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ABSTRACT Object tracking is one of the most fundamental and important fields in computer vision with
a wide range of applications. Although great progress has been made in object tracking combined with
detection, there is still enormous challenges in real-time applications and for the computer cannot effectively
capture the temporal correlations of targets and background clutter. In order to improve the performance of
tracking algorithms under complex unconstrained conditions, we propose a novel tracking framework based
on adaptive detection, called adaptive detection tracking (ADT). First, we exploit the temporal correlation
of the recurrent neural network to predict the target’s motion direction and efficiently update the region
of interest (Rol) in the narrow range of the next frame. Then, the algorithm utilizes the correlation filter
to initialize the defined region of interest based on the threshold. If the Interaction of Union (IoU) of the
predicted bounding box and the groundtruth bounding box is greater than the set threshold, the predicted
bounding box will be directly output as the tracking results, whereas the detection is adaptively carried out
in the determined Rol. Finally, the predicted bounding box refines the direction model as the input of the
next frame to complete the whole tracking flow. Our proposed adaptive detection tracking mechanism can
efficiently realize non-frame-by-frame adaptive detection with excellent tracking accuracy and is more robust
in the unconstrained scenes, especially for occlusion. Comprehensive experiments demonstrate that our
approach consistently achieves state-of-the-art results and runs in real-time on six large tracking benchmarks,
including OTB100, VOT2016, VOT2017, TC128, UAV123 and LaSOT datasets.

INDEX TERMS Recurrent neural network, adaptive detection, object tracking, correlation filtering, model

compression.

I. INTRODUCTION

Generally, object tracking utilizes the bounding box of the
target to predict the target’s position and the whole trajectory
in the subsequent frames, which has been widely used in var-
ious aspects of human daily life and military security [1], [2].
After sustainable development from the classic Kalman filter
[3], particle filter [4], meanshift algorithm [5] to correlation
filter [6] and deep-learning based algorithms [7], more and
more excellent trackers have been proposed and achieved
more robust performance in the large tracking benchmarks.
However, most of the current datasets generally focus on
the specific challenges of the visual tracking. In complex
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unconstrained conditions, there are still numerous interfer-
ence factors including camera dithering, scale variance,
target occlusion and so on [8]. At the same time, most of
the existing trackers have limited tracking speeds, and jam-
ming phenomenon of the video is obvious during tracking.
Therefore, the temporal information between adjacent frames
should be considered to better establish the location relation-
ship of the target to reduce the dependency on object detection
and the computational cost. Our previous work [9] has already
developed a direction model, which can effectively narrow
down the search area of the target in the next frame. How-
ever, our previous tracker [9] based on frame-by-frame object
detection significantly slowed down the tracking speed. How
to realize the non-frame-by-frame adaptive detection in real-
time application and avoid boundary effect and motion shift
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is still a problem. Meanwhile, the tracking performance will
be challenged by partial or fully occlusion with degressive
performance.

Here, a novel object tracking algorithm is proposed by
adaptive detection, called adaptive detection tracker (ADT).
First, the temporal correlation based on recurrent neural
network is exploited to predict the motion direction of the
next frame and the region of interest (Rol) is determined
along this direction. Then, the adaptive tracker developed
from correlation filter and the direction prediction model is
proposed, which is initialized by the predicted Rol. When
the ToU of the predicted bounding box and the groundtruth
is greater than the set threshold, the predicted bounding
box will be directly output as the tracking results. Finally,
the results of adaptive detection model are transmitted to the
direction prediction model, which updates as the input of
the next frame, for refining the whole tracking. As shown
in Figure 1, our proposed algorithm effectively combines
the adaptive detection module, which can adaptively real-
ize object detection based on the variances of object and
scene, compared with our previous frame-by-frame detec-
tion tracking mechanism. The improved algorithm can effec-
tively take a trade-off between the speed and accuracy.
The main contributions in this paper are summarized as
follows:

1) Adaptive detection: we propose a novel adaptive
detection mechanism to realize non-frame-by-frame
detection, which can further update and localize an
adaptive bounding box in real-time tracking as the
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object changes shape and size in complex uncon-
strained conditions.

2) Occluded robustness: our proposed tracker combined
with direction prediction model and correlation filter,
which can make full use of temporal reliability and
spatial effectiveness to highlight the importance of the
motion state overtime, especially for heavy occlusion.

3) Superior performance: extensive experiments con-
ducted on six large tracking benchmarks, namely
OTB100 [10], TC128 [11], UAV123 [12], VOT2016
[13], VOT2017 [14] and LaSOT [15] datasets, demon-
strate that our proposed algorithm obtains better per-
formance in accuracy and efficiency compared with the

state-of-the-art algorithms.
The rest of this paper is organized as follows. We sur-

vey related works on detection and tracking in Section 2.
Our adaptive detection tracking framework is described in
Section 3. The following Section 4 contains the experimental
evaluations and results. Finally, we conclude the paper in
Section 5.

Il. RELATED WORK

Since the key point of this paper is tracking based on adaptive
detection, we provide a brief review on two aspects, which
can be roughly categorized as object detection and object
tracking.

A. OBJECT DETECTION
With the emergence of convolutional neural network (CNN),
deep learning methods have been proposed to object
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detection [16] on many challenging datasets, which can be
divided into two categories. One focuses on improving accu-
racy, called two-stage detection algorithm, while the other
focuses on speed, called one-stage detection algorithm.

Two-stage detection first extracts several candidate regions
from an input image, then obtains convolution feature using
CNN [17], and finally classifies and regresses each can-
didate region. One representative method, called R-CNN
[18], extracted about 2k candidate regions by the traditional
method and obtained convolution features on each candidate
region by CNN, which is 19% mAP higher than the best
traditional detector. Due to disadvantages of complex region
selection and feature repeated extraction, SPP-Net [19] pro-
posed a pyramid pooling layer to extract features on the whole
image and was 170 times faster than RNN. Fast R-CNN [20]
changed the feature pyramid pooling layer into Rol pooling
layer and put the classification and regression into an end-
to-end network for training. Faster R-CNN [21] proposed
Region Proposal Network (RPN) to extract the candidate
region of an image. RPN and detection network shared con-
volution layer, and the 73.2 mAP detection accuracy and
5 fps detection speed were achieved. Object detection for
3D images is also proposed to many areas such as industrial
processing. For example, an effective microscopic detection
method based on the form-invariant [22] was proposed to
detect the brain section of three-dimensional imaging, which
can effectively realize the automated silicon-substrate ultra-
microtome (ASUM). Although Faster R-CNN had made
great improvement in the detection speed, the accuracy is
improved at the expense of the algorithm’s speed. Therefore,
one-stage algorithms have emerged.

One-stage detection algorithm utilizes an end-to-end net-
work to classify and locate targets directly without region
proposal. Thus, it has more advantages in the computational
speed. YOLO [23] and SSD [24] were the two most rep-
resentative methods. YOLO transformed the classification
problem into a regression problem, and only used a CNN
network to directly predict the category and location infor-
mation of different targets. However, the number of positive
and negative samples in training was extremely unbalanced,
which resulted in the low accuracy of the training model. Two
improved algorithms for YOLO were proposed successively,
namely YOLO v2 [25] and YOLO v3 [26]. The accuracy of
YOLO v2 is improved by 15.2% compared with YOLO, and
the detection effect of YOLO v3 on small targets was much
better than YOLO. On the other hand, SSD combined the
regression of YOLO and anchor mechanism of Fast R-CNN
to obtain target location and category information. The dif-
ference is that YOLO only used the top-level feature map
for classification and regression, while SSD used the feature
pyramid structure for detection. Thus, SSD can improve the
detection performance of small targets due to multi-scale
object detection. Some improved methods based on SSD
were also proposed, such as RON [27] and DSOD [28].
Although the one-stage detection algorithm can achieve real-
time detection speed, the accuracy still needs to be improved
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due to the extremely unbalanced number of positive and nega-
tive samples. In addition, sufficient shallow feature extraction
drops the detection effect for small targets.

B. OBJECT TRACKING

We discuss the trackers, which can be roughly categorized as:
correlation filter trackers and deep learning trackers. In addi-
tion, we have also summarized the similar tracking methods
combined with detection, e.g. region proposal methods.

1) CORRELATION FILTER TRACKERS

KCF algorithm [6] is one of the most classical trackers based
on correlation filter. KCF took full advantage of the property
that cyclic matrix can be diagonalized by Fourier matrix,
and converted the matrix operation into Hadamad product to
reduce the computational complexity. SRDCF [29] improved
the boundary effect caused by the periodicity assumption of
cyclic matrix. Deep SRDCF [30] replaced hand-craft features
with CNN features to improve the tracking performance.
C-COT [31] utilized deeper multi-layer convolution features
and a continuous spatial interpolation conversion to solve
the problem of different resolution. ECO algorithm [32],
developed from C-COT, changed the model update strategy
to sparse updating for reducing the model size and sample set
size. The above tracking methods based on correlation filter
can be divided into two categories: ones based on hand-craft
features, such as KCF, SRDCF, CSF [33] and Staple [34];
ones based on CNN features, such as Deep-SRDCF, C-COT
and ECO, etc. The former ones are fast but have yet to be
improved in accuracy, while the latter ones are excellent in
performance but the speed is low.

In order to overcome the challenges above, recently, more
improved correlation filter algorithms have been proposed for
object tracking. Background aware correlation filter (BACF)
for robust tracking [35] was presented to improve the location
of targets with higher precision in complex scenarios. A novel
approach to repress the aberrances happening during the
detection was presented, called aberrance repressed correla-
tion filter (ARCF) [36], which outperformed other 20 state-
of-the-art trackers based on discriminative correlation
filter (DCF) on different UAV datasets. However, the above
methods only demonstrate the top performance on some
specific datasets, lack of the versatility testing on the dif-
ferent datasets. Although the adaptive spatially regularized
correlation filters (ASRCF) [37] was favorably against many
current algorithms, two CF models within them estimated the
location and scale separately, thus making the tracker slower
than the other CF methods.

2) DEEP LEARNING TRACKERS

In 2013, Deep Learning Tracking (DLT) [38] was first pro-
posed by Wang er al. The general target feature was obtained
by pre-training and tracking model with a large-scale dataset.
The model had stronger classification performance by fine-
tuning the pre-train model with limited training data. Repre-
sentative algorithms of object tracking based on deep learning
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include CNN-SVM [39], FCNT [40], MDNet [41], TCNN
[42], SiamFC [43], [44] and so on. Accurate Tracking by
Overlap Maximization (ATOM) [45] consisted of dedicated
target estimation and classification to guarantee high dis-
criminative power in presence of distractors. Bhat et al. [46]
proposed an end-to-end architecture, called Discriminative
Model Prediction (DiMP) for tracking to fully exploit both
target and background appearance information. However,
most tracking algorithms based on CNN does not have satis-
factory support for temporal correlation. The location infor-
mation of previous frames holds the key to predicting the
target location in the next frame and improving the tracking
performance.

Therefore, many scholars introduce the recurrent neural
network into object tracking, such as RTT [47], ROLO [48],
SANet [49] and so on. Huang et al. [50] proposed a Bidi-
rectional Tracking for tracking based on recursive orthog-
onal least squares to update model strategy for model drift
problem. However, the original RNN [51] has encountered
vanished gradient problem when the image sequence is too
long, which may hinder information learning spanning over
a long sequence. Yan et al. [52] developed an algorithm
for robust long-term tracking, called ‘“Skimming-Perusal”
Tracking (SPLT), which can effectively choose the most pos-
sible regions from a large number of sliding windows. Simul-
taneously, the tracking performance is largely dependent on
the object detection, so the bottleneck of detection limits the
improvement of object tracking.

3) TRACKING COMBINED DETECTION

Currently, many advanced object tracking methods related to
region proposal and detection have been proposed to improve
the robustness of object tracking, including KCF, Siamese
network and so on. A fast and robust approach [53] was first
presented by integrating an adaptive object detection within
a kernelized correlation filter (KCF). Li et al. [54] presented
a novel gradient-guided network (GradNet) to capture the
temporal variations of targets and background and updated
the template in the Siamese network. To achieve accelerated
tracking, Siamese region proposal network (Siamese-RPN)
[55] was also proposed for feature extraction and region
proposal prediction, which had reach at 160 fps with supe-
rior performance on the VOT datasets. Increasing deeper
and wider Siamese network (SiamDW) [56] was also pro-
posed for real-time visual tracking, which can effectively
control receptive field size and network stride. In order to
solve similar distractors and large variation, a multi-stage
tracking framework [57], namely Siamese Cascade RPN (C-
RPN), was proposed to make location more accurate. Li
et al. [58] further developed a simple yet effective spatial
aware sampling strategy for the Siamese tracking with very
deep networks (SiamRPN+-+), which can successfully train a
ResNet-driven tracker with significant performance improve-
ment. For real-time scale and angle estimation, a one-shot
Siamese network [59] utilized a single search network to
estimate the target bounding box. Xu et al. [60] utilized the
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fine-tuning Alexnet to train the Siamese network of fused
response map and weighted the fusion of score map for
feature extraction and performance improvement. Although
a large number of works focus on improving the accuracy
and robustness of object tracking with detection and have
achieved great progress, how to take a trade-off between the
speed and accuracy of temporal related update on the different
datasets under complex unconstrained conditions has not yet
been fully resolved and need long-term studies, especially for
heavy occlusion.

1ll. ADAPTIVE DETECTION TRACKING

In order to reduce the dependency of target detection
and overcome occlusion, we propose a novel object track-
ing framework, called adaptive detection tracking (ADT),
as shown in Figure 2. First, given an initial frame of target
video, the target’s motion direction of the next frame can
be obtained by the direction prediction module [9]. Then,
the region of interest (Rol) is determined along this direction,
that is, the rough positioning of the target for adaptive detec-
tion. Next, Rol serves as the input of the adaptive detection
module, and the output includes the precise location and
category information of the predicted target. In the adaptive
detection module, the correlation filter is initialized with the
Rol instead of directly detecting the Rol. If the IoU of the
predicted bounding box of the trained correlation filter and
the groundtruth is greater than the threshold, the tracking is
treated as to be successful. The results of correlation filter
prediction are transmitted back to the direction prediction
module to complete the whole tracking. If the IoU is less than
the threshold, the detection will be carried out adaptively and
the prediction results obtained by the detection module will
be sent back to the direction prediction module to complete
the tracking. Here, we will introduce the details of our pro-
posed framework, including the adaptive detection module,
correlation filtering module and detection module.

A. ADAPTIVE DETECTION MECHANISM

The trackers based on correlation filter can transform the
complex matrix into Hadamad product of vector with real-
time tracking. Simultaneously, when the target is heavily
occluded, the online update mechanism of correlation filter is
used to extract a frame in the historical template to determine
the occluded target position of the next frame. Therefore,
we combine the correlation filter tracker with the direction
prediction module and propose a novel adaptive detection
tracking mechanism as shown in Figure 3, which enables
the object detection in a non-frame-by-frame manner. It not
only improves the tracking accuracy under the heavy occlu-
sion, but also further improves the efficiency of the tracking
algorithm. The adaptive detection module consists of Rol
determination module proposed by our previous research [9],
correlation filter module and detection module. The correla-
tion filter module and detection module in the adaptive detec-
tion tracker will be discussed in the following subsections.
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B. CORRELATION FILTER MODULE

The original trackers initialize the correlation filter with the
patch of the target position in the first frame for model
training. Then, the predicted position for each subsequent
frames is updated to the position of the response peak, and
a new correlation filter is trained at the new position. How-
ever, the significant deformation or occlusion caused by the
target’s fast motion will result in drift and boundary effect as
shown in Figure 4. We propose an improved correlation filter
strategy by adding a template correlation. That is, the target
position coordinates predicted by the previous frames are
used to predict the motion direction of the target in the next
frame, and then Rol determined by the direction is used to
train the correlation filter of the frame. Therefore, the motion
state information of the previous frame will help correct the
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tracking drift and improve the track performance as illustrated
in Figure 5.

On the other hand, the predicted Rol is treated as the target
region, and the cyclic shift operation of correlation filter is
applied to the target region to obtain different training sam-
ples. If the occluded part of the target does not exceed 20% of
the whole target size, and the currect frame is used to detect
the next frame, and the model parameters are updated through
the online update mechanism. The online update model can
be written as,

Ol=(1—ﬂ)‘06pre+/3'01x, (1)

where « is a vector of coefficients, 8 is a constant, o, is
trained in the previous frames respectively. Then, the cur-
rent frame is returned to the direction prediction model to
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complete the whole tracking. If the target is heavily occluded,
we abandon the current frame and sample the video frames in
the historical template. The sampled frame is used to update
the model parameters to predict the target position of the next
frame. Then, the sampled frames are returned to the direction
prediction model to complete the whole tracking. The flow
of correlation filter module is shown in Figure 6. Due to the
online update and template correlation mechanisms, our pro-
posed correlation filter module demonstrates more robustness
for the scene when the target deforms or drifts.

C. DETECTION MODULE

Based on our previous research [9], we find that SSD does not
only have high accuracy, but also achieves real-time detec-
tion speed on single object detection. However, the back-
bone of the original SSD detection network is VGGNet
[61], which has a large number of parameters with informa-
tion redundancy. In order to further enhance the detection
efficiency, we introduce the lightweight network ShuffleNet
[62], instead of VGGNet, which has the smallest classifica-
tion error among the different model compression algorithms
as shown in Table 1. First, the input feature gragh is grouped
convoluted, and then channel shuffle is used to communicate
information between channels. Next, 3*3 depthwise convo-
lution is utilized for reducing parameters. When the stride is
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equal to 2, the number of channels increases while the size
of the feature map decreases, resulting in the mismatch of
the input and output dimensions. ShuffleNet takes the mean
pooling for the original input, so as to obtain the feature map
with the same size as the output. And then, we concat the
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TABLE 1. Classification errors of different model compression algorithms
with the same complexity, where the complexity is 140 MFLOPS.
ShuffleNet has the lowest classification error under the same complexity.

algorithm Classification error
VGG-like [62] 50.7
ResNet [64] 37.3
Xception-like [65] 33.6
ResNeXt [66] 333
MobileNet [67] 36.3
ShuffleNet [63] 32.4

feature map with the output to reduce the computational com-
plexity and parameter size. In addition, our SSD-ShuffleNet
is also a full convolution network and four convolution layers
are added behind the ShuffleNet. Classification and regres-
sion are conducted by combining shallow and deep features.
The original conv4s, conv7(fcT), conv6,, conv,, conv8; and
conv9, convolution layers are replaced by the six feature
layers of conv12, convl4,, convl5;, convl6,, convl7, and
convl8,, as shown in Figure 7. As a result, our proposed
detection module can be effectively applied to various hard-
ware platforms due to the lower demand for the storage space
and computational resources.

IV. EXPERIMENTS

To validate the effectiveness and efficiency of our proposed
algorithm for object tracking, we carry out extensive exper-
iments with comparisons to state-of-the-arts methods on six
different large-scale datasets, that is OTB100 [10], VOT2016
[13], VOT2017 [14], UAV123 [12], TC128 [11] and LaSOT
[15] datasets, covering challenging scenarios, including scale
variations, occlusions, background cluster and fast motion as
shown in following subsections. In our experiment design,
the training and verification experiments of the network is
conducted under Linux Ubuntu (16.04) system. The configu-
ration of the machine is shown in Table 2. First, the direction
prediction model is implemented in Python using Tensorflow
developed from our previous research [9]. Then, adaptive
detection model is implemented in C4+ using Caffe with
eight cores of 3.4GHz Inter Core i7-3770 and NVIDIA
TITAN X GPU. The dimensions of hidden layers of LSTMs
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TABLE 2. Machine configuration for network training and validation
experiments.

Hardware | Number Model
GPU 3 NVIDIA TITAN-X
CPU 1 Inter®Xeon®ES5-2630 V3@2.4GHz

are 128. The learning rates of LSTMs are initialized to be
0.001 and decay exponentially with the rate of 0.9. The
parameters of detection model are set to the same as the
literature [24]. Finally, we provide the visualized qualitative
analysis of our approach with comparison to the existing
tracking methods.

A. FRAMEWORK IMPLEMENTATIONS

First, OTB100 [10] is used to test the performance of the
object tracking network model based on motion direct pre-
diction [9] with model compression. The performance is
compared with the state-of-the-art trackers. The precision
plots and success plots are shown in Figure 8 and Figure 9.
To evaluate whether the model compression method is benefi-
cial for reducing model parameters and speeding up the detec-
tion speed, the comparative experimental analysis of running
time is carried out as shown in Table 3. The experimental
results demonstrate that the tracking algorithm based on the
motion prediction model with ShuffleNet achieves accuracy
0f 0.834 and success rate of 0.629. At the same time, the speed
of our improved algorithm is 7 fps faster than our previous
one [9]. It is proved that our method with model compression
helps reduce model parameters and improve the detection and
tracking speed.

B. ADAPTIVE THRESHOLD SELECTION

As discussed above, it is necessary to determine the IoU
threshold of a predicted bounding box and the groundtruth
bounding box. Therefore, we carry out the experimental anal-
ysis on the accuracy of trackers with different thresholds. The
value range of « is 0.1-1.0 and the interval is 0.1. As shown
in Table 4, « = 0.0 means that the correlation filter is initial-
ized completed by the determined region of interest and the
response peak position is the location of the predicted target,
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TABLE 3. Comparison of running times among different trackers. Runtime is the processing time of forward propagation of an image. The unit is fps.

Tracker Ours-A Ours-P Struck | ROLO KCF SiamFC TCNN MDNet
Runtime 48 41 21.4 35 172 58 1.5 1
Tracker ARCF | ASRCF | ATOM | DiMP | SiamRPN | SiamRPN++ SPLT GradNet
Runtime 15.3 28 30 40 32 35 25.7 80

TABLE 4. Accuracy comparison of object tracking algorithm based on adaptive detection for different « values. The value of « is 0.0, which means that
the correlation filter is initialized completely by the determined region of interest, and the response peak position obtained is the location of the
predicted target. And the value of « is 1.0, which means that detects directly in the region of interest.

a 0.0 0.1 0.2 0.3 0.4

0.5 0.6 0.7 0.8 0.9 1.0

Precision | 0.729 | 0.766 | 0.802 | 0.829

0.843

0.858 | 0.861 | 0.869 | 0.857 | 0.841 | 0.834

Precision plots of OPE
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FIGURE 8. Precision plots for all 50 sequences. The proposed tracker
(purple) outperform state-of-the-art systems, such as TLD and Struck. The
numbers in the legend indicate the representative precision at 20 pixels
for precision plots.

rather than detecting in the region of interest. « = 1.0 means
that the predicted bounding box is exactly coincident with
the groundtruth bounding box, that is, the tracking algorithm
detects directly in the region of interest. When « is less than
0.7, the accuracy increases as « increases. When « is greater
than 0.7, the accuracy decreases as « increases. Therefore,
o = 0.7 is selected as the threshold of IoU for adaptive
detection with the highest accuracy.

C. EVALUATION ON THE DIFFERENT DATABASES

In this subsection, we compare the performance of our pro-
posed method with state-of-the-arts trackers. We evaluate
our algorithm based on the selected videos on recent bench-
marks, including OTB100 [10], TC128 [11], VOT2016 [13],
VOT2017 [14], UAV123 [12] and LaSOT [15], which con-
tains various complex environmental scenarios.

1) OTB100 DATASET

The OTB100 dataset [10] is one of the most popular
benchmarks, which consists of 100 challenging video clips
annotated with 11 different attributes, which contains par-
tial or complete occlusions, background illumination varia-
tions, fast motion target and so on. Figure 10 illustrates the
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FIGURE 9. Success plots for all 50 sequences. The proposed tracker
(purple) outperforms state-of-the-art systems, such as TLD and Struck.
The numbers in the legend indicate the area-under-curve scores for
success plots.

tracking results from five test videos based on our adaptive
detection tracking. The precision plots and success plots
shown in Figure 11 and Figure 12 presents the superiority
of our proposed algorithm qualitatively over other trackers,
including TLD [61], ROLO [48], TCNN [42], MDNet [41]
and other traditional tracking algorithms. In order to evaluate
the computational efficiency of our proposed algorithm, com-
parative experimental analysis of frame rate is carried out, and
the experimental results are shown in Table 3. As illustrated
in Figure 11 and Figure 12, our proposed tracking algorithm
achieves precision of 0.869 and success of 0.645, which
is higher than our previous research [9] based on direction
prediction module and object detection. At the same time,
the frame rate of our improved method is 48 fps faster than
our previous one. Although the precision of our proposed
adaptive detection tracking is still lower than some state-of-
the-art algorithms, such as TCNN and MDNet, the tracking
speed of these methods are only 15 fps and 1 fps as shown
in Table 3. Therefore, it is proved that the correlation filter
is beneficial for improving the tracking performance, and
reducing the dependency on object detection.

In addition, we also tested the performance of KCF track-
ing algorithm with temporal prediction based on direction
prediction model (DPM). The KCF tracking algorithm with-
out DPM is initialized with the first frame of the video
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FIGURE 10. The visualization results of the samples, face (top), tiger (middle) and person (bottom), respectively.
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FIGURE 11. Precision plots for all 50 sequences. The proposed
tracker(gray) outperform state-of-the-art systems, such as TLD and
Struck. But not as good as TCNN or MDNet. The numbers in the legend
indicate the representative precision at 20 pixels for precision plots.

sequence, and the position is updated to the response peak
for each subsequent frame. The KCF algorithm with DPM
initializes the correlation filter with the determined region
of interest, and then updates the position of each subsequent
frame to the region of interest determined by DPM in the next
frame. The experimental results are shown in Figure 13 and
Figure 14. The KCF algorithm initialized by DPM achieves
the precision of 0.729 and the success of 0.576. Both are
higher than the originial KCF tracking algorithm, which
proves the importance and effectiveness of using adaptive
detection for temporal prediction.

2) VOT DATASETS

The VOT2016 and VOT2017 datasets contain 60 challeng-
ing sequences respectively with the different attributes. The
evaluation criteria in these benchmarks are the accuracy
(A), robustness (R) and expected average overlap (EAO).
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FIGURE 12. Success plots for all 50 sequences. The proposed tracker
(gray) outperforms state-of-the-art systems, such as TLD and Struck. But
not as good as TCNN or MDNet. The numbers in the legend indicate the
area-under-curve scores for success plots.

First, we evaluate the performance of our proposed tracker
with other state-of-the-arts trackers based on the randomly
selected videos, including SRDCF [29], Staple [34], Siam-
FC [43], ECO [32], SiamRPN [55], SiamDW [56], ASRCF
[37], TCNN [42], C-COT [31], on the VOT2016 database.
Table 5 demonstrates that our tracker achieves the second per-
formance among the comprehensive evaluation of the three
criteria. Although ASRCEF obtains the better results than ours,
its speed is slower than our ADT tracker as shown in Table 3.
Then, we further test the tracking results between ours and
other top trackers based on the randomly selected videos,
such as SRDCF [29], Staple [34], Siam-FC [43], SiamRPN
[55], SiamDW [56], GradNet [54], C-COT [31], ECO [32],
ASRCEF [37], on the VOT2017 database. Although the accu-
racy of our method is worse than GradNet and SiamDW, our
robustness and EAO are better than them. Compared with the
computational cost demonstrated in Table 3, our method can
achieve 48 fps for real-time applications compared with ECO
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TABLE 5. Performance evaluation on the VOT2016 [13] dataset. In this table, we compare our method with state-of-the-arts tracker. The results are
presented in terms of expected average overlap (EAO), accuracy rank (A) and robustness (R). The best three results are shown in red, blue and green

colors, respectively.

VOT2016 | SRDCF | Staple | Siam-FC | ECO-HC | SiamRPN | SiamDW | ASRCF | TCNN | C-COT | Ours
A 0.54 0.54 0.53 0.54 0.54 0.563 0.554 0.539 0.572
R 0.42 0.38 0.46 0.3 0.26 0.38 0.187 0.268 0.238
EAO 0.25 0.3 0.24 0.32 0.3 0.391 0.325 0.331 0.342
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FIGURE 13. Precision plots of KCF algorithm with and without direction
prediction model. The numbers in the legend indicate the representative
precision at 20 pixels for precision plots.
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FIGURE 15. Precision plots of our proposed tracker (Ours-A) with other
trackers on the TC128 dataset. The numbers in the legend indicate the
representative precision at 20 pixels for precision plots.
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FIGURE 14. Success plots of KCF algorithm with and without direction
prediction model. The numbers in the legend indicate the
area-under-curve scores for success plots.

and SiamDW. Thus, our method can effectively balance the
simple implementation and high accuracy with computational
efficiency.

3) TC128 DATASET

TC128 database consists of 128 annotated sequences with
more color information, which covers 11 various challenging
factors, such as scale variation, low resolution, fast motion,
in/out plane rotation, out of view, background clutter, illu-
mination variation, motion blur, occlusion and deformation.
We also utilize both success and precision plots to evaluate the
tracking performance among the different trackers, including
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FIGURE 16. Success plots of our proposed tracker (Ours-A) with other
trackers on the TC128 dataset. The numbers in the legend indicate the
area-under-curve scores for success plots.

ASRCEF [37], ARCF [36], UDT [67], DSST [68], CSRDCF
[69], SiamTri [70], TADT [71], our previous tracker and our
ADT tracker. As illustrated in Figure 15 and Figure 16, our
proposed tracker obtains the best results among all of the
compared trackers with various challenges. In addition, com-
pared with our previous tracker, our adaptive detection tracker
also has a great progress on both accuracy and computational
efficiency.

4) UAV123 DATASET

UAV123 dataset includes 123 low altitude aerial videos for
unmanned aerial vehicles with different variations of illumi-
nation, shape, scale and rotations. We choose 100 challenging
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TABLE 6. Performance evaluation on the VOT2017 [14] dataset. In this table, we compare our method with state-of-the-arts tracker. The results are
presented in terms of expected average overlap (EAO), accuracy rank (A) and robustness (R). The best three results are shown in red, blue and green

colors, respectively.

VOT2017 | SRDCF | Staple | Siam-FC | SiamRPN | SiamDW | GradNet | C-COT | ECO | ASRCF | Ours
A 0.49 0.52 0.49 0.49 0.50 0.507 0.494 0.483 0.494 0.495

R 0.97 0.69 0.44 0.46 0.49 0.375 0.318 0.276 0.328 0.315
EAO 0.12 0.17 0.24 0.24 0.23 0.247 0.267 0.28 0.234 0.241

---ARCF ASRCF ----TLD —SiamFC

(e) LaSOT
-~ MDNet

— TADT

— Ours-P

FIGURE 17. Tracking qualitative results of our method and the other six current trackers on five different datasets. (a) OTB100 dataset

(b) VOT2016 dataset (c) TC128 dataset (d) UAV123 dataset (e) LaSOT dataset.

videos to test the performance of our tracker on UAV-like
objects. We introduce the same evaluation protocol and anno-
tations the same as the literature [46]. Table 7 demonstrates
the AUC score of the compared trackers, including ECO [32],
DaSiamRPN [72], ATOM [45], CCOT [31], MDNet [41],
SiamRPN-++ [58], UPDT [73], DiMP [46] and ours. Our
tracker achieves an AUC score of 62.5%, which is lower than
ATOM and DiMP. But our tracker realizes a faster frame rate
of 18 fps and 8 fps respectively, than these two methods. Thus,
our ADT tracker can obtain the comparative result for small
UAV-like objects.
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5) LaSOT DATASET

A larger and more challenging dataset, that is LaSOT dataset
[15], is introduced to further evaluate the performance of
our ADT tracker, which is composed of 1400 large-scale,
high-quality dense annotated videos and 280 testing videos.
The average frame length is more than 2500 frames, which
is suitable for evaluating the long-term sequence tracking.
We adopt normalized precision and success as the evaluation
criteria. Table 8 shows the compared result between our
proposed tracker and other 10 state-of-the-art trackers based
on the randomly selected videos, including STRCF [74],
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TABLE 7. AUC score comparison on UAV123 dataset.

UAV123 ECO | DaSiamRPN | ATOM | CCOT | MDNet | SiamRPN++ | UPDT | DiMP | Ours
AUC score (%) | 50.6 58.6 64.4 51.3 52.8 61.3 54.5 64.3 62.5
TABLE 8. Performance comparison on LaSOT dataset.
LaSOT STRCF | SINT | ECO | DSiam | StructSiam | SiamFC | VITAL | MDNet | DaSiamRPN | ATOM | Ours
Norm. Prec (%) 34.0 354 33.8 40.5 41.8 42.0 453 46.0 49.6 57.6 55.3
Success (%) 30.8 31.4 324 333 33.5 33.6 39.0 39.7 41.5 S51.5 48.7

SINT [43], ECO [32], DSiam [75], StructSiam [76], SiamFC
[43], VITAL [77], MDNet [41], DaSiamRPN [72] and ATOM
[45], which demonstrate that our tracker outperforms most
of the state-of-the-art trackers under two protocols. Although
ATOM obtains better results than ours, its speed is slower
than ours for real-time requirement. These results demon-
strate the powerful model adaptation capability for long-term
sequences.

6) QUALITATIVE EVALUATION

We also present the qualitative comparison of our ADT
tracker against the 6 competing trackers on five differ-
ent datasets. In Figure 17(a), we can observe that tracker
is extremely adaptive to the change in partial occlusion
as well as in-plane rotation and similar appearance. For
VOT2016 dataset, it is experimentally found that all the com-
pared trackers achieve acceptable outputs for small objects
with fast motion. But tracking drift will occur in the face of
fuzzy appearance and targets interaction based on SiamFC,
TADT and TLD methods. Only our ARCF and our method
can obtain the satisfied tracking results. In Figure 17(c),
we evaluate the tracking performance on the TC128 dataset.
Almost all the other trackers fail in completely occluded,
whereas our method can effectively continue to track the
target location in subsequent frames. The tracking objects
of UAV123 dataset are mostly small targets with in/out-
plane rotation and severe occlusion. It is clear that from the
Figure 17(d) that our method has achieved good results in
these cases, while the other methods are faced with serious
tracking drift. Similarly, in Figure 17(e), we evaluate all the
trackers under scale variations, partial occlusion and out-
plane rotation. ARCF, ASRCF and SiamFC are incapable to
keep track of the object under such constraints. However, our
ADT tracker is not affected by such challenges and keep good
track of the objects. As a result, our method has good tracking
effect for different datasets and different challenges under
complex unconstrained conditions. The method has certain
data universality.

V. CONCLUSION

In this paper, we propose a novel adaptive algorithm called
adaptive detection tracking, which combined correlation filter
and our proposed direction precision module. First, the pro-
posed framework initializes correlation filter with the region
of interest by setting an adaptive threshold. When the IoU is
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greater than the threshold, the position of each subsequent
frame will be updated to the region of interest determined
by the direction prediction model. When the IoU is less
than the threshold, the detection is carried out in the region
of interest. As a result, non-frame-by-frame detection can
be realized, which not only further reduces the dependency
on object detection, but also improves the speed of object
tracking for real-time applications. Then, our proposed algo-
rithm utilizes the online update mechanism based on KCF
method. When the object is heavily occluded, the current
frame can be effectively discarded, and the effective frame
in the historical template can be used to predict the position
and return to the direction prediction model, which makes the
proposed tracking method more robust to the heavy occluded
scene. Extensive experiments on six challenging datasets
demonstrate our tracker performs favorably against state-of-
the-art trackers, which can effectively reduce computation
redundancy and improve tracking accuracy.
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