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ABSTRACT Semantic segmentation is one of the most critical modules in road scene understanding. In this
paper, we focus on the challenging task of pedestrian’s relative location perception in the semantic graph
of complex driving scenes. Prevalent research on semantic segmentation mainly concentrate on improving
the segmentation accuracy with less attention paid to computational efficiency. Furthermore, little effort
has been made in pedestrian location perception in complex driving scenes. For example, current semantic
segmentation methods classify all pedestrians as a mono category, regardless of whether the pedestrians are
penetrating into the vehicular lane or standing still in the safe sidewalk area.We propose a pedestrian location
perception network (P-LPN). P-LPN can produce real-time semantic segmentation while simultaneously
providing location inference for each pedestrian in semantic maps. This enables autonomous driving system
to categorize pedestrians into different safety levels. We comprehensively evaluated P-LPN on CityScapes
benchmark through comparative studies. Our proposal achieved competitive performance in both accuracy
and efficiency. It yields quality inference with real-time speed at ∼22 fps.

INDEX TERMS Semantic segmentation, deep learning, road-scene understanding, pedestrian perception.

I. INTRODUCTION
Pedestrian-vehicle accidents highly likely result in inca-
pacitating injuries and fatalities. The death toll for pedes-
trians has risen sharply during the past decade globally.
According to Insurance Institute for Highway Safety (IIHS)
2018 report [1], pedestrian fatalities increased 46% from
2009 to 2016 in USA. In China, World Health Organiza-
tion(WHO) has estimated that over 60% of traffic-related
fatality each year were vulnerable road users including pedes-
trians, cyclists, etc., [2]. Therefore, for any autonomous driv-
ing system, it should improve the safety of different road
user groups, non-motorized road users particularly. Indeed,
the intelligent vehicle should be aware of the relative loca-
tion and dynamic behavior of these specific traffic partic-
ipants. This has always been one of the major challenges
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for autonomous driving. Among all vehicle-mounted sensors
(Visible-spectrum cameras, LIDAR, MMWR and ultrasound
radars), On-car cameras are most indispensable. It is less
expensive and capable of providing real time vision for sur-
rounding perception and road scene understanding [3].

Semantic segmentation is currently the most promi-
nent machine vision technique in traffic scene understan-
ding [4]–[7]. The aim of semantic segmentation is to perform
accurate pixel-wise classification on the image, parsing it into
different semantic categories. For example, in a driving scene,
images are usually parsed into pedestrians, roads, lanes,
curbs, sidewalk, traffic signals and buildings, etc (as shown
in Fig.1). Recently, deep learning based methods have shown
a rapid growth in autonomous driving systems and Intelli-
gent transportation system. Typical applications include deep
reinforcement learning in vehicular networks and vehicular
edge computing [8], [9], road feature extractions [10], etc.
Noteworthily,with large scale training data source [5], high
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FIGURE 1. State-of-art semantic segmentation methods of PSPNet and ICNet in pedestrian perception.

performance computing hardware (GPUs, TPUs) and solid
deep learning frameworks [12]–[14], deep learning based
semantic segmentation methods have achieving tremendous
progress and becoming dominant solutions by outperforming
other state-of-art approaches. The major interest is that they
can provide end-to-end framework in classifying objects at
the pixel level [11]. Badrinarayanan et al. [15] proposed an
encoder-decoder architecture termed SegNet. SegNet is a full
convolutional neural network (FCNN) based semantic seg-
mentation model. It employs decoder network to up-sample
the feature maps by retaining the max-pooling indices from
the corresponding encoder layer. Zhao et al. studied a pyra-
mid pooling based scene parsing model PSPNet [16]which
further improves the segmentation accuracy. Chen pioneered
the use of Atrous convolutions and full connected Condi-
tional Random Field (CRF) in a series of effective seman-
tic segmentation solutions (DeeplabV1 to DeeplabV3) [17],
[18]. Zhang et al. proposed a more efficient asymmetric
encoder-decoder structure for semantic segmentation, it has
much fewer parameters than Segnet [22]. In fact, previous
deep learning based semantic segmentation models suffer
from low efficiency, they mainly exploit fully convolutional
networks (FCNs) which is a sophisticated architecture with
multiple layers of convolution, pooling, and normalization,
etc. For pixel-level prediction tasks like semantic segmenta-
tion, improving accuracymeans increasingmodel complexity
and number of operations. This will in-return sacrifice the
efficiency. Therefore, in recent years, some efforts have been
made to improve the efficiency of semantic segmentation
models. Zhao et al. proposed a cascade image input structure
(ICNet) which obtains much higher speed [24]. Romera et al.
used residual factorized convolutions to optimize the effi-
ciency of the segmentation model [19]. Siam et al. presented
a real-time segmentation benchmarking framework for quick
prototyping of different encoder-decoder architecture [23].
In terms of pedestrian intention estimations, Keller studied
different stereo-video based pedestrian path prediction meth-
ods [20]. Latter, Fang proposed a pedestrian crossing-stoping
intention classification method using deep learning based 2D
pose estimation [21].

Although Deep learning along with machine vision tech-
niques has made remarkable progress on driving scene
understanding and pedestrian perception, yet, a simple but
fundamental problem remains unsolved: How to parse the
pedestrian’s relative location in a complex driving scene
image? In fact, the relative locations of pedestrians are
directly related to their safety. A pedestrian abruptly rush-
ing into driving lane may result in severe incident for
both himself and the autonomous vehicle. Contrarily, pedes-
trians walking on the sidewalk pavement are away from
road area, they present no threat to driving safety and can
hardly interfere with the traffic. As introduced above, pre-
vious works did not focus on this. For example, semantic
segmentation models mostly focus on improving the seg-
mentation accuracy with almost no attention paid to parse
further pedestrian location related semantic information.
As shown in Fig. 1, these methods regard all pedestrians
as a mono category no matter whether the pedestrian is
crossing the driving lane or walking in the sidewalk area.
All pedestrians are marked with the same color and the same
label.

To address this problem, we proposed an efficient fine-
grained Pedestrian Location Perception Network abbreviated
as ‘P-LPN’. It is backboned with our proposed high effi-
cient semantic segmentation model termed Inner Cascade
Network (InCNet) along with an adjusted region proposal
network (RPN) and a location perception layer (LP-layer).
The proposed deep learning model can effectively distinguish
pedestrian’s relative location in a complex driving scene.
Several improvements have been made to the architecture so
that P-LPN can reach the balance between inference accuracy
and efficiency.

Our main contributions are the following.
1) We proposed a high efficient and low computation cost

semantic segmentation model termed Inner Cascade
Network (InCNet) for real-time semantic segmenta-
tion. With the inner cascade structure and cascade
feature fusion, it enables fusion and refining low-
resolution semantic graph with details from high res-
olution images.
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2) Based on our InCNet, we develop a novel pedestrian
location perception network named P-LPN. It mainly
combines the InCNet and a Region proposal network
(RPN). P-LPN is the first end-to-end model achieving
real-time driving scene parsing and pedestrian loca-
tions perception at the same time. Experiments on the
latest driving-scene parsing benchmark of CityScapes
proved its competitive performance in both accuracy
and efficiency.

We made P-LPN publicly available.1 A detailed expla-
nation of P-LPN is given in Section 2. Experiments and
results are presented in Section 3 and Section 4 respectively.
Section 5 concludes this paper.

II. PEDESTRIAN SEMANTIC PERCEPTION
NETWORK (P-LPN)
Through efficient scene parsing and region proposal network,
P-LPN can provide real-time fine-grained pedestrian location
perception, identifying different type of pedestrian’s rela-
tive locations: in driving area( driving lanes, driving pave-
ment) or out of driving area (Sidewalk, safe-island, etc).
With P-LPN, an autonomous driving system can distinguish
those who invading the near-front driving lane and those who
staying in sidewalk area. In this section, detailed description
on P-LPN is given.

As shown in Fig. 2, P-LPN mainly consists of three mod-
ules: first, our proposed semantic segmentation model of
Inner Cascade Network (InCNet) is employed for fast scene
parsing. Secondly, an adjusted Region Proposal Network
(RPN) is used to further propose several possible bounding
box for each pedestrian in the feature maps. In module 3
(LP layer), we merge the results from module1 and module2,
it identifies the relative location of each pedestrian (In driving
lane or in sidewalk area, etc.) and marked them with different
colored bounding box and labels with location information.

A. THE INNER CASCADE NETWORK (InCNet)
BACKBONE IN P-LPN
Inspiring by the state-of-art semantic segmentation model
Image Cascade Network (ICNet [24]), we adjusted the model
by proposing a more practical semantic segmentation frame-
work named Inner Cascade Network (InCNet).

As explained in introduction, previous semantic segmen-
tation methods usually exploit full convolutional neural
network (FCNN)with unique-sized input. It can be very time-
consuming in parsing high-resolution images. Contrary to
previous methods, ICNet employs a cascade architecture for
semantic segmentation. It adopts cascade image inputs (i.e.,
low-, medium- and high resolution images), computational-
intensive task like generating coarse prediction maps only go
through low-resolution branch. Then, cascade feature fusion
(CFF) unit strategy helps to merge the output of coarse
semantic graph with medium and higher resolution branches.
This serves to fine-tune the coarse semantic map gradually.

1www.github.com/espci

Therefore, the most computation expensive task was carried
out on lowest resolution input while the high resolution input
only go through light-weighted CNN. As a result, the whole
computation costs significantly reduced.

To further improve the practicality of ICNet, we proposed
InCNet which is illustrated in the middle part of Fig. 2. The
main difference between our proposed InCNet and ICNet is
that our proposed InCNet has an inner cascade architecture,
it only has one input image with full resolution. we eliminate
the down sampling operation to form half size image and
quarter size image in the input stage. Therefore, Before the
inner cascade structure, the weights and computations of
stage 1 of resnet 50 core is completely shared. Thus, InCNet
has only one image input, also, it saved the input image down
sampling computations and the operation on three indepen-
dent convolutional layers.

InCNet works as follows: At the fist stage, the input image
is with full resolution (e.g., 1024 × 2048 in CityScapes),
it is fed directly into a full semantic perception network
(resnet50 cored [30]), after the convolution layer of stage 2 in
resnet 50. a 1/8 sized feature map is taken out(high resolution
branch). Then, the medium resolution branch (1/16) get out
after the convolution layer of stage 3 in the resnet 50. At this
stage, previous layers of resnet 50 are all with shared weights
and computations. the rest 1/16 feature maps get through
the whole layers and come out with a 1/32 feature map.
At the second stage, the output feature maps are fused by
CFF unit from low to high resolution. Themedium and higher
resolution branch together can help to fine-tune the coarse
prediction map generated by the low-resolution branch. The
model are trained with cascade label guidance strategy [24]
in which different-scale (1/16, 1/8, and 1/4) ground-truth
labels are used in the learning stage for the three branches
respectively. With this inner cascade structure, The InCNet is
highly efficient and memory saving.

At the output of InCNet, we made an adjustment in
order to obtain higher speed for the following operations.
Unlike ICNet, in the up-sampling stage, we only kept the×2
up-sampling while the final ×4 up-sampling operation was
abandoned. This means that the output of our InCNet is the
1/4 size of the original full resolution image. Thus, the follow-
ing operation like filtering and searching are all conducted on
the 1/4 size semantic graph which helps to further reduce the
computational costs.

B. ADJUSTED REGION PROPOSALS NETWORK(RPN)
As discussed in introduction, current semantic segmentation
methods take all pedestrians as a mono category, therefore,
a group of crowded pedestrians are usually marked as a
glob of indistinguishable pixels in the semantic graph. This
is inadequate for driving scene understanding. In this work,
we further adjusted the Region Proposal Network (RPN) [25],
[26] to locate each pedestrian’s position on the semantic fields
produced by the InCNet.

Generally, a RPN can be understood as an attention model.
It is a light weighted network taking an image (of any size) as
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FIGURE 2. Overall architecture of P-LPN.

input and generating outputs of rectangular object proposals,
each with an objectness score. It consists of three stages:
Basic convolutional layers transfer original image to feature
map. Then, it is followed by a small network which takes as
input a n × n spatial window from the feature map (n=3 in
this paper). Each small network will slide over the feature
map and obtain lower dimensional feature. The outputs of
this small network will be fed into two smaller sliding fully-
connected layers (1 × 1 convolutional layer in this work):
a box-regression layer (reg) and a box-classification layer
(cls). During the generation of region proposals, for each
sliding window location, multiple region proposals are pre-
dicted. The number of most likely proposal for each location
is denoted as k. Therefore, the reg layer has 4 k outputs for
the coordinates of k boxes, while the cls layer has 2k outputs
that estimates the classification probability for the object in
each proposal. Indeed, each sliding window is correspondent
to a reference box called ‘anchor’. The anchor is located at the
center of each proposal with different scales and aspect ratios.
By default, there are three scale and three aspect ratio for
the anchor, which makes 9 anchors at each sliding position.
Finally, the output of RPN contains a set of anchor boxes
correspondent to the proposals.

In this work, we made two major modifications on RPN
(Fig. 3.) to make it more cost-efficient and more adaptable for
P-LPN. First, to reduce the computation costs of RPN, shar-
ing computation with the InCNet (Module1 shown in Fig. 2.)
is probably the best option. Therefore, in our adjusted RPN,
the input convolutional layers in RPN are totally eliminated,
we take the output feature map of Resnet50 core from the

FIGURE 3. Region proposals network.

upper branch of InCNet directly into the input of RPN
(up-right in Fig. 2.). This can significantly reduce the compu-
tational costs by sharing the whole Resnet50 with the InCNet
and removing the RPN’s own convolutional layers.

Secondly, in a typical region proposal network, there are
9 anchors (3 scale × 3 aspect ratio) at each sliding position.
Thus, for a convolutional feature map of a size W×H, there
are 9×W×H anchors in total. However, for P-LPN, our atten-
tion mainly focuses on pedestrians. As most pedestrians can
fit well with vertical rectangle boxes. Therefore, we kept only
the vertical rectangle aspect ratio with five different scales
for pedestrians at different distance (5 scale× 1 aspect ratio).
This makes 5×W×H anchors for a convolutional feature map
of sizeW×H, saving 45% of the computation cost.

C. THE LOCATION PERCEPTION LP-LAYER
LP layer is the last module in P-LPN, it is the abbrevia-
tion of location perception. As shown in the right bottom
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of Fig.2. After we fused the results fromRPN and the InCNet,
we obtain a semantic graph with several region proposal
boxes. As for the LP layer, the objective is to filter the impro-
priate or irrelative bounding boxes and identify the relative
location of the each pedestrian. A detailed explanation of
these two operations are given below.

1) BOUNDING BOX FILTERING
The input of LP contains several bounding boxes (proposal)
of pedestrians, some are perfectly suitable while some are
inaccurate. So we need to keep the appropriate bounding
boxes while eliminate the incorrect ones. This operation can
be done by calculating the occupation percentage of pedes-
trian in the bounding box. The bounding boxes that properly
frame the pedestrians have a higher occupation ratio while
impropriate bounding boxes have much lower occupation
ratio. A classical way to calculate the occupation ratio is
calculated pixel by pixel with 2 nested loops illustrated in the
following Method I.

Method I: Pedestrian Occupation Ratio CalculationWith
Nested Loops (on CPU)
Input: A cropped pedestrian image
Output: Percentage of pedestrian in an image
Begin

for i in range(image height)
for j in range(image width)

if label[i][j] = = pedestrian
Count++

end
end

end
Percentage = Count/image size
Return Percentage

End

Where the i,j refers to the pixel’s coordinates. The label
value is the predicted pixel’s class by InCNet. We find this
method is quite time consuming. In this work, we proposed
a more efficient occupation ratio calculation method using
average pooling operation on GPU. The proposed Method II
is shown as following.

Method II (Proposed): Bounding Box Filtering With
Average Pooling (on GPU)
Input: A pedestrian bounding box
Output: Percentage of pedestrian in an image
Begin

Image = tf.image.crop_and_resize()
Image − = tf.equal(Image,pedestrian label)
Percentage = 1

H×W

∑H
i=1

∑W
j=1 pixel

(tf.avg_pool(Image))
Return Percentage

End

Benefiting from Tensorflow-GPU’S high performance in
parallel computing [27]. Our proposed method gains over

FIGURE 4. Bounding box filtering.

10× efficiency than pixel-wise calculation(Method I) on
CPU. The test result suggests that the average processing time
ofMethod II onGPU (Nvdia 1080Ti) costs 7.3mswhile pixel-
wise calculation (Method II) on CPU (Intel I5) takes more
than 108.4 ms.

Further explanation of this novel method is exhibited
in Fig.4. We first crop the bounding box on the semantic
graph. Then, they are rescaled to the same size (e.g.14× 14).
Secondly, we extract pedestrians from each graph, labeling
the pedestrian pixels as 1 while others as 0. Later, we fed
the segmented binary frame into the average pooling layer
to get the pedestrian occupation ratio of each frame. Finally,
we eliminate the bounding box with lower scores and opti-
mize the bounding box with (non maximum suppression)
NMS algorithm.

2) PEDESTRIAN LOCATION PERCEPTION
After the previous operations, each pedestrian is framed with
an appropriate bounding box, we further exploit a novel
method to determine the relative location of each pedestrian
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FIGURE 5. Pedestrian location identification on semantic graph.

in the semantic graph (Fig.5.). Firstly, we select a line near the
bottom of the pedestrian bounding box (1/4 to the bottom)
and move it downwards to the lowest point of the pixel
labeled pedestrian (the lowest pixel on the feet of pedestrian,
could be in or out of the bounding box). Below this line,
the label of pixels on the semantic graph directly represents
the semantic attribute of the standing area (driving lane,
sidewalk pavement, safe-island, etc.). Finally, the location of
this pedestrian can be determined according to the semantic
label of his standing area. The pedestrians interfering with
traffic flow (pedestrian standing or walking in the driving
lane) will be tagged with labeled bounding boxes in red while
the pedestrians out of the driving area (sidewalk or safety
island) are marked with green bounding boxes. Although this
method is simple, it is high efficient with high accuracy.

III. MODEL TRAINING AND EXPERIMENTAL SETTINGS
A. THE TRAINING OF P-LPN
There are two trainable deep learning modules in a P-LPN:
the InCNet backbone and the adjusted RPN. The input of
RPN is the output feature map of Resnet50 core from the
InCNet backbone. Therefore, the training are separated in two
phases where the two modules are trained separately, we set
the learning rate of RPN to zero where only the InCNet are
trained, then, we keep the parameters of the shared convo-
lutional network (the Resnet50 core) in InCNet unchanged,
in this phase the RPN are trained alone. We applied sami-
lar training strategy and loss functions referring to previous
works of [24]and [25] for InCNet and RPN respectively. For
the InCNet, weighted softmax cross-entropy loss is adopted
in each branch (Three inner branches of Small,Medium,High
resolution), and the loss function is defined mathematically
below:

LInC = −
τ∑
t=1

λt
1
Q

Yt∑
y=1

Xt∑
x=1

log
e
F t
n̂,q(x,y)∑N ′

n=1 e
F t
n,q(x,y)

. (1)

where λt is related loss weight. τ is the total number of inner
branch t , in the case of InCNet, we have τ = 3. Q represents
the spatial size (x × y) of predicted semantic map. q(x,y)
stands for a single pixel at position (x, y). Thus, the predicted
per-pixel value in the semantic graph is F t

n,Q(x,y)
while the

correspondent ground truth label value is F t
n̂,Q(x,y).

The loss function for training RPN consists of two parts:
first, the Lcls(Aci) is a classification loss of anchor i, it is a log
loss over two classes (object or not object in the anchor). Lreg
represents the location regression loss (smooth L1) defined
in [29]. Ac∗i Lreg(li) means Lreg loss only consider positive
anchors. The loss function for RPN is expressed in the equa-
tion below:

LRPN (Aci, li) =
1
Ncls

∑
i

Lcls(Aci)+ λ
1
Nreg

∑
i

Ac∗i Lreg(li)

(2)

where the two losses are normalized by the mini-batch size
Ncls and Nreg, λ is the balancing parameter. When the two
modules are all well trained, the modules in P-LPN will be
trained together with an overall loss function L which is
minimized in the following expression below.

L = λ1LInC + λ2LRPN (3)

where the overall loss L is the weighted sum of losses of
InCNet (LInC ) and RPN (LRPN ). λ1 and λ2 are the balanc-
ing weight parameters. After the P-LPN are well trained,
it becomes end-to-end operational, providing quality seman-
tic prediction and pedestrian location inference. In this
work, the model training is with the open source cityscapes
dataset [5]. During training, we randomly initialize the net-
work’s weights from a zero-mean Gaussian distribution with
standard deviation 0.01. The InCNet Training is performed
using a batch size of 8, number of iteration of 60000 times and
the momentum optimization of Stochastic Gradient Descent.
We used poly learning rate policy with the learning rate
of 5e-4, a weights decay parameter of 1e-4, momentum
parameter of 0.9. The RPN training is performed using a
batch size of 2, 90 epochs and the Adam optimization of
Stochastic Gradient Descent with a starting learning rate
of 1e-3. On each epoch the learning rate adaptively adjusted.

B. EXPERIMENT SETTINGS
The whole framework was implemented with Tensorflow
1.12 on a GPU of NVidia GTX1080Ti. The model training
and testing are conducted under the same hardware envi-
ronment. The whole project is also publicly available in the
footnote of page 2.

To further validate our proposal of P-LPN, we tested
our model with 500 images from CityScapes test dataset.
As objective of P-LPN is different to prevalent seman-
tic segmentation models and there are lot of customized
optimizations on P-LPN. Therefore, we find it difficult to
conduct a systematic comparative study with all previous
methods. However, we managed to rebuild another version
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of P-LPN (P-LPNpsp) based on the state-of-art semantic seg-
mentation model of PSPNet by replacing our inner InCNet
with a PSPNet50 (Resnet50 cored). We also compared our
model with the prevalent state-of-art methods in part. The
experimental results and details of the comparative study are
given in the following section. In this section, we investigated
the P-LPN’s performance through experiments onCityScapes
dataset and comparative studies.

IV. RESULTS AND DISCUSSION
In this section, we investigated the P-LPN’s performance
through experiments and comparative studies.

A. PERFORMANCE EVALUATION INDICATORS
As explained in the previous section that P-LPN is a new
framework for pedestrian relative location identification in
driving scene, it is neither a semantic segmentation model
(e.g. PSPNet [16], SegNet [22], ICNet [24], etc.) nor a target
detection model (e.g. Faster RCNN [25], Mask RCNN [26],
etc.). In fact, P-LPN can be considered as a hybridization of
these twomodels. Therefore, it is difficult to find a systematic
way to compare our work with existing ones mainly because
there is no similar works before. Furthermore, the evalua-
tion indicator for segmentation models and target detection
models are totally different. For example, most segmentation
models are evaluated bymean intersection over union (mIoU)
and speed while object detection models use mean average
precision (mAP), recall, bounding box mIoU (different to
the mIoU in segmentation models), speed, etc. We cannot
use all of these indicators to evaluate the performance of
our proposal. They are calculated differently and some are
insignificant for P-LPN. Therefore, we proposed six major
indicators for P-LPN which are Average Precision (AP)
for pedestrian detection performance, recall for evaluating
missed detections,bounding box mIoU to evaluate whether
the box properly framed pedestrian, time and FPS(Frame
Per Second) for evaluating the speed of the model.
Finally, Location Recognition Accuracy (LRA) for evaluat-
ing the location perception accuracy which is calculated by
equation (4) below.

LRA =
Ld + Lod

Np
. (4)

where Ld and Lod refer to correct location recognitions of
pedestrians in driving zone (driving lanes) and out of driving
zone (sidewalk, safe-island, etc) respectively. Np represents
the total number of detected pedestrians.

B. EXPERIMENT RESULTS AND DISCUSSION
We comprehensively evaluated our proposal on the
CityScapes benchmark [5]. We verified the performance of
P-LPN on 500 images (1024×2048 sized) of complex urban
driving scenes. With the same test data, we also conducted
a comparative study of our proposal( P-LPNinc ) with state-
of-art semantic segmentation model of PSPNet and ICNet.
As shown in Fig. 6, our P-LPN made descent predictions

results, most semantically meaningful objects have been
correctly captured and segmented at pixel-level. Furthermore,
It is noteworthy that compared to classic semantic segmen-
tation models (PSPNet, ICNet), P-LPN is the first to make
fine-grained location perceptions of pedestrians in complex
driving scene. It effectively extracted each pedestrian in
the semantic map. Better still, it accurately identified the
relative position of each pedestrian. Those penetrating into
the driving lane are framedwith red bounding boxes and those
standing in the sidewalk or safe-island areas are marked with
green bounding boxes. Their relative location information are
also marked in the labels. In Fig. 7, we compared P-LPN
with state of art instance segmentation and object detection
methods of Mask-RCNN(Tensorflow version) [26] and Yolo
V3 [28]. As shown in Fig. 7, Yolo V3 and Mask R-CNN
have detected objects with recognition bounding box and
segmentation masks respectively. As shown in Fig. 7, Yolo
V3 andMaskR-CNNmarked the detected objects with recog-
nition bounding box and segmentation masks respectively.
Different from these two methods, P-LPN produced pixel-
level semantic prediction while simultaneously providing
pedestrian detection with the location inference.

The final comparative results with previous works and
our proposal of InCNet cored P-LPN is given in Tab. 1.
It suggests that both P-LPNInc and P-LPNpsp have a high
Average Precision score, it is mainly because that for a
P-LPN, the image is fed into a serial deep learning modules
(two stage), the Front-end Resnet50 (PSPNet or InCNet), and
the back-end RPN. This helps to achieve higher recognition
accuracy. It is notable that target detection models like Mask
RCNN and Yolo V3 are more sensitive to a person’s features,
which leads to a undesirable result: Some non-pedestrian
targets have been identified as pedestrian in the driving scene,
for example, the characters printed on the bus (row3 in Fig. 7)
are wrongly identified as real pedestrians. This reduced their
precision in general. The recall of pedestrian detection for
both P-LPN models are lower, it is mainly because the
adjusted RPN has a limited ability in small object detection.
So the pedestrian far away from the vehicle can be very tiny
in the vision field, these pedestrians are highly likely missed.
Also, when a large part of a pedestrian is shielded behind
other objects, it can be hard for RPN to detect this person.
In terms of location recognition, all previous methods do not
provide this function, only P-LPN can give the relative loca-
tion perception on each pedestrian. This indicates that our LP
layer can effectively identify the area of pedestrians. Admit-
tedly, our proposed model P-LPN (InCNet core) sacrificed
bounding box IoU for higher speed. Some IoU related opera-
tions with high computational costs are optimized in RPN and
LS layer for higher speed. Actually, the bounding box IoU
under this application scenario is much less significant than
Recall and speed, so we think it is acceptable. It is notable
that our proposed model outperformed all five investigated
methods in key indicators of pedestrian recognition average
precision (AP) and pedestrian location recognition accuracy
(LRA), also, it ranks the second in the efficiency indicator of
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FIGURE 6. Comparison of P-LPN with semantic segmentation models (PSPNet (upper image) and ICNet (under image) in the middle colomn).

time and fps: our proposal is 22× times faster than PSPNet,
102.7× times faster than Mask RCNN and 22.4 × times

faster than PSPNet cored P-LPN. As speed is one of the most
important factors in driving scene parsing, we believe that our
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FIGURE 7. Comparison of P-LPN with Mask-RCNN and Yolo V3).

TABLE 1. Comparative results with prevalent methods.
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proposed P-LPN has significant advantage for autonomous
driving applications.

V. CONCLUSION
In this work, we proposed a high-efficient inner cascade
network InCNet for semantic segmentation. Based on this,
a novel framework termed "P-LPN" for real-time pedes-
trian location perception is proposed. Our method enables an
end-to-end framework producing semantic segmentation and
pedestrian location inference simultaneously. Experiments
on CityScapes benchmark demonstrated P-LPN’s competi-
tive performance in both accuracy and efficiency. Especially,
through customized optimizations, P-LPN can yield real-time
inference on complex driving scenes. We believe that P-LPN
can be extended to a variety of different autonomous driving
applications where fast scene parsing for surrounding objects
perception are needed. For further improvement, more work
is necessary on integrating pedestrian intention estimation
and path prediction methods into P-LPN to enhance its
practicality.
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