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ABSTRACT In this paper, the performance of the single-input multiple-output (SIMO) networked time-
delay systems is investigated. The performance is related to the internal factors, communication parameters
and reference signals, and the boundary is related to the adjustment factors. Some new results are derived
according to the inner-outer factorization and Cauchy’s Theorem of two degrees-of-freedom controller. The
results show that the performance is in connection with the inner factor (unstable poles, non-minimum
phase zeros of the system). It is also demonstrated that the modified performance will be badly degraded by
feedback channel quantization and adjustment factor constraints, and encoding-decoding is beneficial to the
modified performance.

INDEX TERMS Networked time-delay systems, modified performance, inner-outer factorization, SIMO.

I. INTRODUCTION
In the last decade, the research of neural networks [1]–[3]
have become a hot topic, at the same time, researchers have
been investigated the control problems of various systems,
for example, physical systems [4], Takagi-Sugeno fuzzy sys-
tems [5], [6], nonlinear systems [7], multi-agent systems [8],
[9], and networked systems [10]–[12]. Networked control
systems (NCSs) have been well developed in many fields,
such as telemedicine [13], [14], automatic current regula-
tion [15], [16], industrial control [17]–[19]. As is known to
all, the stability of NCSs have been studied extensively in
feedback control systems [20]–[27]. In [20], the stability of
continuous and discrete linear time-invariant (LTI) systems
over the signal-to-noise ratio (SNR) constrained channels has
been studied. In [21], the state feedback stability problem
for multiple-input multiple-output (MIMO) systems over the
memoryless fading noisy channels under the SNR constraints
has been investigated. The feedback stabilization over an
additive white gaussian noise (AWGN) channel has been
established in [22]. In [23], [24], by using the Lyapunov
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stability theory and random analysis technique, the stability
of the NCSs with the hybrid drive mechanism and probability
of the network attack has been obtained. In [25], theminimum
SNR of a linear system with the output feedback affected by
AWGN has been studied. The application of the mean square
stabilization controller to the discrete-time linear system with
MIMO has been studied in [26]. The robust stability on the
channel SNR constrained feedback control plant model has
been considered in [27]. Thus, the stability of NCSs has been
very mature. However, from the perspective of application,
the stability of NCSs is as important as the tracking perfor-
mance of NCss.

In recent years, there are many achievements in the track-
ing performance of NCSs [28]–[32]. The minimum tracking
error of the MIMO NCSs has been investigated by con-
sidering the quantization, encoding-decoding, channel noise
restraint in [28]. The minimum tracking error of NCSs
was studied by spectral factorization and partial decompo-
sition techniques with time-delay and encoding-decoding
constraints in [29]. The modified minimum tracking error
of the networked time-delay systems has been investigated
with two-channel constraints in [30]. The limitation of the
tracking performance of two kinds of network parameter
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systems, bandwidth and AWGN was studied in [31]. The
error signal measured by the energy between the plant output
and the reference signal of NCSs was studied in [32]. The
optimal performance of NCSs under packet loss and channel
noise was obtained by spectral decomposition in [33]. In [34],
the modified tracking performance of unstable linear SIMO
feedback control systemwas studied. In addition, considering
the balance between the tracking error power and the control
energy, the tradeoff performance was analyzed in [35]. The
performance of MIMO NCSs under the multiple communi-
cation constraints was studied in [36]. The optimal modified
performance of MIMO NCSs under the multiple constraints
was obtained by means of the coprime factorization and par-
tial fraction in [37]. The research on transforming multivari-
able systems into SIMO subsystems is still scarce, but SIMO
systems are widespread in the process industry. Therefore,
it is necessary to study the performance of SIMO systems.
In [38], the vehicle suspension system was analyzed and
designed as a typical SIMO nonlinear system. By designing a
feed-forward compensator, a multi-objective tracking control
algorithm for a nonlinear systems with SIMO was obtained
in [39], [40]. Different from single-input single-output(SISO)
and MIMO systems, SIMO problems are relatively compli-
cated, and problems in SISO and MIMO systems also appear
in SIMO systems, but the solutions are different. Based
on the above research results, traditional references have
described that the optimal tracking performance is related to
non-minimum phase zeros, unstable poles and its directions.
These results will be helpful for the design of control sys-
tems and communication networked. However, these results
cannot be directly extended to the case of the SIMO plant
since the plant must be right invertible in the existing results.
Then, the study of SIMO plant is necessary. It is known
that, in practical NCSs applications, the signal distortion is
inevitably existed during the data transmission, in order to
avoid the signal distortion or correct the error signal, the sig-
nal should be encoded before transmission and then decoded
at the destination, so the signal is transmitted in the network
by encoding and decoding, the design of coder-decoder will
inevitably have effect on the control performance of the sys-
tem. In order to improve the SNR, it is necessary to amplify
the attenuation signal in the process of signal transmission,
and the noise which is inevitably superimposed on the signal
during transmission is also amplified, with the increase of
transmission distance, more and more noise is accumulated,
resulting in serious deterioration of transmission quality, as it
is well known, the quantization is convenient for encryption,
storage, processing and exchange, and equipment integration
and miniaturization, at the same time, quantization ensures
strong anti-interference ability and robustness to noise accu-
mulation, so the quantitative design will inevitably affect
the performance of NCSs. Thus, the quantization, encoding-
decoding of networked time-delay systems should also be
considered.

Inspired by the above works, the modified tracking per-
formance of the SIMO networked time-delay systems with

FIGURE 1. Networked systems with encoding-decoding and quantization
constraints.

the quantization, encoding-decoding constraints is investi-
gated in this paper. The contributions of this paper include:
(1) Developing a general formula for the minimal tracking
error, which is expressed in terms of the inner factor of
the plant, the derive explicit expressions for the modified
tracking performance concerning SIMO systems. (2) In order
to calculateminimalmodified tracking performance ofNCSs,
some parameters of designed controllers are determined from
internal-external factorization and two-degree-of-freedom
(2DF) controller, the minimal modified tracking performance
is obtained by using the H2 norm technique. (3) For unstable
SIMO plants, unlike traditional NCSs, the results show that
the modified tracking performance is constrained not only
dependent on non-minimum phase (NMP) zeros and unstable
poles of a given plant but also dependent on channel noise,
quantization noise, encoding-decoding and other correction
factors.

The structure of this paper is as follows: In Section II,
the description of the problem has been given. The min-
imal modification tracking error is derived in Section III.
In Section V, numerical examples are given to illustrate the
validity of the results. Section IV draws some conclusions.

II. PROBLEM DESCRIPTION
In this paper, AH is the complex conjugate of a vec-
tor A. The open right-half and left-half planes are
respectively denoted by C+ = {s : Re (s) > 0}, and
C− = {s : Re (s) < 0}, respectively. And imaginary axis
by C0 = {s : Re (s) = 0}. The space L2 is defined by{
f : f (s) analytic inC0, ‖f ‖22 =

1
2π

∥∥f (ejθ )∥∥2dθ <∞}. The
inner product of Hilbert space is defined by: 〈f , g〉 :=
1
2π

∫ π
π
f H
(
ejθ
)
g
(
ejθ
)
dθ . As we know, the orthogonal

decomposition L2 is H2 and H⊥2 .
In Fig. 1, we consider the SIMO networked time-delay sys-

tems with encoding-decoding and quantization constraints,G
denotes the controllable plant,G (s) denotes transfer function
matrix; [K1(s) K2(s)] denotes the transfer function matrix of
the 2DOF controller [K1 K2]. In addition, the transfer func-
tion matrices A (z) and A−1(z) respectively denote encoder A
and decoder A−1. Laplace transform r̂ denotes a reference
input r , Laplace transform ŷ denotes the system output y,
and Laplace transform û denotes a control input u. Q denotes
the uniform quantizer of communication channel, with quan-
tization noise of n (t) = (n1 (t) , n2 (t) , · · · nm (t))T . It is
supposed that the quantization noise obeys the uniform distri-
bution in the interval

[
−
1i
2 ,

1i
2

]
, i ∈ 1, 2, · · ·m, in order to

simplify the analysis. 1i represents the quantization interval
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in each channel. The expectation of noise n is 0, and the

variance is
12
i

12 , and V
2
= diag

(
12

1
12 ,

12
2

12 , · · · ,
12
m

12

)
. Signals

r and n are unrelated, and the matrix is given by U2
= diag(

α21, α
2
2, · · ·α

2
m
)
.

To obtain the minimal modification tracking error of SIMO
networked time-delay systems, we define its performance
index as follows:

Jλ = E
{[
e−λteT (t)

] [
e−λte (t)

]}
(1)

When the controllers are chosen among all the possible
stabilizing controllers, we can get the minimal modification
tracking error by

J∗ = inf
K∈K

J (2)

In this work, we consider the coprime factorization of G
given by

G(s) = G1(s)e−τ sG = e−τ sNM−1 (3)

whereN ,M ∈ RH∞, and satisfies the double Bezout identity,
which is given by

MX − e−τ sNY = I (4)

For X ,Y ∈ RH∞, using the Youla parameterization, any
stabilizing controllers K can be characterized as [40]:

K := {K : K = [K1 K2]

=
(
X−e−τ sRN

)−1 [Q Y−RM ] Q,R ∈ RH∞
}

(5)

A non-minimum phase transfer function may factorize a
minimum phase part and an all pass factor [41]:

N = 2i3,M = BpMm (6)

where 2H
i 2i = I , 2i (s) = 2T

i
(s), 8i =

(
2H
i

I −2i2
H
i

)
,

8H
i 8i = I , it is easy to verify that 2i and Bp are all

pass factors, 3 and Mm are minimum phase,
(

2H
i

I −2i2
H
i

)
is an inner matrix. Specifically, Bp can be constructed as

Bp (z) =
m∏
j=1

Bj (z), Bj (z) =
z−pj
1−pjz

ωjω
H
j + WjWH

j , ωj is the

unitary vectors in the direction of unstable poles, moreover,
ωjω

H
j +WjWH

j = I .
The minimal modification tracking error of SIMO net-

worked time-delay systems is defined as

e = r − y (7)

From Fig. 1, we get

u = K1r + K2yλ (8)

yλ = A−1 (n+ Ay) = A−1n+ y (9)

y = Gu (10)

According to (8), (9) and (10), we have

u = (I − K2G)−1K1r + (I − K2G)−1K2A−1n (11)

y = G(I − K2G)−1K1r + G(I − K2G)−1K2A−1n (12)

From (7) and (12), we have

e = r − y =
[
I − G(I − K2G)−1K1

]
r

−G(I − K2G)−1K2A−1n = T1r + T2n (13)

where T1 = I − G(I − K2G)−1K1,
T2 = G(I − K2G)−1K2A−1.
By using (3), (4) and (5), we obtain

T1 = I − G(I − K2G)−1K1

= I − e−τ sNM−1

×

[
I −

(
X − e−τ sRN

)−1
(Y − RM) e−τ sNM−1

]−1
×
(
X − e−τ sRN

)−1Q
= I − e−τ sN

×
[(
X − e−τ sRN

)
M − (Y − RM) e−τ sN

]
Q

= I − e−τ sN

×
[
XM − e−τ sRNM − e−τ sNY + e−τ sRNM

]
Q

= I − e−τ sNQ (14)

T2 = G(I − K2G)−1K2A−1

= e−τ sNM−1

×

[
I −

(
X − e−τ sRN

)−1
(Y − RM) e−τ sNM−1

]−1
×
(
X − e−τ sRN

)−1
(Y − RM)A−1

= e−τ sN
[(
X − e−τ sRN

)
M − (Y − RM) e−τ sN

]
× (Y − RM)A−1

= e−τ sN (Y − RM)A−1 (15)

Then, from (1), we get

Jλ = E
{[
e−λteT (t)

] [
e−λte (t)

]}
= ‖e‖22 =

∥∥∥∥(I − e−τ sNQ) U
s+ λ

∥∥∥∥2
2

+

∥∥∥∥e−τ sN (Y − RM)A−1 V
s+ λ

∥∥∥∥2
2

(16)

III. MINIMAL MODIFICATION TRACKING ERROR OF
SIMO NETWORKED TIME-DELAY SYSTEMS
According to (2), we have:

J∗λ = inf
K∈K

Jλ (17)

Combineing with(16) and (17), the minimal modification
tracking error can be rewritten as

J∗λ = inf
Q∈RH∞

∥∥∥∥(I − e−τ sNQ) U
s+ λ

∥∥∥∥2
2

+ inf
R∈RH∞

∥∥∥∥e−τ sN (Y − RM)A−1 V
s+ λ

∥∥∥∥2
2

(18)

Theorem 1: Assume that pj ∈ C +, j = 1, . . . ,m is an
unstable pole, and zi ∈ C+, i = 1, . . . , n is an NMP zero
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of G, respectively. According to the structure presented
in Fig. 1, we have

J∗λ =
1
2λ

n∑
i,j=1

eτ(z̄i+zj−2λ)α2j
[
1− [2i (λ)]2j

]

+

Np∑
i,j=1

12
i

12
eτ(p̄j+pi−2λ)

4Re
(
pj
)
Re (pi)

p̄jpi
(
p̄j + pi − 2λ

) tr (γjγHi )
where λ = −s,

γj

= 2−1i

(
pj − λ

)
A−1

(
pj − λ

)
GjεjεHj Hj,

H (jw)

= tr
{
UH

[
I −2i (jw)2H

i (−λ)

−eτ jw2i (−λ)2
H
i (jw)+ e

τ jw2i (−λ)2
H
i (−λ)

]
U
}
.

Proof: First, we can define

J∗1 = inf
Q∈RH∞

∥∥∥∥(I − e−τ sNQ) U
s+ λ

∥∥∥∥2
2

(19)

J∗2 = inf
R∈RH∞

∥∥∥∥e−τ sN (Y − RM)A−1 V
s+ λ

∥∥∥∥2
2

(20)

Because (5) and e−τ s are the all pass factors, we get

J∗1 = inf
Q∈RH∞

∥∥∥∥8i
(
I − e−τ sNQ

) U
s+ λ

∥∥∥∥2
2

= inf
Q∈RH∞

∥∥∥∥2H
i
(
I − e−τ sNQ

) U
s+ λ

∥∥∥∥2
2

+ inf
Q∈RH∞

∥∥∥∥(I −2i2
H
i

) (
I − e−τ sNQ

) U
s+ λ

∥∥∥∥2
2

= inf
Q∈RH∞

∥∥∥∥2H
i
(
eτ s −2i3Q

) U
s+ λ

∥∥∥∥2
2

+

∥∥∥∥eτ s (I −2i2
H
i

) U
s+ λ

∥∥∥∥2
2

=

∥∥∥∥eτ s [2H
i −2

H
i (−λ)

] U
s+ λ

∥∥∥∥2
2

+ inf
Q∈RH∞

∥∥∥∥[eτ s2H
i (−λ)+3Q

] U
s+ λ

∥∥∥∥2
2

+

∥∥∥∥eτ s (I −2i2
H
i

) U
s+ λ

∥∥∥∥2
2

Define

J∗11 =

∥∥∥∥eτ s [2H
i −2

H
i (−λ)

] U
s+ λ

∥∥∥∥2
2

+

∥∥∥∥eτ s (I −2i2
H
i

) U
s+ λ

∥∥∥∥2
2

J∗12 = inf
Q∈RH∞

∥∥∥∥[eτ s2H
i (−λ)+3Q

] U
s+ λ

∥∥∥∥2
2

Because of 2H
i (s) = 2T

i (−s) ,2
H
i (jw) = 2T

i (−jw),
we have

J∗11 =
1
2π

∫
+∞

−∞

H (jw)
(jw+ λ) (−jw+ λ)

dw

where

H (jw)

= tr
{
UH

[
I −2i (jw)2H

i (−λ)

−eτ jw2i (−λ)2
H
i (jw)+ e

τ jw2i (−λ)2
H
i (−λ)

]
U
}

Define J∗11 = J∗a + J
∗
b + J

∗
c

J∗a =
1
2π

∫
+∞

−∞

tr
{
UHeτ jw

[
I +2i (−λ)2

H
i (−λ)

]
U
}

(jw+ λ) (−jw+ λ)
dw

J∗b =
1
2π

∫
+∞

−∞

tr
{
UHeτ jw

[
−2i (jw)2H

i (−λ)
]
U
}

(jw+ λ) (−jw+ λ)
dw

J∗c =
1
2π

∫
+∞

−∞

tr
{
UHeτ jw

[
−2i (−λ)2

H
i (jw)

]
U
}

(jw+ λ) (−jw+ λ)
dw

Since s = −λ, we have

J∗c = −
1
2λ
tr
{
UHeτ jw

[
−2i (−λ)2

H
i (jw)

]
U
}

J∗a =
1
2λ

×

[
tr
{
UHU

}
+tr

{
UHeτ jw

[
−2i (−λ)2

H
i (jw)

]
U
}]

In J∗2 , there is only one unstable pole s = λ, by Cauchy’s
Theorem, we have

J∗b = −
1
2λ
tr
{
UHeτ jw

[
2i (λ)2

T
i (λ)

]
U
}

= −
eτ(z̄i+zj−2λ)

2λ
α2j [2i (λ)]2j

Then, we can get

J∗1 =
1
2λ

n∑
i,j=1

eτ(z̄i+zj−2λ)α2j
[
1− [2i (λ)]2j

]
From (6), we derive

J∗2 = inf
R∈RH∞

∥∥∥∥e−τ sN (Y − RM)A−1 V
s+ λ

∥∥∥∥2
2

= inf
R∈RH∞

∥∥∥∥8i

(
2i3YA−1 −2i3RMA−1

) V
s+ λ

∥∥∥∥2
2

= inf
R∈RH∞

∥∥∥∥(3Y −3RM)A−1 V
s+ λ

∥∥∥∥2
2

+ inf
R∈RH∞

∥∥∥∥(I−2i2
H
i

)
(2i3Y−2i3RM)A−1

V
s+λ

∥∥∥∥2
2

= inf
R∈RH∞

∥∥∥∥(3Y−3RM)A−1 V
s+λ

∥∥∥∥2
2

= inf
R∈RH∞

∥∥∥∥(3YB−1p −3RMm

)
A−1

V
s+ λ

∥∥∥∥2
2
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By employing the partial fraction method, we have

3YB−1p = 3
(
pj − λ

)
Y
(
pj − λ

)
Gj

×

(
I +

2Re
(
pj
)

s+ λ− pj
εjε

H
j − I +

2Re
(
pj
)

pj
εjε

H
j

)
Hj

+R1 −3
(
pj − λ

)
Y
(
pj − λ

)
Gj

2Re
(
pj
)

pj
εjε

H
j Hj

Therefore, it can be written

J∗2

=

∥∥∥∥∥3 (pj − λ)Y (pj − λ)VGj
×

(
I +

2Re
(
pj
)

s+λ−pj
εjε

H
j −I+

2Re
(
pj
)

pj
εjε

H
j

)
Hj

1
s+λ

∥∥∥∥∥
2

2

+ inf
R∈RH∞

∥∥∥∥∥
[
R1−3

(
pj−λ

)
Y
(
pj−λ

)
VGj

2Re
(
pj
)

pj
εjε

H
j Hj

−3RMmA−1V

]
1

s+ λ

∥∥∥∥∥
2

2

By choosing the proper R1

inf
R∈RH∞

∥∥∥∥∥
[
R1 −3

(
pj − λ

)
Y
(
pj − λ

)
VGj

2Re
(
pj
)

pj
εjε

H
j Hj

−3RMmA−1V

]
1

s+ λ

∥∥∥∥∥
2

2

= 0

From(4) and M
(
pj
)
= 0, we get Y = −eτ sN−1, and

Y
(
pj − λ

)
= −eτ(pj−λ)3−12−1i . Thus,

J∗2 =

∥∥∥∥∥∥
Np∑
j=1

eτ(pj−λ)2−1i
(
pj − λ

)
A−1

(
pj − λ

)
VGj

×

(
I+

2Re
(
pj
)

s+λ−pj
εjε

H
j −I+

2Re
(
pj
)

pj
εjε

H
j

)
Hj

1
s+ λ

∥∥∥∥∥
2

2

=

Np∑
i,j=1

12
i

12
eτ(p̄j+pi−2λ)

4Re
(
pj
)
Re (pi)

p̄jpi
(
p̄j + pi − 2λ

) tr (γjγHi )
where γj = 2

−1
i

(
pj − λ

)
A−1

(
pj − λ

)
GjεjεHj Hj. So, we can

get

J∗λ =
1
2λ

n∑
i,j=1

eτ(z̄i+zj−2λ)α2j
[
1− [2i (λ)]2j

]

+

Np∑
i,j=1

12
i

12
eτ(p̄j+pi−2λ)

4Re
(
pj
)
Re (pi)

p̄jpi
(
p̄j + pi − 2λ

) tr (γjγHi )
Generally speaking, it is need to pay attention to the chan-

nel input to meet the power constraint

E
{[
e−λteT (t)

] [
e−λte (t)

]}
< 0

for some input power level 0 > 0. The power limitations
may come from electronic hardware limitations or regulatory
restrictions introduced to minimize interference with users
of other communication systems. The minimal modification
tracking error of channel input power constraint is defined as

Jλ (K , ε) = (1− ε)E
{[
e−λteT (t)

] [
e−λte (t)

]}
+ ε

(
E
{[
e−λtyT (t)

] [
e−λty (t)

]}
− 0

)
(21)

where ε is the adjustment factor 0 ≤ ε < 1, which represents
the trade-off between the minimal modification tracking error
and the channel input power, and ε = 0 means that the power
constraint does not exist in the systems.
Here, K represents all stabilizing controllers, we can get

the minimal modification tracking error by

J∗λ = inf
K∈K

Jλ (K , ε)

Theorem 2: Assume that pj ∈ C +, j = 1, . . . ,m is an
unstable pole, and zi ∈ C+, i = 1, . . . , n is an NMP zero of
G, respectively. According to the structure presented in Fig. 1,
we have

J∗λ =
1
2λ

n∑
i,j=1

eτ(z̄i+zj−2λ)α2j
[
1− [2i (λ)]2j

]

+

Np∑
i,j=1

12
i

12
eτ(p̄j+pi−2λ)

4Re
(
pj
)
Re (pi)

p̄jpi
(
p̄j + pi − 2λ

) tr (γjγHi )
where λ = −s,

γj = 2
−1
i

(
pj − λ

)
A−1

(
pj − λ

)
GjεjεHj Hj,

and

H (jw)

= tr
{
UH

[
I −2i (jw)2H

i (−λ)

−eτ jw2i (−λ)2
H
i (jw)+ e

τ jw2i (−λ)2
H
i (−λ)

]
U
}
.

Proof: From (1), (7) and (16), we can get

E
{[
e−λteT (t)

] [
e−λte (t)

]}
=

∥∥∥∥(I−e−τ sNQ) U
s+λ

∥∥∥∥2
2
+

∥∥∥∥e−τ sN (Y−RM)A−1 V
s+λ

∥∥∥∥2
2

E
{[
e−λtyT (t)

] [
e−λty (t)

]}
=

∥∥∥∥e−τ sNQ U
s+ λ

∥∥∥∥2
2
+

∥∥∥∥e−τ sN (Y − RM)A−1 V
s+ λ

∥∥∥∥2
2

From (21), we can get

J∗λ = inf
K∈K

{
(1− ε)

[∥∥∥∥(I − e−τ sNQ) U
s+ λ

∥∥∥∥2
2

+

∥∥∥∥e−τ sN (Y − RM)A−1 V
s+ λ

∥∥∥∥2
2

]
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+ ε

[∥∥∥∥e−τ sNQ U
s+ λ

∥∥∥∥2
2
+

+

∥∥∥∥e−τ sN (Y − RM)A−1 V
s+ λ

∥∥∥∥2
2
− 0

]}

= inf
Q∈RH∞

∥∥∥∥√1− ε (I − e−τ sNQ)√
εe−τ sNQ

U
s+ λ

∥∥∥∥2
2

+ inf
R∈RH∞

∥∥∥∥e−τ sN (Y − RM)A−1 V
s+ λ

∥∥∥∥2
2

Define

J∗1 = inf
Q∈RH∞

∥∥∥∥√1− ε (I − e−τ sNQ)√
εe−τ sNQ

U
s+ λ

∥∥∥∥2
2

(22)

J∗2 = inf
R∈RH∞

∥∥∥∥e−τ sN (Y − RM)A−1 V
s+ λ

∥∥∥∥2
2

(23)

So, we can get

J∗λ = J∗1 + J
∗

2 − ε0

Through simple calculation, J∗1 can be expressed as
follows:

J∗1 = inf
Q∈RH∞

∥∥∥∥√1− ε (eτ s − NQ)√
εNQ

U
s+ λ

∥∥∥∥2
2

= inf
Q∈RH∞

∥∥∥∥8i

√
1− ε (eτ s − NQ)
√
εNQ

U
s+ λ

∥∥∥∥2
2

= inf
Q∈RH∞

∥∥∥∥2H
i

√
1− ε (eτ s −2i3Q)
2H
i
√
ε2i3Q

U
s+ λ

∥∥∥∥2
2

+ inf
Q∈RH∞

∥∥∥∥ (I−2i2
H
i

)√
1−ε (eτ s−2i3Q)(

I−2i2
H
i

)√
ε2i3Q

U
s+ λ

∥∥∥∥2
2

= inf
Q∈RH∞

∥∥∥∥√1− ε (eτ s2H
i −3Q

)
√
ε3Q

U
s+ λ

∥∥∥∥2
2

+

∥∥∥∥√1− εeτ s (I −2i2
H
i

)
0

U
s+ λ

∥∥∥∥2
2

=

∥∥∥∥√1− εeτ s (2H
i −2

H
i (−λ)

)
0

U
s+ λ

∥∥∥∥2
2

+ inf
Q∈RH∞

∥∥∥∥√1− ε (eτ s2H
i (−λ)−3Q

)
√
ε3Q

U
s+ λ

∥∥∥∥2
2

+ (1− ε)

∥∥∥∥eτ s (I −2i2
H
i

) U
s+ λ

∥∥∥∥2
2

= (1− ε)

∥∥∥∥eτ s (2H
i −2

H
i (−λ)

) U
s+ λ

∥∥∥∥
+ (1− ε)

∥∥∥∥eτ s (I −2i2
H
i

) U
s+ λ

∥∥∥∥2
2

+ inf
Q∈RH∞

∥∥∥∥√1− ε (eτ s2H
i (−λ)−3Q

)
√
ε3Q

U
s+ λ

∥∥∥∥2
2

Here, we define

J∗11 = inf
Q∈RH∞

∥∥∥∥√1− ε (eτ s2H
i (−λ)−3Q

)
√
ε3Q

U
s+ λ

∥∥∥∥2
2

By J∗1 , we have

J∗11 = inf
Q∈RH∞

∥∥∥∥8i

√
1− ε

(
eτ s2H

i (−λ)−3Q
)

√
ε3Q

U
s+ λ

∥∥∥∥2
2

= inf
Q∈RH∞

∥∥∥∥( 2H
i

I −2i2
H
i

)
×

[(√
1− εIeτ s

0

)
+

(√
1− εI
√
εI

)
3Q

]
U

s+ λ

∥∥∥∥2
2

=

∥∥∥∥(I −2i2
H
i

)(√1− εIeτ s
0

)
U

s+ λ

∥∥∥∥2
2

+ inf
Q∈RH∞

∥∥∥∥[2H
i

(√
1− εIeτ s

0

)
+3Q

]
U

s+ λ

∥∥∥∥2
2

Because Q ∈ RH∞, Q can choose appropriately, so

inf
Q∈RH∞

∥∥∥∥[2H
i

(√
1− εIeτ s

0

)
+3Q

]
U

s+ λ

∥∥∥∥2
2
= 0

we can obtain

J∗11 =

∥∥∥∥(I −2i2
H
i

)(√1− εIeτ s
0

)
U

s+ λ

∥∥∥∥2
2

=
(1− ε) ε

2λ

n∑
i,j=1

eτ(z̄i+zj−2λ)α2j
[
1− [2i (λ)]2j

]
J∗1 = (1− ε)

∥∥∥∥eτ s (2H
i −2

H
i (−λ)

) U
s+ λ

∥∥∥∥
+ (1− ε)

∥∥∥∥eτ s (I −2i2
H
i

) U
s+ λ

∥∥∥∥2
2

+
(1− ε) ε

2λ

n∑
i,j=1

eτ(z̄i+zj−2λ)α2j
[
1− [2i (λ)]2j

]
From Theorem 1, we can get

J∗1 =
1− ε2

2λ

n∑
i,j=1

eτ(z̄i+zj−2λ)α2j
[
1− [2i (λ)]2j

]

J∗2 =
Np∑
i,j=1

12
i

12
eτ(p̄j+pi−2λ)

4Re
(
pj
)
Re (pi)

p̄jpi
(
p̄j + pi − 2λ

) tr (γjγHi )
J∗λ =

1− ε2

2λ

n∑
i,j=1

eτ(z̄i+zj−2λ)α2j
[
1− [2i (λ)]2j

]

+

Np∑
i,j=1

12
i

12
eτ(p̄j+pi−2λ)

4Re
(
pj
)
Re (pi)

p̄jpi
(
p̄j+pi−2λ

) tr (γjγHi )−ε0
γj = 2

−1
i

(
pj − λ

)
A−1

(
pj − λ

)
GjεjεHj Hj

This completes the proof.
Remark: The modified factor should satisfy: Re

(
pj
)
−λ >

0,Re (zi)−λ > 0. The proposed method for networked time-
delay systems with encoding-decoding and quantization con-
straints assume that the parameters of the systems are known.
For the systems with unknown parameters, one can obtain the
system paraemters first by using some identification algo-
rithms [42]–[46] such as the iterative algorithms [47]–[50]
and the recursive algorithms [51]–[54].
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IV. ILLUSTRATIVE EXAMPLE
Example 1: In this section, the plant is given as

G (s) =


s− z

(s+ 4) (s− p1)
s+ 3

(s+ 1) (s− p2)

 e−τ s

where z > 0, p1 > 0, p2 > 0,N = 2i3, then

2i (s) =


(s− z+ λ) (s− p2 + λ)
√
2 (s− z1) (s− z2)

(s+ 3+ λ) (s− p1 + λ)
√
2 (s− z1) (s− z2)

 ,
3 =

√
2 (s− z1) (s− z2)

(s+ 2+ λ)2

First, we suppose z = 2, z1 = 3, z2 = 4, p1 = 3.5, p2 =
5.5, τ = 0.5, α2j = 5, λ = 1, when the NMP zeros p = k ,
from Theorem 1, we can obtain

J∗λ =
12
i e
k−1

3 (k − 1)

[
(k + 3)2(k − 4)2(k − 5)2

(k − 2)2(k − 5.5)2

+
(k + 3)2(k − 4)2(k − 5)2

(k + 2)2(k − 3.5)2

]
+

315
576

e

Then, we assume the quantization interval 12
i for three

different values of 12
1 = 1,12

2 = 3,12
3 = 6, then we have

J∗1 =
ek−1

3 (k − 1)

[
(k + 3)2(k − 4)2(k − 5)2

(k − 2)2(k − 5.5)2

+
(k + 3)2(k − 4)2(k − 5)2

(k + 2)2(k − 3.5)2

]
+

315
576

e

J∗2 =
ek−1

(k − 1)

[
(k + 3)2(k − 4)2(k − 5)2

(k − 2)2(k − 5.5)2

+
(k + 3)2(k − 4)2(k − 5)2

(k + 2)2(k − 3.5)2

]
+

315
576

e

J∗3 =
2ek−1

(k − 1)

[
(k + 3)2(k − 4)2(k − 5)2

(k − 2)2(k − 5.5)2

+
(k + 3)2(k − 4)2(k − 5)2

(k + 2)2(k − 3.5)2

]
+

315
576

e

The minimal modification tracking error of SIMO net-
worked time-delay systems with different quantization error
and unstable poles is shown in Fig. 2. Fig. 2 shows that
the larger the unstable pole is, the larger the minimal
modification tracking error will be. Also, Fig. 2 shows
that the minimal modification tracking error is affected
by the quantization error, and the smaller the quantization
error is, the smaller the minimal modified tracking error
will be.

FIGURE 2. Performance with different quantization and unstable poles.

FIGURE 3. Modified performance.

Next, if12
i = 6, and other conditions do not change, from

Theorem 1, we can obtain

J∗4 =
2ek−1

(k − 1)

[
(k + 3)2(k − 4)2(k − 5)2

(k − 2)2(k − 5.5)2

+
(k + 3)2(k − 4)2(k − 5)2

(k + 2)2(k − 3.5)2

]
+

315
576

e

If the modification performance does not exist, we can
obtain

J∗5 = ek
(
k2 − 1

)[ (k + 3)2(k − 4)2(k − 5)2

(k − 2)2(k − 5.5)2

+
(k + 3)2(k − 4)2(k − 5)2

(k + 2)2(k − 3.5)2

]
+

315
576

e

The minimummodified tracking error of the networked time-
delay systems with different unstable poles is shown as Fig. 3.
Fig. 3 shows the effects of the modified performance whether
there is modification. It can be seen from the Fig. 3 that
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FIGURE 4. Performance with the quantization interval and reference
signal.

the minimum modified tracking error of the networked time-
delay systems using the modified performance index is lim-
ited, while the minimum tracking error using the previous
performance index is continuously increased to infinity by
the number of non-minimum phase zeros.
Example 2: In this section, the other plant is given by

G (s) =


s− z

(s+ 4) (s− p1)
s+ 3

(s+ 1) (s− p2)

 e−τ s

where z > 0, p1 > 0, p2 > 0,N = 2i3, then

2i (s) =


(s− z+ λ) (s− p2 + λ)
√
2 (s− z1) (s− z2)

(s+ 3+ λ) (s− p1 + λ)
√
2 (s− z1) (s− z2)

 ,
3 =

√
2 (s− z1) (s− z2)

(s+ 2+ λ)2

we suppose z = 2, z1 = 3, z2 = 4, p1 = 3.5, p2 = 5.5, τ =
0.5, α2j = 5, λ = 1, when the NMP zeros p = k , from
Theorem 1, we have

J∗6 =
63
576

eα2j +
37
120

e2.512
i

Fig. 4 shows the influence of the the reference signal and
quantization error. In Fig. 4, it can be seen that the reference
signal and the quantization error could degrade the minimum
modified tracking error.

If the channel constraint 0 = 10, the for three different
values of ε1 = 0, ε2 = 1

2 , ε3 =
4
5 , from Theorem 2, we can

obtain

J∗7 =
63
576

eα2j +
37
120

e2.512
i

J∗8 =
63
768

eα2j +
37
120

e2.512
i − 5

J∗9 =
63
1600

eα2j +
37
120

e2.512
i − 8

FIGURE 5. Performance with different adjustment factors.

Fig. 5 show the effects of the the different adjustment
factors. In Fig. 5 shows that ε represents the tradeoff factor
between the minimum modified tracking error and channel
input power, the increase of ε indicates that more channel
input power is used for the adjustment of reference input
signal, and the better the minimum modified tracking error
of the plant is.

V. CONCLUSION
This paper studies the minimum modified tracking error
of SIMO networked time-delay systems with quantiza-
tion and encoding-decoding constraints. Some new results
are obtained according to the inner-outer factorization and
Cauchy’s Theorem with two degrees of freedom controller.
The results show that the minimum modified tracking error
are related to the inherent properties of the given system,
such as non-minimum phase zeros, unstable poles and time
delay. In addition, they are also affected by different param-
eters, such as the scale factor, quantization noise, reference
input signal and encoding-decoding. Finally, some illustrative
examples are given to illustrate the obtained results. The
methods proposed in this paper can combine some parameter
estimation approaches [55]–[58] to explore and study the
performance of networked time-delay systems with unknown
parameters and can be applied to other literatures [59]–[63].
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