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ABSTRACT This paper proposes an indirect approach of constraint-following control for mechanical
systemswith (possibly fast) time-varying uncertainty. It proposes to design controller for the system to render
bounded constraint-following error. First, it prescribes a desired hard bound for the constraint-following
error. The system is required to lie within the bound at all time. Second, the constraint-following error can
eventually be sufficiently small. To accomplish this, the original system is transformed into a constructed
system. Then a robust control for the constructed system is designed, with renders uniform boundedness and
uniform ultimate boundedness, regardless of the uncertainty. It is further proven that when the constructed
system is uniformly bounded and uniformly ultimately bounded, the constraint-following error of the original
system stays within the pre-determined bounded. In addition, it will become sufficiently small after a finite
time. Therefore the desired bounded performance of the constraint-following error can be archived by the
robust control. Since the control is not designed based on the original system, the approach is indirect.

INDEX TERMS Mechanical systems, constraint-following, uncertainty, coordinate transformation, robust
control.

I. INTRODUCTION
In Lagrangian mechanics, constraints (holonomic or
nonholonomic) are used to describe the performance of
mechanical system. From the view of control, identification
of the control force or torque to render the system to obey the
constraints is the so-call constraint following. In the recently
past, research efforts can be found in, e.g., [6]–[14] and their
bibliographies. In practice, if the constraint-following error,
despite being small ultimately, is too large during the transient
period, the performance may not be acceptable. This issue,
which we shall call the bounded constraint-following error,
is of practical significance.

Robust control for uncertain systems has attracted many
scholars’ attention. Chang et al. proposed a novel two-step
strategy of robust quantized feedback H∞ control [1] and
then addressed the feedback guaranteed cost control problem
for discrete-time uncertain systems [2]. Cheng and Chen [3]
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designed a robust control for euler-lagrange mechanical sys-
tems with decentralized adaptive scheme. Yang et al. [4]
proposed a robust control for under-actuated mechanical
systems with model uncertainty. Rascón [5] explored a robust
tracking control scheme for mechanical systems. However,
for mechanical systems control, the past works usually apply
a control theory oriented approach that is not solely intended
for mechanical systems. This paper falls into a physical
system oriented framework [6] that starts with the charac-
teristics of the problem, which only exist for mechanical
systems, while along the way, the knowledge of control
theory will help to pave the way for a concrete control design.
This makes our control action more aligned with how the
Nature works (through the prescriptions of the physical laws
such as d’Alembert’s principle, Gauss’s principle, etc.), and
hopefully leading to better and more resilient performance
and less cost.

In the past decades, the quest for the bounded perfor-
mance has already attracted some scholars’ attention. Leit-
mann and Skowronski [15] guaranteed the concerned system
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avoiding a given bounded set with an avoidance control.
Prucz et al. [16]–[18] dealt with the structural control
problem by applying bounded-state control. Li et al. [19]
designed a nonlinear velocity controller for the road vehi-
cles to stay on a desired velocity profile within a required
error bound. Udwadia et al. [7]–[10] put forward several
tracking control approaches to drive the controlled system
to track a desired reference trajectory within given error
bounds. The main focus of these efforts is on the control
design for the original system. We call such approach the
direct bounded control. In this approach, the overarching
requirement is the initial condition needs to be sufficiently
small.

To overcome this limitation, this paper explores a cre-
ative indirect approach for constraint following of uncertain
mechanical systems. This paper specially considers the pres-
ence of modeling uncertainty as the engineer’s knowledge
of the system is often inadequate. In the past, many works
have been done on uncertainty analysis and control such as
[20]–[30]. By contrast, this paper deals with (relatively)
more complicated uncertainty that is (possibly fast) time
varying. The objective is to design control to render two
layers of system performances, which are included in the
bounded constraint-following error task. First, a prescribed
constraint-following error is imposed by the designer. The
system is to lie within the bound at all time, provided it starts
within the bound. Second, the constraint-following error can
become close to zero after some finite time and remains there
thereafter.

To accomplish the bounded constraint-following error
task, the concerned (original) system is transformed to a
new (constructed) system via a one-to-one smooth diffeo-
morphism, and a robust control is designed based on Lya-
punov stability theory such as applied in [20]–[27]. We
show that if the constructed system exhibits uniform bound-
edness and uniform ultimate boundedness, the constraint-
following error of the original system can be bounded and
becomes close to zero after a finite time. This in turn means
the desired performance in bounded constraint-following
error can be achieved indirectly. We call this the indirect
approach.

The main contributions of this article are fourfold. First,
it extends the past constraint-following problem to a more
general setting, allowing a desirable constraint-following
error bound to be imposed. Second, a more practical indi-
rect approach is proposed. A new constructed system is
derived from the original system. In contrast to the past direct
approach, which is based on the original system and a suffi-
ciently small initial condition is needed, the indirect approach
allows a rather broad range for the initial condition. Third,
a robust control is designed for the constructed system.
Fourth, it is shown that when the constructed system is uni-
formly bounded and uniformly ultimately bounded, the orig-
inal system meets the desirable error bound. As a result,
the proposed bounded constraint-following error problem is
solved.

II. UNCERTAIN MECHANICAL SYSTEM AND
CONSTRAINTS
Consider a mechanical system (i.e., the original system)
described by an n dimensional coordinate [31], [32]:

M (q (t) , σ (t) , t) q̈ (t)+ C (q (t) , q̇ (t) , σ (t) , t)

×q̇ (t)+ G (q (t) , σ (t) , t) = u (t) . (1)

Here q ∈ Rn is the position, q̇ ∈ Rn is the velocity, q̈ ∈ Rn

is the acceleration, t ∈ R is the time, σ ∈ 6 ⊂ Rp is
the (possibly fast) time-varying uncertain parameter with 6
prescribed and compact, and u ∈ Rn is the control. Further-
more, M (q, σ, t) > 0 is the inertia matrix, C (q, q̇, σ, t) q̇ (t)
is the Coriolis/centrifugal force, and G (q, σ, t) is the gravi-
tational force. The matrices/vector M (q, σ, t), C (q, q̇, σ, t)
and G (q, σ, t) are of appropriate dimensions and the func-
tions they make up are continuous.

The first order form constraints which the system needs to
follow are proposed as

n∑
i=1

Ali (q, t) q̇i = cl (q, t) , l = 1, . . . ,m, (2)

where q̇i is the i−th component of q̇, 1 ≤ m ≤ n, Ali(·) and
cl(·) are both C1 in q and t . The constraint may be holonomic
and/or nonholonomic. They can be written in matrix form as

A (q, t) q̇ = c (q, t) , (3)

where A = [Ali]m×n, c = [c1 c2 . . . cm]T .
Upon differentiation, these constraints can be converted

into the second order and cast into matrix form:

A (q, t) q̈ = b (q̇, q, t) , (4)

where A = [Ali]m×n, b = [b1 b2 . . . bm]T .
For further analysis, a new notion of constraint-following

error is defined as

β̃ (q, q̇, t) := A (q, t) q̇− c (q, t) , (5)

where β̃i is the i−th component of the vector β̃ =

[β̃1, β̃2, . . . , β̃m]T . It will be used to describe the desired per-
formance (i.e., the control objective) later. With (4), we have

˙̃
β (q, q̇, t) = A (q, t) q̈− b (q̇, q, t) . (6)

Using (1) in (6), we have

˙̃
β (q(t), q̇(t), t)

= A (q(t), t)M−1(q(t), σ (t), t)

× [−C(q(t), q̇(t), σ (t), t)q̇(t)− G(q(t), σ (t), t)]

+A (q(t), t)M−1(q(t), σ (t), t)u(t)

−b (q̇(t), q(t), t) . (7)

We then denote the constraint-following error with another
function of β(t) := β̃ (q(t), q̇(t), t), where βi is the
i−th component of the vector β = [β1, β2, . . . , βm]T .
Let β0 := β(t0) to denote the initial condition, where
β0 = [β01, β02, . . . , β0m]T , β0i is the i−th component of
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FIGURE 1. The relationship between β̃i and δ̃i .

the vector β0. The objective of this paper proposed indi-
rect approach of constraint-following control is to drive
the constraint-following error to render following desired
performances:

(i) Keep in a certain range of β̄: for any given constraint
with the initial condition ‖β0i‖ < β̄i,

‖βi(t)‖ < β̄i (8)

for all t ≥ t0, where β̄i > 0 is the i−th component of the
vector β̄ = [β̄1, β̄2, . . . , β̄m]T .
(ii) Reach to an arbitrarily small range of c̄: for any given

trajectory, there exists a time T <∞, such that

‖βi(t)‖ ≤ c̄i, (9)

for all t ≥ t0 + T , where c̄i > 0 is the i−th component of the
vector c̄ = [c̄1, c̄2, . . . , c̄m]T .
Remark 1: The first performance represents the overall

bounded constraint-following error, while the second per-
formance represents the ultimate constraint-following. These
two together denotes the overall control objective of bounded
constraint-following. This can be cast into the bounded con-
trol problem.

III. SYSTEM TRANSFORMATION
As the first step of the indirect approach for constraint-
following control, based on the original system, a new system
(called constructed system) is constructed by a coordinate
transformation. Define

δ̃i(β̃i) := tan

(
β̃i − β̄i

2β̄i
π +

π

2

)
, (10)

where δ̃i is the i−th component of a vector δ̃ =

[δ̃1, δ̃2, . . . , δ̃m]T . This is a one-to-one smooth diffeomor-
phism between β̃i and δ̃i, hence invertible. Figure 1 shows
the relationship between δ̃i and β̃i. Differentiating (10) with
respect to time, we have

˙̃
δi(β̃i) = sec2

(
β̃i − β̄i

2β̄i
π +

π

2

)
π

2β̄i
˙̃
βi, (11)

where ˙̃δ = [ ˙̃δ1,
˙̃
δ2, . . . ,

˙̃
δm]T ,

˙̃
δi is the i−th component of the

vector ˙̃δ. Recalling β(t) = β̃(q(t), q̇(t), t), we have β̃i = βi,
and then (11) can be rewritten as

˙̃
δi(βi) = sec2

(
βi − β̄i

2β̄i
π +

π

2

)
π

2β̄i
β̇i, (12)

Let

$i(βi) := sec2
(
βi − β̄i

2β̄i
π +

π

2

)
(13)

as the i−th component of a vector $ (β) = [$1(β1),
$2(β2), . . . ,$m(βm)]T , and then (12) can be rewritten as

˙̃
δi(βi) = $i(βi)

π

2β̄i
β̇i. (14)

Now we obtain its generalized vector form as

˙̃
δ(β) = $ (β)

π

2β̄
β̇. (15)

Let δi(t) := δ̃i(β̃(qi(t), q̇i(t), t)) as the i− th compo-
nent of the vector δ = [δ1, δ2, . . . , δm]T , then δ(t) =
δ̃(β̃(q(t), q̇(t), t)). Recalling β(t) = β̃(q(t), q̇(t), t) and
using (7) in (15), we have,

δ̇(t) = $ (β(t))
π

2β̄

{
A (q(t), t)M−1(q(t), σ (t), t)

× [−C(q(t), q̇(t), σ (t), t)q̇(t)− G(q(t), σ (t), t)]

−b (q̇(t), q(t), t)} +$ (β(t))
π

2β̄
A (q(t), t)

×M−1(q(t), σ (t), t)u(t). (16)

Let

f (β, q, q̇, σ, t)

:= $ (β)
π

2β̄

{
A (q, t)M−1(q, σ, t)

× [−C(q, q̇, σ, t)q̇− G(q, σ, t)]− b (q̇, q, t)} (17)

and

g(β, q, q̇, σ, t) := $ (β)
π

2β̄
A (q, t)M−1(q, σ, t), (18)

where f ∈ Rm and g ∈ Rm×n. Rearrange (11) with (17)
and (18) as

δ̇(t) = f (β(t), q(t), q̇(t), σ (t), t)

+g(β(t), q(t), q̇(t), σ (t), t)u(t). (19)

It can be rewritten as

δ̇(t) = f̄ (δ(t), t)+ [f (β(t), q(t), q̇(t), σ (t), t)

−f̄ (δ(t), t)
]
+ g(β(t), q(t), q̇(t), σ (t), t)u(t), (20)

where f̄ ∈ Rm. Decompose g(·) as

g(β(t), q(t), q̇(t), σ (t), t) = ḡ(β(t), q(t), q̇(t), t)

+1g(β(t), q(t), q̇(t), σ (t), t).

(21)
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Here ḡ(·) denotes the ‘‘nominal’’ (known) portion, while
1g(·) denotes the uncertain (unknown) portion. With it,
we rewrite (20) as

δ̇(t) = f̄ (δ(t), t)

+
[
f (β(t), q(t), q̇(t), σ (t), t)− f̄ (δ(t), t)

]
+ [ḡ(β(t), q(t), q̇(t), t)

+1g(β(t), q(t), q̇(t), σ (t), t)] u(t). (22)

such that we obtain the state equation of the constructed
system as (22).
Remark 2: Through above analysis of system transfor-

mation, we shift the focus from state β (i.e., the original
control object) to the other state δ (i.e., the constructed control
object). This is the critical process of our proposed indirect
approach of constraint-following control. From (10), as β̃i
is the variable of δ̃i, β̃i should affect δ̃i, conversely, δ̃i may
determine β̃i. In some sense, β̃ (i.e., β) can be seen as the
bridge between the original system and the new constructed
system. This is the essential reason that why we can achieve
the desired performance for β indirectly by controlling δ in
later study.

IV. INDIRECT ROBUST CONTROL DESIGN
For the desirable performance of the original system,
we design a robust control for the constructed system. Con-
sider the constructed system

δ̇(t) = f̄ (δ(t), t)

+
[
f (β(t), q(t), q̇(t), σ (t), t)− f̄ (δ(t), t)

]
+ [ḡ(β(t), q(t), q̇(t), t)

+1g(β(t), q(t), q̇(t), σ (t), t)] u(t), δ(t0) = δ0. (23)

where δ(t0) = δ0 is the initial condition.
Assumption 1: There are mappings h(·) : Rm × Rm × Rn ×

Rn×Rp×R→ Rn and E(·) : Rm×Rn×Rn×Rp×R→ Rn×n,
such that

f (β, q, q̇, σ, t)− f̄ (δ, t) = ḡ(β, q, q̇, t)

×h(δ, β, q, q̇, σ, t), (24)

1g(β, q, q̇, σ, t) = ḡ(β, q, q̇, t)E(β, q, q̇, σ, t), (25)

for all δ, β ∈ Rm, q, q̇ ∈ Rn, σ ∈ 6 and t ∈ R.
Subject to Assumption 1, the constructed system can be

represented as

δ̇(t) = f̄ (δ(t), t)

+ḡ(β(t), q(t), q̇(t), t)

×h(δ(t), β(t), q(t), q̇(t), σ (t), t)

+ [ḡ(β(t), q(t), q̇(t), t)+ ḡ(β(t), q(t), q̇(t), t)

×E(β(t), q(t), q̇(t), σ (t), t)] u(t), δ(t0) = δ0, (26)

in which h(·) and E(·) are the uncertain elements that repre-
sent the ‘‘lumped’’ uncertainties of this system.
Assumption 2: The functions f̄ (·) ∈ Rm, ḡ(·) ∈ Rm×n,

h(·) ∈ Rn, and E(·) ∈ Rn×n are continuous.

Based on the continuity of the functions and the com-
pactness of the set 6, there exists a continuous function
ρ(·) : Rm × Rm × Rn × Rn × R → R+, such that for
all (δ, β, q, q̇, σ, t) ∈ Rm × Rm × Rn × Rn × 6 × R,
‖h(δ, β, q, q̇, σ, t)‖ ≤ ρ(δ, β, q, q̇, t).
Assumption 3: There exists a constant λ > −1, such that

for all (β, q, q̇, σ, t) ∈ Rm × Rn × Rn ×6 × R,
1
2
min
σ∈6

λmin

(
E(β, q, q̇, σ, t)+ ET (β, q, q̇, σ, t)

)
≥ λ. (27)

Remark 3: In the special case that g = ḡ (i.e., no uncer-
tainty), E = 0, and hence one can choose λ = 0. Thus by
continuity this assumption imposes the effect of uncertainty
on the possible deviation of g from ḡ to be within a certain
threshold which is unidirectional (i.e., unbounded in one
direction).
Assumption 4; There are a C1 function V (·) :

Rm × R → R+ and K∞ functions γi(·) : R+ → R+,
i = 1, 2, 3, such that for all (δ, t) ∈ Rm × R

γ1 (‖δ‖) ≤ V (δ, t) ≤ γ2 (‖δ‖) ,
∂V
∂t
+
∂V
∂δ

f̄ (δ, t) ≤ −γ3 (‖δ‖) . (28)

This assumption simply implicates the choice of the nominal
portion f̄ (δ, t). Notice that, ‖·‖ denotes the euclidean norm
of the concerned matrix in this paper; hence, ‖δ‖ denotes the
euclidean norm of δ here.

Next, subject to Assumptions 1-4, we are to design a robust
control for the constructed system (23) or (26) to guarantee
the every response of the system uniformly bounded and
uniformly ultimately bounded. The control is proposed as

u(t) = −λḡT (β(t), q(t), q̇(t), t)
∂V
∂δ

(δ(t), t)

×ρ2(δ(t), β(t), q(t), q̇(t), t), (29)

with a constant λ > 0.
Theorem 1: Consider the constructed system (23) or (26).

Subject to Assumptions 1-4, the control (29) renders:
(i) Uniform boundedness: For any r > 0, there is a d (r) <
∞ such that if ‖δ0‖ ≤ r , then ‖δ (t)‖ ≤ d (r) for all t ≥ t0;
(ii) Uniform ultimate boundedness: For any r > 0 with
‖δ0‖ ≤ r , there exists a d > 0 and a time T

(
d, r

)
<∞ such

that ‖δ (t)‖ ≤ d for any d > d as t ≥ t0 + T .
Proof: Recalling Assumption 4, V (·) : Rm × R → R+;

hence, V (·) ≥ 0. Moreover, γ1 (‖δ‖) ≤ V (δ, t) ≤ γ2 (‖δ‖),
where γ1,2(·) : R+ → R+ are K∞ functions; hence,
V (δ, t) = 0 only as δ = 0. This means V (δ, t) is a positive
definite function. By this, we take it as the Lyapunov func-
tion candidate here. Its derivative along the trajectory of the
controlled system is

L(δ, t) :=
∂V (δ, t)
∂t

+
∂TV (δ, t)

∂δ
δ̇

=
∂V (δ, t)
∂t

+
∂TV (δ, t)

∂δ

[
f̄ + ḡh+ (ḡ+ ḡE) u

]
=
∂V (δ, t)
∂t

+
∂TV (δ, t)

∂δ
f̄ +

∂TV (δ, t)
∂δ

ḡh

+
∂TV (δ, t)

∂δ
(ḡ+ ḡE) u. (30)
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With Assumption 4, we can rewrite it as

L(δ, t) ≤ −γ3 (‖δ‖)+
∂TV (δ, t)

∂δ
ḡh

+
∂TV (δ, t)

∂δ
(ḡ+ ḡE) u

≤ −γ3 (‖δ‖)+

∥∥∥∥∂TV (δ, t)∂δ
ḡ

∥∥∥∥ ‖h‖
+
∂TV (δ, t)

∂δ
ḡu+

∂TV (δ, t)
∂δ

ḡEu. (31)

As a consequence of the control (29) with (31), we have

L(δ, t) ≤ −γ3 (‖δ‖)+
∥∥∥∥∂TV (δ, t)∂δ

ḡ

∥∥∥∥ ‖h‖
+
∂TV (δ, t)

∂δ
ḡ
[
−λḡT

∂V
∂δ

(δ, t)ρ2
]

+
∂TV (δ, t)

∂δ
ḡE
[
−λḡT

∂V
∂δ

(δ, t)ρ2
]

= −γ3 (‖δ‖)+

∥∥∥∥∂TV (δ, t)∂δ
ḡ

∥∥∥∥ ‖h‖
−λ

∥∥∥∥∂TV (δ, t)∂δ
ḡ

∥∥∥∥2 ρ2
−λ

[
∂TV (δ, t)

∂δ
ḡ
]
E
[
∂TV
∂δ

(δ, t)ḡ
]T
ρ2. (32)

Define

ψ :=
∂TV (δ, t)

∂δ
ḡ. (33)

Then by using (33) in (32), we have

L(δ, t) ≤ −γ3 (‖δ‖)+ ‖ψ‖ ρ
−λ ‖ψ‖2 ρ2 − λψEψTρ2

= −γ3 (‖δ‖)+ ‖ψ‖ ρ

−λ ‖ψ‖2 ρ2 −
1
2
λ
(
ψEψT

+ ψEψT
)
ρ2

= −γ3 (‖δ‖)+ ‖ψ‖ ρ

−λ ‖ψ‖2 ρ2 −
1
2
λ
(
ψEψT

+ ψETψT
)
ρ2. (34)

Rearranging it, we have

L(δ, t) ≤ −γ3 (‖δ‖)+ ‖ψ‖ ρ − λ ‖ψ‖2 ρ2

−
1
2
λ
[
ψ
(
E + ET

)
ψT
]
ρ2. (35)

Recalling the Assumption 4 and the Rayleigh’s principle,
we have

2λ ‖ψ‖2 ≤ λmin(E + ET ) ‖ψ‖2

≤ ψ
(
E + ET

)
ψT
≤ λmax(E + ET ) ‖ψ‖2 . (36)

Using it in (35), we have

L(δ, t) ≤ −γ3 (‖δ‖)+ ‖ψ‖ ρ
−λ ‖ψ‖2 ρ2 − λλ ‖ψ‖2 ρ2

= −γ3 (‖δ‖)+ ‖ψ‖ ρ − λ(1+ λ) ‖ψ‖2 ρ2

≤ −γ3 (‖δ‖)+
1

4λ
(
1+ λ

) , (37)

where 1/
[
4λ
(
1+ λ

)]
> 0 as λ > −1.

Recalling the standard arguments as in [33], we conclude
the solution of the controlled system is uniform boundedness
with

d(r) =

{
(γ−11 ◦ γ2)(R) if r ≤ R,
(γ−11 ◦ γ2)(r) if r > R,

(38)

R = γ−13

(
1

4λ
(
1+ λ

)) . (39)

Furthermore, uniform ultimate boundedness follows with

R̄ = (γ−11 ◦ γ2)(d̄), (40)

T (d, r) =


0 if r ≤ R̄,

γ2(r)− γ1(R̄)

γ3(R̄)−
[
4λ
(
1+ λ

)]−1 if r > R̄.
(41)

�
Finally, we summarize the control design procedure as

following:
(i) With desired constraint, obtain A and b, and then con-

struct β̃ (i.e., β) with (5).
(ii) With A, b and β, obtain f (·) and ḡ(·) with (17) and (18).
(iii) Choose f̄ (·) and V (·) based on the Assumption 4, and

then obtain ∂V (·)/∂δ.
(iv) Obtain h(·) with (24) in Assumption 1. Choose a

bounding function ρ(·) with ‖h(·)‖ ≤ ρ(·).
(v) With ḡ(·), ρ(·) and ∂V (·)/∂δ, the control is obtained as

in (29).

V. ANALYSIS OF THE ORIGINAL SYSTEM
We shall verify that the original system (1) renders the desired
performance of bounded constraint-following error as the
constructed system (26) renders uniform boundedness and
uniform ultimate boundedness,.
Theorem 2: If there exists a controller u(t) ∈ Rn such that

δ(t) is rendered uniform boundedness, then the constraint-
following error ‖βi(t)‖ can stay in a certain range of β̄i with
the initial condition of ‖β0i‖ < β̄i, that is, ‖βi(t)‖ < β̄i for
all time t ≥ t0.

Proof: By the definition of uniform boundedness, when
state δ(t) renders uniform boundedness, we have

‖δ (t)‖ ≤ d (r) (42)

for all t ≥ t0. Such that

‖δi (t)‖ ≤ d (r) . (43)

That is

−d (r) ≤ δi (t) ≤ d (r) . (44)

Recalling the definition of δi as (10) and β(t) = β̃(q(t),
q̇(t), t), we have

−d (r) ≤ tan
(
βi − β̄i

2β̄i
π +

π

2

)
≤ d (r) . (45)

VOLUME 8, 2020 70197



Q. Sun et al.: Regulating Constraint-Following Bound for Uncertain Mechanical Systems: Indirect Control Approach

A lengthy but straightforward analysis can show that

2β̄i
[
− arctan (d (r))− π

2

]
π

+ β̄i ≤ βi

≤
2β̄i

[
arctan (d (r))− π

2

]
π

+ β̄i. (46)

Using

−
π

2
< arctan (d (r)) <

π

2
(47)

in (46), we have

2β̄i
(
−
π
2 −

π
2

)
π

+ β̄i < βi <
2β̄i

(
π
2 −

π
2

)
π

+ β̄i. (48)

Finally, we have

‖βi‖ < β̄i. (49)

�
Remark 4:Under the robust control (29), the new constructed
system (23) can render uniform boundedness, by the way the
constraint-following error ‖βi‖ of the original system (1) can
stay in a desired range β̄i. By this, the desired performance of
bounded constraint-following error for the original system is
indirectly achieved.
Remark 5: Note that, in the whole control process, the ini-

tial condition of the constraint-following error β0 is not nec-
essary to stay in any ideal range (except hereto desired range
β̄), such that it breaks the limitation of system initial state
appearing in direct bounded control.
Theorem 3: If there exists a controller u(t) ∈ Rn such

that δ(t) is rendered uniform ultimate boundedness, then the
constraint-following error ‖βi(t)‖ can reach to an arbitrary
small range of c̄, that is, there exists a time T < ∞

such that ‖βi(t)‖ ≤ c̄i for all time t ≥ t0 + T , where
c̄ = [c̄1, c̄2, . . . , c̄m]T and c̄i > 0 is the i−th component of
the vector c̄.

Proof: By the definition of uniform ultimate bounded-
ness, when the state δ(t) renders uniform ultimate bounded-
ness, we have

‖δ (t)‖ ≤ d̄ (50)

for all t ≥ t0 + T , such that

‖δi (t)‖ ≤ d̄ . (51)

When t ≥ t0 + T , for all ‖δi (t)‖ ≤ d̄ , we have

arctan
(
−d̄
)
< arctan (δi) < arctan

(
d̄
)
. (52)

Recalling the definition of δi as (10), we have

βi =
2β̄i

[
arctan (δi)− π

2

]
π

+ β̄i. (53)

Finally, by using (52) in (53), we have

2β̄i
[
arctan

(
−d̄
)
−

π
2

]
π

+ β̄i < βi(t)

<
2β̄i

[
arctan

(
d̄
)
−

π
2

]
π

+ β̄i. (54)

We can obtain

‖βi(t)‖ ≤ max

{∣∣∣∣∣2β̄i
[
arctan

(
−d̄
)
−

π
2

]
π

+ β̄i

∣∣∣∣∣ ,∣∣∣∣∣2β̄i
[
arctan

(
d̄
)
−

π
2

]
π

+ β̄i

∣∣∣∣∣
}
,

=: c̄i(d̄). (55)

It can be seen when d̄ → 0, c̄i(d̄) → 0. Therefore, we can
conclude when δ is uniform ultimate boundedness, ‖βi‖ can
reach to an arbitrary small range of c̄i with an arbitrary
small d̄ . �
Remark 6: As the magnitude of d̄ can get arbitrarily close

to zero by adjusting the control parameters, ‖βi‖ can be
controlled to be arbitrarily close to zero. In this sense, with the
robust control (29), the constructed system (23) can render
uniform ultimate boundedness, by the way the constraint-
following error ‖βi‖ of the original system (1) can reach to an
arbitrary small range of c̄i. By this, the desired performance
of approximate constraint-following for the original system
is indirectly realized.
Remark 7: Based on Theorems 2-3, the proposed problem

of bounded constraint-following for uncertain mechanical
systems can be indirectly solved by transforming the original
system (1) into another new constructed system (23). When
the new constructed system renders uniform boundedness
and uniform ultimate boundedness, the constraint-following
error of the original system renders bounded and arbitrarily
close to zero, respectively. The constraint-following error
rendering bounded reflects an overall bounded performance,
meanwhile, the constraint-following error rendering arbitrar-
ily close to zero reflects an ultimately constraint-following
performance. These two together form the desired perfor-
mance of bounded constraint-following, with which the con-
trolled system not only can follow the excepted constraint
approximatively, but also can keep the constraint-following
error in a desired range to avoid any excessive fluctuation.
Fig. 2 shows the design procedure.

VI. DIRECT APPROACH VERSUS INDIRECT APPROACH:
WHY THE INDIRECT APPROACH IS SUPERIOR?
A. DIRECT APPROACH
For bounded constraint-following error, the past researches
would take the direct approach such as [6], [12]–[14], which
is briefly reviewed as below. One starts with designing a
control which renders the uniform boundedness and uniform
ultimate boundedness of β(t). The uniform boundedness
property means that for any r > 0 with ‖β0‖ ≤ r , β0 =
β(t0), there is a d (r) < ∞ such that if ‖β (t0)‖ ≤ r , then
‖β (t)‖ ≤ d (r) for all t ≥ t0.
Specifically,

d(r) = (γ−11 ◦ γ2)(R), if r ≤ R (56)

d(r) = (γ−11 ◦ γ2)(r), if r > R (57)
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FIGURE 2. Design procedure of the proposed control scheme.

where R > 0 is such that the derivative of the Lyapunov
function V (β, t) along the trajectory of the original system
is strictly negative when ‖β‖ > R, γ̄1,2(·) are such that they
are K∞ and γ̄1(‖β‖) ≤ V ≤ γ̄2(‖β‖).
The desired bound of the constraint-following error corre-

sponds d (r). This in fact imposes a rather strict limitation on
the initial condition β0.

Suppose one needs ‖βi(t)‖ < β̄i, i = 1, 2, · · · ,m, for
all t , where β̄1,2,··· ,m > 0. To meet all, one should choose
d(r) = min{β̄1, β̄2, · · · , β̄m}. Notice that it would be incor-
rect to choose d(r) = (β̄21 + β̄

2
2 + · · · + β̄

2
m)

1/2 since it is
possible at one stage all but one components are zero. As a
result, the choice of r , which bounds the initial constraint
following error β0, is also subject to the minimum of all
bounds; therefore the minimum bound dictates the control
design.

B. INDIRECT APPROACH
Based on sections 2 and 3, all β̄i’s, instead of only the mini-
mum one, are taken into consideration in the transformation.
This means the pre-imposed upper bound of each component
of β plays a role in the control design, therefore a non-
conservative setting. Furthermore, the ultimate boundedness
region for β can be selected by an appropriate choice of λ.

C. COMPARISON
The comparison between direct approach and indirect
approach is shown in Figure 3. In the direct approach, only
the minimum bound min{βi, i = 1, 2, · · · ,m} is considered
for the design, while other bounds, no matter how large they
are, make no influences. By contrast, in the indirect approach,
all bounds β̄i’s are taken into consideration. By this, the direct
approach is always subject to a rather conservative design
of r , while the indirect approach allows a rather broad choice

FIGURE 3. Comparison of the direct and indirect approaches of bounded
control.

FIGURE 4. Vehicle with an inverted pendulum.

for the initial constraint-following error. This result is practi-
cally the limit any control theory can achieve.

VII. ILLUSTRATIVE EXAMPLE
Consider a vehicle with an inverted pendulum as shown
in Figure 4. Assume no friction exists between the vehicle
and the ground. With two generalized coordinates q = [y θ ]T

(where y is the distance from the center of gravity to the pivot,
θ is the angular rotation of the pendulum), the system can be
described as in [34]

m2g̃L sin θ − m2L2θ̈ − m2L cos θ ÿ+ τ = 0,

F − m1ÿ− m2

(
ÿ+ L cos θ θ̈ − L sin θ θ̇2

)
= 0. (58)

Here,m1 andm2 are themasses of the vehicle and the inverted
pendulum, L is the distance from the center of gravity to
the pivot, g̃ is the gravitational constant, F (the control) is
an external force imposed on the vehicle, H is a horizontal
reaction force imposed on the pendulum, and τ (the control)
is an external torque imposed on the pendulum.

A. SYSTEM MODEL AND CONTROL OBJECTIVE
The system (58) can be rewritten in the form of (1) with

q =
[
y
θ

]
, q̇ =

[
ẏ
θ̇

]
, q̈ =

[
ÿ
θ̈

]
, u =

[
F
τ

]
,

(59)

M =
[
m1 + m2 m2L cos θ
m2L cos θ m2L2

]
, (60)

C(q, q̇, t)q̇ =
[
−m2L sin θ θ̇2

0

]
, (61)

G(q) =
[

0
−m2g̃L sin θ

]
. (62)

We consider the masses are uncertai (hence σ = [m1 m2]T ):
m1 = m̄1 +1m1(t), m2 = m̄2 +1m2(t). Here 1m1,2(t) are
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the uncertain parts with bounds 1m1,2 ≤ 1m1,2 ≤ 1m1,2,
where

∣∣1m1,2

∣∣ ≤ ∣∣1m1,2
∣∣.

As the control objective for a simple illustration, we desire
to have the pendulum to be constrained by

ẏ+ θ̇ = 0. (63)

Recalling the second order form of the constraint Aq̈ = b,
we have

A =
[
1 1

]
, b = 0. (64)

B. ASSUMPTIONS VERIFICATION
To illustrate the rationality of the Assumptions 1-4, we have
following analysis, in which the argument of functions are
largely omitted. First, by analysis of the Remark along with
Assumption 3, we choose λ = 0. Second, Assumption 4 can
be met by choosing

f̄ = −kδ (65)

and

V (δ, t) =
1
2
δ2, (66)

with k > 0 a constant. Then, we have

V̇ (δ, t) =
∂V
∂t
+
∂TV
∂δ

f̄

= −kδT δ

≤ −
1
2
k ‖δ‖2 , (67)

with
∂TV (δ, t)

∂δ
= δT (68)

and

γ3(‖δ‖) =
1
2
k ‖δ‖2 . (69)

Third, for Assumptions 1-2, we have

$ (β)
π

2β̄

[
AM−1 (−Cq̇− G)− b

]
+ kδ

= $ (β)
π

2β̄
AM̄−1h. (70)

Note that β is a scalar in this illustrative example, with (13),
we have

$ (β) = sec2
(
β − β̄

2
π +

π

2

)
. (71)

Taking it into (70) we have

sec2
(
β − β̄

2
π +

π

2

)
π

2β̄

[
AM−1 (−Cq̇− G)− b

]
+kδ = sec2

(
β − β̄

2
π +

π

2

)
π

2β̄
AM̄−1h. (72)

Dividing both sides by sec2
((
β − β̄

)
π/2β̄ + π/2

) (
π/2β̄

)
,

yields[
AM−1 (−Cq̇− G)− b

]
+

[
sec2

(
β − β̄

2β̄
π +

π

2

)
π

2β̄

]−1
kδ = AM̄−1h. (73)

With b = 0, we have[
AM−1 (−Cq̇− G)

]
+

[
sec2

(
β − β̄

2β̄
π +

π

2

)
π

2β̄

]−1
kδ = AM̄−1h. (74)

With (60), (61) and (62), we have

M−1 =
1

m1m2L2 + m2
2 sin

2 θL2

×

[
m2L2 −m2L cos θ

−m2L cos θ m1 + m2

]
, (75)

M̄−1 =
1

m̄1m̄2L2 + m̄2
2 sin

2 θL2

×

[
m̄2L2 −m̄2L cos θ

−m̄2L cos θ m̄1 + m̄2

]
, (76)

and

−Cq̇− G = m2L sin θ
[
θ̇2

g̃

]
. (77)

After some calculations, we obtain

AM−1 (−Cq̇− G)

=
1

m1m2L2 + m2
2 sin

2 θL2

×m2
2

(
L3 sin θ θ̇2 − L2 sin θ cos θ θ̇2

−L2 sin θ cos θ g̃+ L sin θ g̃
)
+ m1m2L sin θ g̃ (78)

and

AM̄−1 =
1

m̄1m̄2L2 + m̄2
2 sin

2 θL2

×
[
m̄2L2 − m̄2L cos θ m̄1 + m̄2 − m̄2L cos θ

]
.

(79)

Using (78) and (79) in (74), and assuming h = [h̃ 0]T , we then
have

AM̄−1h =
m̄2L2 − m̄2L cos θ

m̄1m̄2L2 + m̄2
2 sin

2 θL2
h̃

=
1

m1m2L2 + m2
2 sin

2 θL2

×m2
2

(
L3 sin θ θ̇2 − L2 sin θ cos θ θ̇2

−L2 sin θ cos θ g̃+ L sin θ g̃
)
+ m1m2L sin θ g̃

+

[
sec2

(
β − β̄

2β̄
π +

π

2

)
π

2β̄

]−1
kδ. (80)

Let

ξ :=
1

m1m2L2 + m2
2 sin

2 θL2

×m2
2

(
L3 sin θ θ̇2 − L2 sin θ cos θ θ̇2

−L2 sin θ cos θ g̃+ L sin θ g̃
)
+ m1m2L sin θ g̃ (81)
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and

η :=
m̄1m̄2L2 + m̄2

2 sin
2 θL2

m̄2L2 − m̄2L cos θ
. (82)

With (80), aiming at h̃, we obtain

h̃ = ηξ + k
[
sec2

(
β − β̄

2β̄
π +

π

2

)
π

2β̄

]−1
× tan

(
β − β̄

2β̄
π +

π

2

)
η

= ηξ +
kβ̄
π

sin
(
β − β̄

β̄
π + π

)
η. (83)

We assume L > 1 here, such that m̄2L2 − m̄2L cos θ 6= 0.
With (83), we first have

‖h‖ =
∣∣∣h̃∣∣∣

≤ |ξ | |η| +

∣∣∣∣kβ̄π sin
(
β − β̄

β̄
π + π

)∣∣∣∣ |η| . (84)

Aiming at ‖ξ‖, with (81) and 1m1,2 ≤ 1m1,2 ≤ 1m1,2,
we obtain

‖ξ‖ ≤ ξ1ξ2 + ξ1ξ3 (85)

with the definitions

ξ1 :=
[(
m̄1 +1m1

) (
m̄2 +1m2

)
L2

+
(
m̄2 +1m2

)2 sin2 θL2]−1 (86)

ξ2 := (m̄2 +1m2)
2
∣∣∣L3 sin θ θ̇2 − L2 sin θ cos θ θ̇2

−L2 sin θ cos θ g̃+ L sin θ g̃
∣∣∣ (87)

and

ξ3 := (m̄1 +1m1) (m̄2 +1m2)L |sin θ | g̃. (88)

Then, aiming at |η|, with (82), we have

|η| =
m̄1m̄2L2 + m̄2

2 sin
2 θL2∣∣m̄2L2 − m̄2L cos θ
∣∣ . (89)

Using (85) and (89) in (84), yields

‖h‖ ≤ (ξ1ξ2 + ξ1ξ3) |η|

+

∣∣∣∣kβ̄π sin
(
β − β̄

β̄
π + π

)∣∣∣∣ |η|
=: ρ. (90)

Note that, we choose ρ as in (90). Recalling the definition of
ḡ, we have

ḡ = sec2
(
β − β̄

2β̄
π +

π

2

)
π

2β̄
AM̄−1

=
π

2β̄

sec2
(
β−β̄

2β̄
π + π

2

)
m̄1m̄2L2 + m̄2

2 sin
2 θL2

×
[
m̄2L2 − m̄2L cos θ m̄1 + m̄2 − m̄2L cos θ

]
. (91)

FIGURE 5. Performance of the constructed system (23).

Lastly, we obtain the control as (29) as

u(t) = −λḡT
∂V
∂δ
ρ2

= −
λρ2π

2β̄

sec2
(
β−β̄

2β̄
π + π

2

)
tan

(
β−β̄

2β̄
π + π

2

)
m̄1m̄2L2 + m̄2

2 sin
2 θL2

×

[
m̄2L2 − m̄2L cos θ

m̄1 + m̄2 − m̄2L cos θ

]
. (92)

For comparison, we choose the nominal control as

ũ(t) = −κ ḡT δ, (93)

where ũ = [F̃ τ̃ ], and κ is a constant.

C. SIMULATION RESULTS
For simulations, three different classes of uncertainties,
namely constant, high frequency and random number, are
adopted here. We choose a single uniformly distributed ran-
dom number X in the interval (0, 1), and then select

m1 = 1+ 0.2 sin 10t + 0.2X ,

m2 = 0.5+ 0.1 sin 10t + 0.1X ,

m̄1 = 1, m̄2 = 0.5, 1m1 = 0.2,

1m1 = −0.2, 1m2 = 0.1,

1m2 = −0.1, L = 5, g̃ = 9.8, k = 1,

λ = 0.01, β̄ = 1.5, κ = 1.6. (94)

Further, we take the initial conditions

y(0) = 0, θ(0) = 0, ẏ(0) = 2, θ̇ (0) = −1, (95)

and define the control effort as

S =
∫ T

0
‖β‖ dt (96)

for performance comparison.
Figure 5 shows the performance of the constructed sys-

tem (23) under the action of the robust control (29). It can be
seen that state δ of the constructed system (23) approaches
to a desirable neighborhood close to 0 before t = 0.26.
Figure 6 shows the performance comparison of the original
system (1) with the robust control (29) and the nominal
control (93), while Figures 7-8 show the comparison of their
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FIGURE 6. Comparison of the performance of the original system (1).

FIGURE 7. Comparison of the control F and F̂ .

FIGURE 8. Comparison of the control τ and τ̂ .

FIGURE 9. Relationship between β̄, the control effort S and the maximum
control û.

control inputs F to F̃ and τ to τ̃ . By comparison, we find
that although these two controls give out almost the same
maximum control input of F = 10, the control effect is very

different: with the robust control, the constraint-following
errorβ always keeps in the previously given range of β̄ = 1.5,
and approaches to a desirable neighborhood close to 0 at the
same time as δ approaches to its desired range (i.e., before
t = 0.26) eventually; whereas, with the nominal control,
the constraint-following error β goes out of that given range.
It demonstrates that the proposed robust control not only
can realize approximate constraint-following, but also can
realize bounded control. Furthermore, Figure 9 shows the
relationship between β̄, the control effort S and the maximum
control û. It presents that the maximum control output û and
the control effort S increase as β̄ increases.

VIII. CONCLUSION
A creative indirect approach of constraint-following con-
trol is proposed for uncertain mechanical systems. The sys-
tem’s uncertainty is (possibly fast) time-varying. The main
objective is to design a control to guarantee that the
constraint-following error is bounded in two ways: (i) the
constraint-following error lies within a desirable bound for
all time; (ii) the constraint-following error eventually enters
a small region after a finite time and remains there thereafter.
To accomplish this, the original system is creatively trans-
formed into a constructed system by a one-to-one smooth
diffeomorphism. A robust control is then designed to render
the constructed system uniformly bounded and uniformly
ultimately bounded. It is further proven that in such case
the original system renders the desirable performance; hence,
the task is indirectly realized. The major advantage of this
indirect approach, comparing with the past direct approach, is
that themagnitude of the initial constraint-following error can
be large. On the other hand, the past direct approach requires
the magnitude of the initial error to be sufficiently small. Our
result in terms of the allowable bound for the initial error is
practicably the limit any theory can achieve.
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