SDP-UTP are quadratic N + 4 and N + 5, respec-
tively, since the range parameter di is integrated into the
unknown vector. However, the variables in SRLS-based SDP
algorithms are irrelevant with N , the number of anchor
nodes, so the computational complexity of the proposed
SRLS-SDP-KTP and SRLS-SDP-UTP algorithms is also
independent of the number of anchor nodes. Although the
complexity of cost function in the SDP optimization model
of (33) or (53) is slightly higher with the increasing of the
anchor nodes, it does not affect the computational complex-
ity of the proposed SRLS-SDP-KTP and SRLS-SDP-UTP.
So the proposed SRLS-based SDP algorithms show their
advantages in the computational complexity when compared
with the RLS-SDP.

VI. EVALUATION
To evaluate the performance of the proposed convex opti-
mization algorithms, the simulations are conducted by using
the Matlab toolbox CVX, where the solver is SeDuMi. In a
3-dimensional space, four anchor nodes are randomly placed
at the positions listed in Tab. 2. The position of the source
node is set at (31.2, 52.4, 80.2) m. The noise powers of RSS,
direction and elevation are set to δ2p , δ

2
φ , and δ

2
α , respectively.

The true transmit power p0 is randomly drawn from the range
[−40,−50] dB. Unless specifically mentioned, the PLE β
is always set to 4. The accuracy performance of estimated
parameter is evaluated with root mean square error (RMSE)
which is defined as

RMSE =

√√√√ 1
Mc

Mc∑
i=1

‖ xi − xo ‖2 (55)

where Mc is called as the Monte Carlo times, xi and xo

denotes the estimate and the true position of the source node
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in the ith Monte Carlo run, respectively. In our simulation,
we use the average of 1000 Monte Carlo runs to evaluate the
accuracy performance of the proposed algorithms.

A. KNOWN TRANSMIT POWER
Firstly, when the transmit power is assumed to be known,
the RMSE performance of different algorithms is compared
with increasing of the RSS measurement noise. Both the
direction noise δφ and elevation noise δα are set to 1.0 degree.
When the RSS noise δp is varied from 0.2 dB to 2.0 dB,
Fig. 2(a) plots the RMSE performance of the linear estima-
tor proposed in [47], our proposed RLS-SDP, SRLS-SDP
algorithms and its CRLB. It can be seen that the RMSE
performance of all algorithms degrades as the RSS noise
increases. When the RSS noise δp is set to 2.0 dB, the RMSEs
of the RLS-SDP and SRLS-SDP algorithms are 1.10 m and
1.09 m, respectively. However, the proposed linear estimator
proposed in [47] achieve 1.16 m. Compared with the lin-
ear estimator, our proposed RLS-SDP and SRLS-SDP algo-
rithms perform better due to the exploitation of the constraint
condition. The performance of our proposed RLS-SDP and
SRLS-SDP is very close to the CRLB especially when the
RSS noise is less than 1.0 dB.

Similarly, the RSS noise δp and the elevation noise δα
are set to 1.0 dB and 1.0 degree, respectively. When the
direction noise δφ is increased from 0.5 degree to 5.0 degree,
Fig. 2(b) illustrates the RMSE performance of three differ-
ent algorithms. As can be seen that the RMSE performance
of three algorithms become worse as the direction noise
increases. For instance, when the direction noise is varied
from 0.5 degree to 5.0 degree, the RMSE of SRLS-SDP
algorithm is increased from 0.64 m to 2.05 m. The RMSE
of the RLS-SDP or SRLS-SDP algorithm is always less
than that of the linear estimator when the elevation noise is
increased from 0.5 degree to 5.0 degree. However, the bias
between the linear estimator and RLS-SDP or SRLS-SDP
is largen as the direction noise increases. So our proposed
RLS-SDP or SRLS-SDP performs better especially at larger
direction noise.

The RSS noise δp and direction noise δα are set to 1.0 dB
and 1.0 degree, respectively. When the elevation noise δα
is increased from 0.5 degree to 5.0 degree, Fig. 2(c) plots
the RMSE performance of three different algorithms. When
the elevation noise δα is set to 0.5 degree, the RMSEs
of RLS-SDP, SRLS-SDP, and linear estimator are 0.77 m,
0.78 m, and 0.82 m, respectively. However, the RMSE of
RLS-SDP, SRLS-SDP, and linear estimator reach to 2.13 m,
2.06 m, and 2.23 m, respectively, when the elevation noise
δα is increased to 5.0 degree. The linear estimator provides
worst performance among three algorithms, since it does not
avail of the constraint conditions.

B. UNKNOWN TRANSMIT POWER
When the transmit power is assumed to be unknown,
the transmit power is estimated along with the position of
the source node. Similarly, both the direction noise δφ and

FIGURE 2. Performance comparison under known transmit power.

elevation noise δα are kept at 1.0 degree. Fig. 3(a) plots the
RMSE of the estimated source position with the linear esti-
mator, RLS-SDP, and SRLS-SDP algorithms, when the RSS
noise is also increased from 0.2 dB to 2.0 dB. As can be seen
that the RMSE performance of three proposed algorithms
also becomes worse as the RSS noise increases. For instance,
the RMSE of the SRLS-SDP is 0.65 m when the RSS noise
is set to 0.2 dB. However, when the RSS noise is increased
to 2.0 dB, the RMSE of the SRLS-SDP is also increased to
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FIGURE 3. Position performance comparison under unknown transmit
power.

1.06m.When δp is set at 0.2 dB, the RMSE of linear estimator
is 1.17 m, which is the greatly larger than 0.59 m, its CRLB.
However, when δp is increased to 2.0 dB, the RMSE of linear
estimator is 1.28 m, which is the slightly larger than 1.03 m,
its CRLB. The bias between the RMSE and its CRLB is much
larger for the linear estimator at small noise level.

The RSS noise δp and elevation noise δα are also set to
1.0 dB and 1.0 degree, respectively. The RMSEs of three

FIGURE 4. Performance comparison of estimated transmit power.

algorithms are plotted in Fig. 3(b), when the direction noise
δφ is increased from 0.5 degree to 5.0 degree. As can be seen
that the RMSE performance of these algorithms becomes
worse as δφ increases. When δφ is increased from 0.5 degree
to 5.0 degree, the RMSE of linear estimator is sharply
increased from 0.75 m to 5.68 m. The RMSE of linear esti-
mator is dramatically deviated from its CRLB at larger direc-
tion noise. However, the RMSE of our proposed RLS-SDP
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or SRLS-SDP is less and closer to the CRLB than that of the
linear estimator. It is shown from Fig. 2(b) that the RMSE of
SRLS-SDP is 0.64 m, when the transmit power is assumed to
be known. It can also seen from Fig. 3(b) that the RMSE of
SRLS-SDP is only 0.65 m under unknown transmit power. So
the SRLS-SDP provides more robust estimation performance
than the linear estimator, when the transmit power is adjusted
to be unknown.

Similarly, the RSS noise δp and direction noise δα are
set to 1.0 dB and 1.0 degree, respectively. Fig. 3(c) plots
the RMSE of the estimated source position with these algo-
rithms, when the elevation noise is also increased from
0.5 degree to 5.0 degree. The RMSE performance of there
algorithms becomes worse as the elevation noise increases.
For instance, the RMSE of SRLS-SDP is increased from
0.79 m to 2.11 m, when the elevation noise is varied from
0.5 degree to 5.0 degree. Our proposed SRLS-SDP has a bias
level about 0.25 m better than the linear estimator for the
estimate of source position.

C. RMSE OF ESTIMATED TRANSMIT POWER
The transmit power is also estimated along with the position
of source node when it is assumed to be unknown. In this sub-
section, the RMSE of estimated transmit power is evaluated
with these different algorithms. To evaluate the impact of RSS
noise, both the direction noise δφ and elevation noise δα are
set to 1.0 degree. Fig. 4(a) plots the RMSE of the estimated
transmit power with these algorithms, when the RSS noise is
also increased from 0.2 dB to 2.0 dB. Similar to the results
shown in Fig. 3(a), the linear estimator performs worse at
small RSS noise level. When the RSS noise is increased to
from 0.2 dB to 2.0 dB, the bias between the RMSE of linear
estimator and its CRLB is reduced from 0.39 dB to 0.16 dB.

The parameter setting is same with that in Fig. 3(b),
Fig. 4(b) illustrates the RMSE of estimated transmit power
with different direction noise δφ . Differ from the position
RMSE shown in Fig. 3(b), the RMSE of estimated trans-
mit power almost has no change as the direction noise δφ
increases. It is illustrated that different positions of anchor
nodes have impact on the RMSE performance. The proposed
RLS-SDP and SRLS-SDP have comparable performance in
reaching their CRLB accuracy. For instance, the RMSE of
SRLS-SDP is 0.53 dB, which is very close to 0.50 dB, its
CRLB at 0.5 degree direction noise.

The RSS noise δp and direction noise δφ are same with
those in Fig. 3(c). Fig. 4(c) illustrates the RMSE of estimated
transmit power when the elevation noise δα is also increased
from 0.5 degree to 5.0 degree. As can be seen that the RMSE
of linear estimator is greatly increased from 0.57 m to 2.53 m,
when δφ is varied from 0.5 degree to 5.0 degree. In contrast
with the linear estimator, the performance of our proposed
RLS-SDP and SRLS-SDP is almost stable with the increasing
of elevation noise δα . For instance, the RMSE of SRLS-SDP
is 0.55 dB when δα is set at 0.5 degree. However, the RMSE
of SRLS-SDP is only 0.57 dB, when δφ is increased to
5.0 degree.

FIGURE 5. Impact of PLE.

D. PATH LOSS EXPONENT
In this subsection, we investigate the effect of path loss expo-
nent (PLE) on the performance of the proposed algorithms.
The RSS noise δp, direction noise δφ , and elevation noise
δα are set to 1.0 dB, 1.0 degree, and 1.0 degree, respec-
tively. When the PLE is varied from 2.0 to 5.0, Fig. 5(a)
plots the position RMSE performance versus different PLE
under known transmit power. As can be seen that the RMSE
performance of these algorithms degrades, especially when
the PLE is small. Compared with the linear estimator, our
proposed RLS-SDP or SRLS-SDP algorithm performs bet-
ter. For instance, when the PLE is set to 2.0, the RMSEs
of estimated position are 1.16 m with the linear estimator,
1.04 m with the RLS-SDP, and 1.07 m with the SRLS-SDP,
respectively.

When the transmit power is considered to be unknown,
the impact of PLE on the position RMSE performance are
also investigated. The parameter setting is same with that
in Fig. 5(a). Fig. 5(b) illustrates the position RMSE perfor-
mance versus different PLE under unknown transmit power.
The results shown in Fig. 5(b) are almost consist with those
in Fig. 5(a). The position RMSE performs better with the
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increasing of PLE. For instance, the RMSE of SRLS-SDP
is 1.07 m when the PLE is set at 2.0. However, the PLE
is increased to 5.0, the RMSE of SRLS-SDP is reduced to
0.91 m. When the PLE is increased from 2.0 to 5.0, the
RLS-SDP or the SRLS-SDP always provide better perfor-
mance than the linear estimator.

VII. CONCLUSION
Using the hybrid RSS and AOA measurements, we intro-
duce the convex optimizationRLS-SDP and SRLS-SDP algo-
rithms for the source position estimates. The RMSE perfor-
mance of the proposed RLS-SDP and SRLS-SDP degrades
as the RSS, direction, and elevation noise increases. When
the PLE becomes larger, the RMSE of the estimated position
would be reduced at a given noise condition. The proposed
RLS-SDP or the SRLS-SDP also provides accurate position
estimate of the source node and performs better than the linear
estimator, although the computational complexity of the lin-
ear estimator is lower than that of the convex RLS-SDP or the
SRLS-SDP algorithm. The RLS-SDP and SRLS-SDP have
almost the same accuracy performance, but the computational
complexity of the SRLS-SDP is irrelevant with the number
of anchor nodes. So the SRLS-SDP algorithm shows its
advantage in the complexity compared with the RLS-SDP
algorithm for the hybrid RSS and AOA localization.

APPENDIX
DERIVATION FOR RANK 1 OF U
When the square matrix U is positive semidefinite, its 2 × 2
principal submatrix must be a positive semidefinite matrix.
So we have

Ui,iUN+4,N+4 ≥ U2
i,N+4 (56)

where i = 1, 2, . . . ,N + 4. Since UN+4,N+4 = 1, (56) is
further given by

Ui,i ≥ U2
i,5 (57)

It is noted thatDi,i > 0 (i = 1, 2, . . . ,N +4). So to minimize
the cost function of (21), Ui,i must be equal to the least value
U2
i,N+4. Then we further conclude that Ui,N+4 =

√
Ui,i (i =

1, 2, . . . ,N + 4).
Similarly, when Ui,i, Uj,j and UN+4,N+4 are selected as

principal diagonal elements and used to construct a 3 × 3
submatrix, it must also be positive semidefinite. So we can
obtain that  Ui,i Ui,j

√
Ui,i

Uj,i Uj,j
√
Uj,j√

Ui,i
√
Uj,j 1

 � 03 (58)

where i, j = 1, 2, . . . ,N + 4, i < j. Then the equivalent
expression of (58) is given by[

0 Ui,j −
√
Ui,iUj,j

Ui,j −
√
Ui,iUj,j 0

]
� 02 (59)

where i, j = 1, 2, . . . ,N + 4, i < j. The expression of (59)
holds if and only if Ui,j =

√
Ui,iUj,j. So we can further

conclude that the square matrix U must be rank 1 when the
solution to (21) is optimal.
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