
Received February 25, 2020, accepted March 9, 2020, date of publication March 17, 2020, date of current version April 7, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2981411

A Layer-Partitioning Approach for Faster
Execution of Neural Network-Based Embedded
Applications in Edge Networks
DARREN SAGUIL AND AKRAMUL AZIM , (Senior Member, IEEE)
Department of Electrical, Computer and Software Engineering, Ontario Tech University, Oshawa, ON L1G 0C5, Canada

Corresponding author: Akramul Azim (akramul.azim@uoit.ca)

This work was supported in part by the Ontario Tech University Grant and in part by the Natural Sciences and Engineering Research
Council of Canada (NSERC) Grant.

ABSTRACT As embedded systems become more prominent in society, the technologies that run on them
must be used efficiently. One such technology is the Neural Network (NN). NN’s, combined with the
Internet of Things (IoT), can utilize the massive amounts of data produced to optimize, control, and automate
embedded systems, giving them more functionality than ever before. However, the status quo of offloading
all NN functionality onto external devices has many flaws. It forces the embedded system to entirely rely
on networks that may have high latency or connection issues. Networks may also expose them to security
risks. To reduce the reliance of IoT devices on networks, we examined several solutions, such as delegating
some NN’s to run solely on the IoT device or splitting the NN and distributing the subnetworks into different
devices. It was found that, for shallow NN’s, the IoT device itself could run the NN at a rate faster than
offloading it to an external device, but the IoT device needed to offload its inputs once the NN’s started to
increase in layers and complexity. When splitting the NN, it was found that the number of messages sent
between devices could be reduced by up to 97% while only reducing the accuracy of the NN by 3%.

INDEX TERMS Layer-partitioning, edge networks, neural network models.

I. INTRODUCTION
Embedded systems are on track to become one of the most
pervasive technologies on the market. Their power, flexi-
bility, and low price allows them to become the solution
to problems in many industries, such as manufacturing and
retail. Billions of these devices are estimated to be in use by
2020 [11]. Alongside these developments, the area of Neural
Network (NN) algorithms has also grown to new heights.
Like embedded systems, their flexibility lets them be applied
tomany areas, such as the automotive industry, forecasting [8]
or even the fine arts. Intuitively, combining the two technolo-
gies would open many new avenues for innovation.

One such advancement is the Internet of Things (IoT) [26].
By implementing embedded systems in many objects in our
lives, such as vehicles, healthcare devices, and entertainment
electronics, these devices can collect data and automate some
of their functionality [14]. They do this by using any attached

The associate editor coordinating the review of this manuscript and

approving it for publication was Yongming Li .

sensors to collect data for further analysis. Also, as embedded
systems are capable of distributing their processing power
over networks, they are capable of implementing NN’s.
Although these algorithms are computationally expensive,
such that they may drain the battery of the device or poten-
tially overheat it if used independently [20], their usage can
be hosted on remote devices such that the embedded systems
themselves do not need to process the data.

To process the data, embedded systems may use edge
networks or cloud computing to host their NN models. Edge
networks are preferred to host this data over cloud computing
due to their predictable networks latency, whereas cloud data
centers are usually too far away to provide a reliable network
latency for cyber-physical functionalities [5]. Edge networks,
however, provide the same functionality to a lesser extent
using nearby fog nodes, also known as cloudlets. Although
this reduces the variance in network latency, there is still
much to be improved in these systems.

Complete reliance on edge networks may expose embed-
ded devices with NN functionality to new issues concerning

59456 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-0690-1876
https://orcid.org/0000-0002-6292-6939
https://orcid.org/0000-0002-7542-4356

D. Saguil, A. Azim: Layer-Partitioning Approach for Faster Execution of NN-Based Embedded Applications in Edge Networks

FIGURE 1. Model of the proposed solution. It consists of a NN model encapsulated inside of a manager which handles its inputs and outputs.

networking. First, without a reliable connection to wireless
networks, or if their wired connection were to be severed,
these devices would lose some or all of their functionality
[25]. Even with a wireless connection, their communications
may lose quality at unpredictable times, making the entire
system unpredictable. Secondly, by frequently sending data
over networks, these devices add themselves to the attack sur-
face of the whole system. For example, the Hospira LifeCare
PCA3 and PCA5 computerized infusion pumps were recalled
due to a US Federal Drugs Administration report showing
that these devices could be remotely accessed by potential
attackers [2]. Lastly, data transmission over networks are one
of the most energy-consuming tasks of embedded systems
such that it might be more energy efficient to run NN’s on
the device itself [4].

Although embedded systems have increased in power over
time, they may still not have the resources to run NN’s inde-
pendently. To consistently meet real-time deadlines, embed-
ded devices may have to run smaller and simpler NNmodels,
thus reducing the prediction accuracy of the model itself [36].
Also, the extra resources and development costs to run NN
models may be used to fulfill other unrelated but more impor-
tant requirements. As discussed in [6], a lower and upper
bound on accuracy can be derived from different domains.
Therefore, we propose to find possible improvements to the
status quo.

These improvements include determining if a model
should be ran locally or externally based on its dataset. Some
datasets can be ran on shallow neural networks without sac-
rificing accuracy; it is possible for shallow neural networks
while maintaining an accuracy of over 90% while running at
rates faster than transmitting to an external device as seen in
this research.

To find these possible improvements, a simulated IoT
environment was prepared along with several NN models.
We then executed each NN models using several datasets
to measure the execution time of each layer on both an
embedded system and a fog node. From this, we determined

if the model should be offloaded to the fog node at all (i.e.
the embedded system runs the model at a rate faster than the
network latency added to the fog node execution time). After
measuring the execution time of each layer on both devices,
we then plotted splitting points in each of the models and
implemented them in the following experiment phase.

In the following phase, we took each of the sub-models
from the split and distributed them amongst the IoT device
and the FogNode. An early exit mechanismwas implemented
so that the inference could stop after each sub-model if the
device was confident in that sub-model’s output. By utilizing
this, the IoT device only needs to send messages only when
they were not confident in their result, rather than every
time, thus increasing time efficiency. By performing these
experiments, the following contributions were made:
• Developed a framework that allowed users to create
several neural networks and chain them together, thus
creating a distributable NN model. This framework was
built off of TensorFlow 2.0 and also provided entropy
calculations and layer-by-layer timing analysis.

• Analyzed several datasets on several different NN mod-
els to determine which of their characteristics affected
the runtime on embedded systems the most.

• Created several distributed NN models based on previ-
ous results to analyze their improvements over purely
offloading all inputs to the fog node.

The rest of the paper is organized as follows. Section II
describes the technology in which this experiment was based
on. Section III describes the framework built to perform this
experiment. Section IV explains the materials and workflow
of the experiment. Section V explains the results of the
experiment, and Section VII describes works related to this
experiment, as well as their findings.

II. SYSTEM MODEL AND BACKGROUND
The systemmodel presented in Figure 1 was created to imple-
ment the proposed solution. The system featured a class to
create, train, and run samples through a NN model. It also

VOLUME 8, 2020 59457

D. Saguil, A. Azim: Layer-Partitioning Approach for Faster Execution of NN-Based Embedded Applications in Edge Networks

featured secondary class to contain the NN model, feed it
inputs, and send manage its outputs. These classes were
called PartialModel and ModelManager respectively.
When combined, they can create shallow NN’s that can be
chained together. Each of these smaller NN’s can then be
placed on devices on the IoT hierarchy.

A. INTERNET OF THINGS HIERARCHY
The hierarchy of IoT is displayed in Figure 2. It shows that
end devices, such as cameras and printers, can be connected
to networks that consist of fog and cloud computers through
the use of embedded systems. The Harvard Business Bureau
states that connection to external devices gives these objects
new functionality, such as the ability to monitor their environ-
ment, be remotely controlled, automate their functions, and
provide data for optimization [14]. However, these functions
are better suited to fog nodes, as the distance between an
end device to a cloud data-center may introduce too much
latency for the ‘‘seamless’’ integration of objects into the
network [23].

FIGURE 2. The hierarchy of an IoT network.

Fog nodes are a type of edge device that can provide the
services of cloud servers, but at a ‘‘grounded’’ level [37].
They are placed within closer proximity to end devices, such
that they can serve them with lower latency for real-time
applications, such as healthcare.

B. NEURAL NETWORKS
NN’s are a subset of classification algorithms that are capable
of providing classifications from a stream of data from IoT
networks. These classification algorithms are comprised of
an input layer and an output layer, as well as numerous
hidden layers in between them. The function of these layers
can vary from matrix multiplication layers to matrix reshap-
ing layers (e.g., flattening a matrix into a single-dimension

array). Every layer consists of neurons that hold the data
being analyzed as the layers perform their function on them.
In a Feed-Forward NN, the data inside each neuron is the
output from the previous layer; the data is passed forward
through all the layers until the output where a classification is
made.

Deep Learning, or Deep Neural Networks (DNN), is a
subset of machine learning that utilizes NN’s with numerous
hidden layers between the inputs and the output. The number
of hidden layers can range from 5 layers in LeNet, to over a
hundred layers in ResNet [36]. By having a large number of
hidden layers, more analysis can be done on the data, allowing
for higher prediction accuracy. The most commonly used
DNN in a server environment is the AlexNet [21], a machine
learning model used for image processing and classification.

C. MULTILAYER NETWORK USABILITY ANALYSIS
In modern ages, artificial intelligence is transforming differ-
ent real-time application domains such as the gaming indus-
try. To enhance the realism and excitement in the virtual real-
ity (VR) games, it uses multilayer deep learning approaches.
The multilayer learning approaches teach the game agent
to behave more intelligently through machine-human inter-
action in real-time. For example, convolution neural and
LSTM (Long Short-Term Memory) networks are used to
detect the objects andmovements accurately [38]. In addition,
the wireless sensor networks (WSN) or IoT networks offer a
promising computational platform for parallel and distributed
multilayer perceptron (MLP) neural networks [33].

To receive high performance in complex applications, deep
neural networks use efficient algorithms that ensures high
accuracy in the output. The deep neural networks are suitable
to model with nonlinear data with a large number of inputs.
They split the tasks of the application into a layered network
and distribute the tasks as simple elements to multiple layers.
Their main advantages are that they are easy to use, and they
can approximate any input/output map [29]. The more you
use the training data the more accurate result can be achieved.
However, meeting the high accuracy is not always the best
measure for assessing the trainingmodel.We need to consider
the recall and precision values which show the percentage
of total relevant results. Moreover, extreme training in the
multilayer approach requires a lot of effort as well.

In multilayer neural network approach, the network is hard
to train and it requires to tune a lot of parameters like the
number of hidden neurons, the number of hidden layers, error
function, learning rate, initial weight, window size, weight
decay, weight updates, and input normalization [24]. The
principal disadvantages are that they train slowly, and require
lots of training data. In [29], the authors claim that it needs
three times more training samples than network weights. It is
computationally very expensive and time-consuming to train
the model. As a result, offloading a multilayer neural network
model to an edge network can reduce the computation load
and improve response time significantly.

59458 VOLUME 8, 2020

D. Saguil, A. Azim: Layer-Partitioning Approach for Faster Execution of NN-Based Embedded Applications in Edge Networks

FIGURE 3. The setup of the task distribution for the Delegation Phase.

III. PROPOSED FRAMEWORK
As communication tasks are the most costly tasks in an edge
network, the main goal of this research was to reduce the
communication cost of performing NN inferences in an edge
network by distributing the machine learning tasks amongst
different hardware. However, there are many other factors
that can be affected when attempting to reduce the commu-
nication costs, such as the size of data transmissions and
the shape of the input samples. However, while lowering the
communication cost was the main goal, it was still imperative
that the prediction accuracy of the status quo (i.e. hosting all
machine learning tasks on external hardware) must remain
unaffected.

The contribution in this paper is that we have determined
an efficient load distribution of NN tasks for embedded sys-
tems to send to fog nodes. This was done by determining
a runtime threshold for each machine learning input and
applying this threshold during runtime. Any input which
exceeds the threshold was offloaded, allowing for an increase
in throughput in a mixed-input dataset environment. More
specifically, the following main contributions and novelty
have been achieved:

• Determined an efficient load distribution of NN tasks for
embedded systems to send to Fog Nodes.

• Determined the effectiveness of ML tasks when exe-
cuted on an embedded system and compared it to the
status quo (purely sending all NN tasks to a fog node)

• Determined how the characteristics (i.e. input dimen-
sionality and model complexity) of the NN task may
affect its throughput on an embedded system, or when
sending it to a fog node.

• Developed a test bed for these data sets to determine
their experimental throughput.

To reach this, we developed an NN framework that can
create machine learning models and distribute or split it
amongst devices. Then, the framework was used to measure

the accuracy and performance of the models in two dif-
ferent phases: The Delegation Phase and the Splitting
Phase.

A. FRAMEWORK REQUIREMENTS
In order to reach these goals, we developed a NN framework
which can create models and distribute or split it amongst
devices. In order to verify if the NN is functioning prop-
erly, we set the following requirements where the framework
must fulfill the requirements of two different phases of the
research: the Delegation Phase and the Splitting Phase.

1) DELEGATION PHASE REQUIREMENTS
In the delegation phase, we chose whether to send entire
inputs from the embedded devices to the fog nodes. This deci-
sion was based on a WCET threshold which was determined
from a validation set and prior executions. The purpose of
this phase was to determine if some ML models should be
hosted on external devices at all; embedded systems may run
these models faster than the upper bounded transmission time
meaning hosting on an external device may slow it down.
Overall, the requirements for this framework is that it must:
• Build entire NN models
• Determine the WCET of running each dataset on their
respective models on various implementations in an
edge network

• Use the same model on the embedded system and fog
node

• Get the execution time of every layer in each model

B. FRAMEWORK ARCHITECTURE
1) DELEGATION PHASE FRAMEWORK ARCHITECTURE
This phase of the research examines the status quo and any
possible improvements without making significant changes
to the models. This phase, depicted in Figure 3, consists of a
data stream sending samples to an Embedded Device. Instead

VOLUME 8, 2020 59459

D. Saguil, A. Azim: Layer-Partitioning Approach for Faster Execution of NN-Based Embedded Applications in Edge Networks

FIGURE 4. Setup of the task distribution for the Splitting Phase.

of sending the sample data directly to the fog node, it is
instead sent first to a delegator. As both the Embedded Device
and the Fog Node both contain a copy of the same model,
the delegator 108 can choose that model to send the input
sample to.

Before the delegator was implemented, a validation set was
passed through the models in two different ways: only per-
forming local inferences, only using remote inferences. This
was to compare the performance of embedded systems to the
status quo. After the validation set was processed, the follow-
ing measurements were made: the WCET for local inference
(WCETD), the upper-bound of network latency (TL), and the
WCET for inference on the fog node (TF).
Using these measurements, a WCET threshold was cre-

ated; any input that could have made the local model run
longer than this threshold should have their machine learning
tasks hosted on the remote device. The equation for this
threshold can be seen in Equation 1.

WCETT = 2 ∗ TL + TF (1)

A simple algorithm using this threshold was implemented
as the delegator to show one of its possible uses. For example,
in a resource-constrained device, such as a mobile phone or
a security camera with a microphone, may rely on more than
onemachine learningmodel to process its data. The algorithm
shown in Algorithm III-B.1 was implemented to delegate
the input samples for these devices. The delegator sends the
samples to their respective models, and decide where their
inference should have taken place.

2) SPLITTING PHASE FRAMEWORK ARCHITECTURE
The splitting phase took a different approach; it took multiple
models and chained them together as if they were a single
model. Another key difference in this phase is that the local
machine is always guaranteed to execute its local model; the
only decision the delegator made was to determine if the
result is sufficient enough for the system. Every sub-model
within the model had an exit layer where they can finish
the inference in the case of a confident result. Each of these

Algorithm 1WCET-Based Delegation Algorithm
0: procedure CheckOffloadStatus(D)
0: for every d ∈ D do
0: if WCETd ≥ WCETT then
0: sendToFogNode(d)
0: else
0: queueToLocalProcessors(d)
0: end if
0: end for
0: end procedure=0

sub-models were then distributed amongst different devices.
The full implementation is shown in Figure 4.

C. LAYER-BY-LAYER CONSTRUCTION
To complete this phase, an architecture was developed using
TensorFlow as the back end. It allowed users to develop,
train, and test consecutive models using a custom subclass of
TensorFlow’s Model class. The class was capable of adding
6 different types of layers common in CV with the abil-
ity to customize their options. The 6 layers implemented
were: Convolutional, Dense, Pooling, Activation, Flatten, and
Dropout.

1) CONVOLUTIONAL
These layers use a filter with a learned kernel that convolves
around an image. It computes the dot-product between the
filter and various parts of the image, producing a set of feature
maps. These are one of the most computationally expensive
layers in a CV model. Combined with Dense layers, they
make up 90% of a model’s computation time [21]. However,
convolutional layers have high complexity; their complexity
can be seen in Equation 2 [17], where nl is the number of
filters, sl is the size of the filter, and ml is the size of the
output.

O(nl−1 ∗ sl2 ∗ nl ∗ ml2) (2)

59460 VOLUME 8, 2020

D. Saguil, A. Azim: Layer-Partitioning Approach for Faster Execution of NN-Based Embedded Applications in Edge Networks

When an image is passed through a convolutional layer,
it will be broken down into more images based on how many
times the filter was used. Each of these new images will have
a lower resolution, but will also be focused on a smaller part
of the image, allowing for finer analysis on the image.

2) DENSE
These layers take all the neurons from the input or previous
layer and performs a dot product with it with a kernel. This
kernel contains the weights learned from training. Optionally,
biases can be added to the result as well, thus creating the
simple linear equation: y = m ∗ x + b, where m is the kernel,
and b is the bias. Although not as complex as Convolutional
layers, they can accrue a large runtime due to their multiply-
ing complexity and large number of neurons. This complexity
is seen in Equation 3, where n is the length of the input data
and m is the length of the output data.

O(nm) (3)

The dense layers implemented in this framework only
accepted flattened data (i.e. data with only a single dimension
in shape). When an array of length n is passed through the
dense layer, it will be multiplied by the kernel, which is a
matrix with a length of m and height of n. It may also add a
bias of length m, thus resulting in an output of length m. The
values inside kernel and bias are both learned during training.

3) POOLING
The above layers may produce too many features that may
affect the accuracy and runtime of the model. Therefore, it is
necessary to combine or group features using a pooling layer.
These layers run a single function across all the input data,
reducing the amount of data as well as its dimensionality.
This could potentially reduce the execution time of data
transmission as well by reducing the amount of data needed
to be sent. They can either have max or average pooling
functions.

4) ACTIVATION
Activation layers provide many different non-linear func-
tions, such as rectified-linear (relu), sigmoid, softmax, and
argmax. These functions run over all the individual neurons
in the previous layer, altering the data but retaining the shape
of the input. For example, a softmax function can be used
to determine the output of a DNN by normalizing the array.
It will make the sum of the array equal to one, making each
index of the array hold a probability that the data is of the
class at that index (e.g. a value of 0.5 at index 3 indicates that
there is a 50% chance that the input was class 4(.

5) FLATTEN
Reduces the shape of the input layer to a single dimension,
though the data itself remains the same. This is used since the
exit layers implemented in this framework only accept inputs
of a single dimension.

6) DROPOUT
Randomly makes neurons ignored during training. This is
to prevent overfitting a model (i.e. training a model to only
classify data from a specific set, rather than new sets it has
not seen before).

D. CHAINING AND LOSS AGGREGATION
After the models were created, they were placed within a
ModelManager class that takes the output of one model and
uses it as input in the next model. This essentially combines
every singlemodel into amuch larger feed-forwardNN, capa-
ble of being distributed amongst different hardware. To train
this model, the backpropagation of each model was done
individually, but each model also used the losses from each
model before it for that specific sample, as seen in Equation 4.
In this equation, L ′k is the loss to be used by the model for
backpropagation, k is the index of the layer, and w is the
weight of the model. For this research, it is assumed that all
models will have equal weights.

L ′k =
k∑
l=1

wlLl (4)

Every model also uses this same loss to train the variables
in its exit layer. This means every model has the same exit
layer shape, but different values inside of the exit layer.
To chain the models together, the output from the exit layer
is not fed into the next model, but instead the output from
the layer before the output layer (i.e. the penultimate layer)
was given. This can only work if the penultimate layer has
an output with a shape compatible with the first layer of the
consecutive model so it can be used as input.

Algorithm 2Multiple Model Training Algorithm
0: procedureModelTraining(data, label)
0: x, prediction← model0(data)
0: loss← 0
0: i← 1
0: while i < length(model) do
0: x, prediction← modeli(x)
0: loss← loss+ calculateLoss(prediction, label)
0: optimize(modeli, loss)
0: i← i+ 1
0: end while
0: end procedure=0

E. ENTROPY CALCULATION
Since every model has an exit layer, it is possible that
any model could be the final output. To determine which
model should be the final output, each model must perform
a confidence test on their output data. The confidence test
used in this research is the entropy equation as seen in

VOLUME 8, 2020 59461

D. Saguil, A. Azim: Layer-Partitioning Approach for Faster Execution of NN-Based Embedded Applications in Edge Networks

Equation 5 [36].

η(x) = −
|C|∑
i=1

x1 log xi
log |C|

(5)

This equation outputs a value between 0 and 1, where 0 is
high confidence (low entropy) and 1 is no confidence (high
entropy). For example, the entropy equation will output a
value of 1 if all elements of the probability vector are the
same, meaning the class of the sample could equally be any
one of the possible classes. The value of the entropy threshold
can be determined beforehand using a validation set; the
threshold that offers the best accuracy can be chosen as the
threshold.

F. DECISION-MAKING ALGORITHM
When the model provides the ModelManager its output,
the ModelManager will perform the entropy calculation on
the probability vector provided. It is then compared to an
entropy threshold that was determined beforehand. If this
threshold is not bypassed, the model is confident and it does
not inference any further and the output is passed to the output
layer. Otherwise, the output is transferred to the next model.
This threshold algorithm, along with the chaining algorithm
can be seen in Algorithm 3.

Algorithm 3 Confidence Testing Algorithm
0: procedure EntropyCheck(data)
0: x, prediction← model0(data)
0: i← 1
0: while entropy(y) < T & i < length(model) do
0: x, prediction← modeli(x)
0: i← i+ 1
0: end while
0: end procedure=0

G. MODEL EVALUATION
As the models were created using a custom subclass of
TensorFlow’s Model class, extra callbacks were added to the
inference functions to measure the runtime of each individual
layer. The timing of layers only occurs during the testing
phase, as it is assumed that all training will be done on
much powerful hardware, such as the cloud. In this research,
we hosted all the training computations on the fog node. The
weights of the trained models were then distributed to the
embedded device.

Finding the splitting points in each of the models is done
by finding the areas with the largest differences in consec-
utive layer runtimes. Next, the layer that the split follows
is manually chosen by their function; pooling and dropout
layers are preferred as the splitting point due to their low data
output and quick execution on embedded devices. If there
are multiple possible splitting points, then the earlier one was
chosen. Flatten layers are ignored when finding the splitting

points as they are automatically done in early exit layers if
needed.

IV. EXPERIMENTS
Using the framework and workflows described in Section III,
we devised the following experiment using several datasets
and machine learning models. This experiment was run on
the following pieces of hardware: A raspberry Pi 3 Model B
as the embedded system, and a laptop with a 7th Generation
Intelr Core i5 Processor acting as the fog node. It had 2 cores
that supported 4 threads each. The experiments were both
carried out over their respective CPUs. The framework was
implemented using Python 3.7.4 and TensorFlow 2.0. Net-
working was done using Python’s built-in socket class. The
data analysis frameworks Numpy, Pandas, Scipy/SKlearn,
and MatPlotLib were also used in the handling of large
amounts of data.

A. DATASETS USED
Four datasets were used in this experiment; each set pro-
vided ample data to create testing and training sets. Every
dataset used varied in content and dimensionality, rang-
ing from 1D arrays of data to full-colour 2D images.
These datasets are the Wall-Following Robot Navigation
dataset [16], Fashion-MNIST dataset [40], and the CIFAR-10
dataset [22].

1) WALL-FOLLOWING ROBOT NAVIGATION DATASET
This dataset which was provided by Fireire et al. was used
as a case study for this experiment. It consisted of inputs
from ultrasound sensors placed on a self-moving robot and
outputs which consisted of which of four directions the robot
should turn (i.e. Slight-Right-Turn, Sharp-Right-Turn, Move-
Forward, and Slight-Left-Turn). An important aspect of this
dataset was that it provided 3 alternate datasets with the same
outputs, but a differing number of inputs. These alternate
datasets were 2-inputs (front and left sensors), 4 inputs (front,
back, left, and right sensors), and 24-inputs (all sensors placed
on the robot). These three datasets were used to create 3 sets
of training and testing data to determine the impact of dimen-
sionality on the runtime and accuracy of the models.

2) FASHION-MNIST DATASET
The MNIST dataset was used to benchmark NN’s in many
ML related experiments. It provides 28 × 28 pixel images
of 10 different labels, and it is the task of the ML mod-
els to identify which label belongs to each image in the
test set. However, the original dataset, the Handwritten
Database, has become obsolete [40], so in this experiment the
Fashion-MNIST dataset was used. It is a drop-in replacement,
so the training, validation, and test set sizes remain the same.

This dataset was preferred provided a better challenge for
ML models; the classes appear more similar to each other
than the handwritten digits in the original dataset. As seen
in Figure 5, the classes provide much finer differences to find;

59462 VOLUME 8, 2020

D. Saguil, A. Azim: Layer-Partitioning Approach for Faster Execution of NN-Based Embedded Applications in Edge Networks

FIGURE 5. Example Images from the Fashion-MNIST data set).

the classes pullover (2), coat (4), and shirt (6) seem visually
similar but can be separated using ML models.

3) CIFAR-10 DATASET
The CIFAR-10 dataset was the last dataset to be analyzed
in this experiment. This dataset provided inputs of 32 × 32
images with 3 colour channels, making the dimensionality
of this dataset much larger than the others, and thus the
most resource-intensive to compute. However, unlike the
Fashion-MNIST dataset, the difference in classes are much
courser; the may include vegetation, mammals, and even
vehicles. This can be seen in Figure 6 where every image is
visually distinct, even those where the images are in the same
class.

FIGURE 6. Example Images from the CIFAR-10 data set.

B. MODELS USED
The models used in this experiment increased in complexity
to handle each consecutive dataset mentioned in the previous
section. There were four NN’s: the simple NN with a single
dense layer, a shallow NN with multiple convolutional layers
and a single early exit, a deep NN with multiple dense lay-
ers of increasing size, and another deep NN with a similar
structure to the previous, but with more convolutional layers.

Every model has one or more exit layers; each exit layer
consists of a flatten layer, a dense layer with the same number
of neurons as output classes, and an activation layer that uses
softmax. The structure and distribution of each of the models
can be seen in Figure 7.

Each model was trained with a batch size of 32 over
100 epochs. The first model was run on all data sets, the sec-
ond model was only used on the non-image datasets, and the
third and fourth model was only run on the image datasets.
The accuracy of each dataset on their training set can be seen
in Table 1.

TABLE 1. Prediction accuracy for every dataset on every model they were
executed on.

C. EXPERIMENTAL STRUCTURE
The experiment was ran in the delegation phase and the
splitting phase as mentioned in Section III using a testing
set from each dataset. During the delegation phase, every
model was executed completely locally and then remotely,
without any split. We then compared the results to determine
the feasibility of running machine learning models locally or
hosting it in a remote location by using Equation 1. For the
split models in this phase, we used an entropy threshold of 0
(always execute locally) and 1 (always execute remotely) for
their respective trials.

After this, the splitting phase began. The goal was to
compare the results of the previous phase to using early exits.
Not only was the execution time be compared, the accuracy
of the model was also examined for any impact as well. For
this experiment, we used the entropy thresholds of 0, 0.25,
0.5, 0.75 and 1 to find an entropy threshold that minimizes
runtime and accuracy loss.

V. RESULTS AND ANALYSIS
In this section, we discuss the implementation, results, and
key observations of the experiments described in Section IV.

A. DELEGATION PHASE
In this phase, we ran each model by itself on the embedded
system, then ran each model solely by offloading each input
to the fog node. Each experiment used a static 100 inputs for
every run which did not change throughout the experiment.
From this phase, we determined the splitting points for each
model by examining the execution time of each layer on both
devices. Table 2 shows the total runtimes of every model with
every dataset.

For the first experiment, all the datasets were run on
Model 0. It was determined that this model should not be

VOLUME 8, 2020 59463

D. Saguil, A. Azim: Layer-Partitioning Approach for Faster Execution of NN-Based Embedded Applications in Edge Networks

FIGURE 7. Structure of the NN models used in this experiment. The highlighted layers indicate that they have an early exit.

TABLE 2. Total execution times of each model with every dataset.

split since the runtime of each dataset on the model did not
exceed the threshold provided by Equation 1. For example,
the upper bound of the WCET thresholds for the Model 0
trials was 0.016 seconds; none of the datasets which ran on
Model 0 bypassed this in a single layer, as seen in Figure 8.
Therefore, this model should be executed exclusively on the

embedded system, even with the faster runtime on the fog
node.

Model 1 had a different result. Some of the executions on
the IoT device had an execution time which was approxi-
mately the same as the WCET threshold, as seen int Table 2.
This means that completely offloading or splitting this model
is a viable option when improving the total runtime. To find
the splitting point, we look at Figure 9, which shows the
layer-by-layer runtime analysis of Model 1 on the Wall-Turn
datasets. From this, we can see that there are potential split-
ting points between layers 4 and 5, as well as 6 and 7. Placing
the splitting point between layers 4 and 5 was preferred as
layer 4 was a dropout layer and was earlier in the model.

When examining Model 2, it was found that offloading
was much more effective than running exclusively on the
embedded system. Table 2 shows that the embedded system
runtime surpasses the WCET threshold for all datasets. This
is because of a major bottleneck in the model. Figure 10
shows that the major bottleneck for this model is layer 7,
a Dense layer with 128 neurons. Since layer 6 is a flatten

59464 VOLUME 8, 2020

D. Saguil, A. Azim: Layer-Partitioning Approach for Faster Execution of NN-Based Embedded Applications in Edge Networks

FIGURE 8. Layer time results for all of the datasets on Model 0.

FIGURE 9. Layer time results of the Wall-Turn datasets on Model 1.

layer, the splitting point was chosen to be layer 5 instead.
Another key observation can bemade from Figure 10; the size
of the layer’s output heavily affects its runtime. Although the
convolutional layers are more complex, the dense layer has
twice as many output neurons, making it take more than twice
as long to execute.

Lastly, Model 3 displayed a similar result. The total run-
time on the embedded system exceeded theWCET threshold,
meaning that offloading some or all of the inputs is necessary.
Figure 11 shows that the splitting points could be between
layers 5 and 6 or layers 11 and 13. For this experiment,
we chose layer 5 as it is earlier in the model and is also a
dropout layer. A second early exit was also placed at layer 11
since its execution time was large and should be avoided to
reduce runtime. Therefore, this model was partitioned into
3 sub-models, whereas the first executes on the embedded
system and the last two execute on the fog node.

B. SPLITTING PHASE
In this phase, the splitting points found in the delegation phase
were implemented. To evaluate the impact of partial inference

FIGURE 10. Layer time results of the image datasets on Model 2.

on the accuracy and runtime of the model we ran each model
multiple times with different datasets and entropy thresholds.
Since changing the entropy thresholds alters howmuch of the
model’s layers will be executed, it affects the frequency of
message transfers and accuracy of the model.

By decreasing the number of layers executed by the model,
the accuracy of the model is likely to decrease as well since
less analysis can be done on the input. This is seen in
Figure 12; the higher the entropy threshold, the more likely
there will be a drop in total accuracy. This is apparent when
observing the datasets with lower training accuracy, namely
the MNIST and CIFAR-10 datasets. The MNIST dataset on
Model 3 drops from 94.21% at a threshold of 0 to 91.62% at
a threshold of 0.5. Eventually, the drop in accuracy will even
out, as the model may not contain enough entropy to reach the
high threshold, thus reducing the number of messages being
sent between devices to zero.

When increasing the entropy threshold of the model,
we decrease the number of messages being sent between
devices, thus saving time and energy. Figure 13 shows that
there is a significant drop-off in messages sent from the
device just by increasing the threshold to 0.25. For example,

VOLUME 8, 2020 59465

D. Saguil, A. Azim: Layer-Partitioning Approach for Faster Execution of NN-Based Embedded Applications in Edge Networks

FIGURE 11. Layer time results of the image datasets on Model 3.

FIGURE 12. Effect of changing the entropy threshold on the accuracy of
the split model.

MNIST on model 2 only saw a significant decrease in mes-
sages sent from an entropy threshold of 0 to 0.25. The number
of messages sent was reduced to 3%, saving a significant
amount of time (i.e. message latency and fog node execution)
at the cost of 3.09% in accuracy.

VI. DISCUSSION
As NN’s become more commonplace, it is important that
when they are used in conjunction with IoT that they runs
at a quick, reliable, and predictable speed. Unfortunately,

FIGURE 13. Effects of increasing the entropy threshold on the messages
sent between devices.

there aremany issues whichmay affect the NN’s performance
in edge networks, such as highly variable network latency,
and possible security issues. To tackle this, we tested several
solutions, ranging from the status quo (i.e. always offloading
NN tasks to an external device) to splitting each NN model
into sub-models and executing each sub-model on a different
device in the IoT hierarchy.

To do this, a framework built off of Tensorflow 2.0 was
made to build and handle multiple models and chain them
together. An early exit system was also implemented; after
every sub-model executed, the entropy was calculated to
determine if any subsequent models should be executed.
We then used this framework on a testbed utilizing several
NN models and datasets, as well as an IoT device and fog
node. It was found that, for models with high training accu-
racy, splitting the models could decrease the number of mes-
sages between devices by up to 97%, while only sacrificing
3% accuracy.

However, not all models are capable of being split. Model 0
exhibited this behaviour since its splitting point was deter-
mined to be at the very beginning. In order to have a split
model, the model itself must be segmented with low com-
plexity layers, such as pooling or dropout layers. Therefore,
more investigation should go into structuring NN models
for performance on networks and heterogeneous hardware,
rather than just aiming for accuracy.

Additionally, the experiment performed in this paper shows
that, when in the designing embedded systems which uti-
lize machine learning, one must consider the WCET of the
ML algorithm on both the embedded system and the fog
node, as well as the average network latency. When properly
analyzed, it will become evident as to which tasks should
be offloaded, and which tasks can be performed locally.
We also proposed a WCET threshold equation in which, if a
local computation time exceeds, indicates if a task should be
offloaded to a nearby fog node to efficiently offload the tasks.

This is supported by the results of the delegation phase of
the experiment in which several different ML tasks of varying
WCETs were performed on an embedded system, fog node,
and both over Wi-Fi. The embedded system showed that it
was capable of running low complexity algorithms (MLP)

59466 VOLUME 8, 2020

D. Saguil, A. Azim: Layer-Partitioning Approach for Faster Execution of NN-Based Embedded Applications in Edge Networks

easily on its own, but heavily slowed down when performing
a complex algorithm (CNN). When offloading every ML
task to the fog node, the complex algorithm was solved in
a much faster time, but the added network latency to every
less complex task made the entire process run slower. By only
offloading the tasks that had surpassed the WCET threshold
given, it was witnessed that the system sped up its com-
putation time from 33% to 50%, depending on the original
implementation.

Many applications may have different accuracy require-
ments, for which we need to reconfigure and build the neural
network models separately. To achieve a particular accuracy,
it may not be necessary to train the multilayer model with full
phases. Therefore, the proposed approach suggests making
an early exit when any application meets its certain accuracy.
A lower bound and upper bound on accuracy requirement
can be derived for an application under different performance
requirements, which we could consider a potential future
work in this area of research.Many soft real-time applications
(e.g., virtual reality games) can be trained up to a certain level
instead of training the model for a longer time. For example.
virtual reality (VR) games demand to generate the 3D images
in real-time based on the training data. This becomes quite
challenging as theVR applications require a faster response at
the same time of training a model based on new data. In such
a scenario, our proposed layer partitioning approach can
be easily applicable because of providing a faster response
time over a slightly reduced accuracy. The tolerable accuracy
bound can be derived by analyzing the acceptable error rate
under different situations.

VII. RELATED WORKS
To process the data, embedded systems may use fog networks
or cloud computing to host their NN models. Fog networks
are preferred to host this data over cloud computing due to
their predictable networks latency and close proximity to a
majority of end devices [3], whereas cloud data centers are
usually too far away to provide a reliable network latency
for cyber-physical functionalities [5]. Fog networks, however,
provide the same functionality to a lesser extent using nearby
fog nodes [15], also known as cloudlets [31]. Although this
reduces the variance in network latency, there is still much to
be improved in these systems.

In this section, we describe possible improvements to
externally hosting machine learning models in edge net-
works. The possible improvements tackled areas such as the
method of transfer between devices, the format in which
data is transferred between devices, and the distribution of
machine learningmodels between devices. However, wemust
first look at the feasibility of running machine learning mod-
els locally on embedded systems.

One such study of locally hosting ML models was per-
formed by Zidek et al. in [41]. The experiments done in
their research consisted of utilizing an embedded systemwith
an attached camera to create a machine vision system. They
tested several machine learning system tasks, such as Support

Vector Systems (SVM), K-Nearest Neighbors (KNN), and
a multilayer perceptron (MLP). Their experiments showed
that training a fault-detecting vision system is possible, but
to varying degrees of efficiency based on the machine learn-
ing algorithm used. In terms of accuracy, the most reliable
algorithms were the Gradient Boosted Threes (GBT) and the
MLP, reaching an accuracy of up to 99.9%. In terms of speed,
it was found that KNN was the fastest with an accuracy near
that of the MLP. A key observation from this study was that
numerous machine learning models can already be deployed
on an embedded device and run with an acceptable accuracy.
However, this is only for a small dataset; analysis of larger
andmore diverse datasets will needmore complex algorithms
such as a DNN which may need external machines to host it.

The transfer of data between devices is one of the most
time and energy-consuming processes in machine learning in
an edge network [4]. Therefore, it is important to look at ways
to improve the efficiency or minimize the frequency of data
transmissions. The research done by Azar et al. in [4] shows
that the former is possible by applying lossy compression to
the data being sent. Although some data is lost in the com-
pression algorithm, the overall accuracy of the model was,
on average, unaffected but the battery life of the device could
have been extended by 27%. Another possible improvement
was examined by Jeong et al. in [20]. Instead of sending the
data itself, they enabled the device to be able to send its entire
execution state over a web app called the snapshot. They
also made another important contribution: they implemented
partial inferences to the execution.

Partial inferences are a novel development in DNN’s.
It involves distributing the many layers of a DNN amongst
numerous devices, where some layers may execute locally,
and other layers may execute remotely. After all layers have
executed, the output is returned to the device that requested
it. An example of this was studied by Kang et al. in [21],
where they developed a program which automatically finds
the layers to be remotely executed (i.e. finding a layer in
the DNN as the offload point). One important aspect of this
research was that, for some DNN’s, the size of the data to be
transmitted is reduced without any compression. This means
that, by using a partial inference, data transmissions can be
performed faster. Partial inferences can also be used to secure
privacy; without a copy of the model, any data intercepted
will be difficult for any attackers to read [20].

Partial inferences also allows for another novel advance-
ment: early exits. Early exits allow DNN’s to make a predic-
tion at an earlier layer. If the DNN is confident with the result,
then the classification can be made much earlier without
needing to execute the following layers, thus saving execution
time. This concept can be taken even further by distributing
the layers among the IoT hierarchy, where the later layers are
executed on higher devices on the hierarchy. This concept is
labeled as the Distributed Deep Neural Network, or DDNN
[36]. Using early exits in the DDNN, transmission between
devices can be foregone entirely, thus shortening the execu-
tion time and reducing the reliance on external devices [25].

VOLUME 8, 2020 59467

D. Saguil, A. Azim: Layer-Partitioning Approach for Faster Execution of NN-Based Embedded Applications in Edge Networks

In [34], the authors investigate different techniques to
make an early prediction of the accuracy of machine learn-
ing applications considering the initial error rates of sample
training data. Their proposed method trains an ensemble
of heterogeneous classifiers to estimate an upper bound of
accuracy accurately for future training data in the target
domain. Similarly, the analysis of [19], [32] and [35] show
an improvement in the prediction of cloud-enhanced decision
making to ensure maintenance, productivity, anomaly detec-
tion, monitoring [27] and product quality. In a source domain,
a classifier may perform well with the same distribution of
training and test data, but it may not performwell in the target
domain with a different distribution. Ben-David et al. [6]
propose a cross-domain transfer where the target domain has
a different distribution of training data. They investigate the
target and source error to understand the divergence between
the two domains.

Regardless of machine learning-based applications,
we have found different works that propose different archi-
tectures [30] on distributing tasks for faster execution. One
of them is the Lambda architecture that consists of three lay-
ers: batch, speed, and serving layers. Although the Lambda
Architecture [12] provides a general-purpose approach for
faster response with low latency, it has some complexity in
implementing different layers. The support and maintenance
for batch and speed layers are quite hard in complex dis-
tributed systems. In another study [1], the authors propose
a mechanism to offload machine learning-based non-critical
tasks in the cloud to avoid overloads. The survey papers [18],
[39] on mobile edge networks demonstrate why network
functions and contents are computed on edge networks.

In another study [28], the authors show a comparison
between single andmultiple hidden layer network. The exper-
imental results show that the single hidden layer network pro-
vides faster convergence to approximate linear and quadratic
functions. Moreover, the multilayer network training brings
different issues like slow convergence, time-consuming, and
local minima [9]. To get an improved result, we require to
reconfigure the model data, network weights, the sensitivity
of multilayer perceptrons [10]. However, to visualize and
analyze the total representation of multilayer networks, Man-
lio De Domenico et al. [13] present an open-source soft-
ware called muxViz that provides the insight of the networks
including the algorithms. In addition, a new multilayer graph
edge bundling technique [7] is proposed to visualize the
multilayer networks as a graph format.

VIII. CONCLUSION
As NN’s become more commonplace, it is essential that
when they are used in conjunction with IoT, they run at a
quick, reliable, and predictable speed. Unfortunately, there
are many issues that may affect the NN’s performance in
edge networks, such as highly variable network latency and
possible security issues. To tackle this, we tested several
solutions, ranging from the status quo (i.e., always offloading
NN tasks to an external device) to splitting each NN model

into sub-models and executing each sub-model on a different
device in the IoT hierarchy.

A framework built off of Tensorflow 2.0 was made to build
and handlemultiplemodels and chain them together. An early
exit system was also implemented; after every sub-model
executed, the entropy was calculated to determine if any
subsequent models should be executed. We then used this
framework on a testbed utilizing several NN models and
datasets, as well as an IoT device and fog node. It was
found that, for models with high training accuracy, splitting
the models could decrease the number of messages between
devices by up to 97%, while only sacrificing 3% accuracy.

However, not all models are capable of being split. Model 0
exhibited this behaviour since its splitting point was deter-
mined to be at the very beginning. In order to have a split
model, the model itself must be segmented with low com-
plexity layers, such as pooling or dropout layers. Therefore,
more investigation should go into structuring NN models
for performance on networks and heterogeneous hardware,
rather than just aiming for accuracy.

ACKNOWLEDGMENT
This work was supported in part by the Ontario Tech Uni-
versity Grant and in part by the Natural Sciences and Engi-
neering Research Council of Canada (NSERC) Grant. The
authors would like to thank Md. Al Maruf for assisting them
to improve the quality of the article.

REFERENCES
[1] M. A. Maruf and A. Azim, ‘‘Extending resources for avoiding overloads of

mixed-criticality tasks in cyber-physical systems,’’ IET Cyber-Phys. Syst.,
Theory Appl., vol. 5, no. 1, pp. 60–70, Mar. 2020.

[2] M. Asplund and S. Nadjm-Tehrani, ‘‘Attitudes and perceptions of IoT
security in critical societal services,’’ IEEE Access, vol. 4, pp. 2130–2138,
2016.

[3] N. Auluck, A. Azim, and K. Fizza, ‘‘Improving the schedulability of real-
time tasks using fog computing,’’ IEEE Trans. Services Comput., to be
published.

[4] J. Azar, A. Makhoul, M. Barhamgi, and R. Couturier, ‘‘An energy efficient
IoT data compression approach for edge machine learning,’’ Future Gener.
Comput. Syst., vol. 96, pp. 168–175, Jul. 2019.

[5] D. L. Beaty, D. Quirk, and J. Jaworski, ‘‘Fog computing,’’ Ashrae J., vol.
60, no. 1, pp. 68–74, Jan. 2018.

[6] S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and
J. W. Vaughan, ‘‘A theory of learning from different domains,’’ Mach.
Learn., vol. 79, nos. 1–2, pp. 151–175, May 2010.

[7] R. Bourqui, D. Ienco, A. Sallaberry, and P. Poncelet, ‘‘Multilayer graph
edge bundling,’’ in Proc. IEEE Pacific Visualizat. Symp. (PacificVis),
Apr. 2016, pp. 184–188.

[8] B. Cannas, A. Fanni, L. See, and G. Sias, ‘‘Data preprocessing for river
flow forecasting using neural networks: Wavelet transforms and data par-
titioning,’’ Phys. Chem. Earth, A/B/C, vol. 31, no. 18, pp. 1164–1171,
Jan. 2006.

[9] W. Cao, X. Wang, Z. Ming, and J. Gao, ‘‘A review on neural net-
works with random weights,’’ Neurocomputing, vol. 275, pp. 278–287,
Jan. 2018.

[10] J. Y. Choi and C.-H. Choi, ‘‘Sensitivity analysis of multilayer perceptron
with differentiable activation functions,’’ IEEE Trans. Neural Netw., vol. 3,
no. 1, pp. 101–107, Jan. 1992.

[11] G. Crespo-Perez and A. Ojeda-Castro, ‘‘Convergence of cloud computing,
Internet of Things, and machine learning: The future of decision support
systems,’’ Int. J. Sci. Technol. Res., vol. 6, no. 7, pp. 131–136, 2017.

[12] N. Marz and J. W. Henning, Big Data, Principles and Best Practices
of Scalable Real-Time Data Systems. New York, NY, USA: Manning
Publications, 2014.

59468 VOLUME 8, 2020

D. Saguil, A. Azim: Layer-Partitioning Approach for Faster Execution of NN-Based Embedded Applications in Edge Networks

[13] M. De Domenico, M. A. Porter, and A. Arenas, ‘‘MuxViz: A tool for
multilayer analysis and visualization of networks,’’ J. Complex Netw.,
vol. 3, no. 2, pp. 159–176, Jun. 2015.

[14] S. Earley, ‘‘Analytics, machine learning, and the Internet of Things,’’
IT Prof., vol. 17, no. 1, pp. 10–13, Jan. 2015.

[15] K. Fizza, N. Auluck, A. Azim, M. A. Maruf, and A. Singh, ‘‘Faster OTA
updates in smart vehicles using fog computing,’’ in Proc. 12th IEEE/ACM
Int. Conf. Utility Cloud Comput. Companion-UCCCompanion, Dec. 2019,
pp. 59–64.

[16] A. L. Freire, G. A. Barreto, M. Veloso, and A. T. Varela, ‘‘Short-term
memory mechanisms in neural network learning of robot navigation tasks:
A case study,’’ in Proc. 6th Latin Amer. Robot. Symp. (LARS), Oct. 2009,
pp. 1–6.

[17] K. He and J. Sun, ‘‘Convolutional neural networks at constrained
time cost,’’ 2014, arXiv:1412.1710. [Online]. Available: http://arxiv.org/
abs/1412.1710

[18] X. Huang, R. Yu, J. Kang, and Y. Zhang, ‘‘Distributed reputation manage-
ment for secure and efficient vehicular edge computing and networks,’’
IEEE Access, vol. 5, pp. 25408–25420, 2017.

[19] P. Jahnke, Machine Learning Approaches for Failure Type Detection
and Predictive Maintenance, Darmstadt, Germany: Technische Univ.
Darmstadt, 2015.

[20] H.-J. Jeong, I. Jeong, H.-J. Lee, and S.-M. Moon, ‘‘Computation offload-
ing for machine learning Web apps in the edge server environment,’’ in
Proc. IEEE 38th Int. Conf. Distrib. Comput. Syst. (ICDCS), Jul. 2018,
pp. 1492–1499.

[21] Y.Kang, J. Hauswald, C. Gao, A. Rovinski, T.Mudge, J.Mars, and L. Tang,
‘‘Neurosurgeon: Collaborative intelligence between the cloud and mobile
edge,’’ in Proc. 22nd Int. Conf. Archit. Support Program. Lang. Oper. Syst.
(ASPLOS), New York, NY, USA, 2017, pp. 615–629.

[22] University of Toronto, Toronto, ON, Canada. Dataset. Accessed: Mar. 25,
2020. [Online]. Available: http://www.cs.toronto.edu/~kriz/cifar.html

[23] P. Kulkarni and T. Farnham, ‘‘Smart city wireless connectivity consider-
ations and cost analysis: Lessons learnt from smart water case studies,’’
IEEE Access, vol. 4, pp. 660–672, 2016.

[24] X. L. Dencelin, and T. Ramkumar, ‘‘Analysis of multilayer perceptron
machine learning approach in classifying protein secondary structures,’’
Biomed. Res., 2016.

[25] S. Leroux, S. Bohez, E. De Coninck, T. Verbelen, B. Vankeirsbilck,
P. Simoens, and B. Dhoedt, ‘‘The cascading neural network: Building the
Internet of smart things,’’ Knowl. Inf. Syst., vol. 52, no. 3, pp. 791–814,
Sep. 2017.

[26] D. Maevsky, A. Bojko, E. Maevskaya, O. Vinakov, and L. Shapa, ‘‘Internet
of Things: Hierarhy of smart systems,’’ in Proc. 9th IEEE Int. Conf. Intell.
Data Acquisition Adv. Comput. Syst., Technol. Appl. (IDAACS), vol. 2,
Sep. 2017, pp. 821–827.

[27] M. A. Maruf and A. Azim, ‘‘Software-based monitoring for calibration of
measurement units in real-time systems,’’ in Proc. 44th Annu. Conf. IEEE
Ind. Electron. Soc. (IECON), Oct. 2018, pp. 2941–2946.

[28] T. Nakama, ‘‘Comparisons of single-and multiple-hidden-layer neural net-
works,’’ in Proc. Int. Symp. Neural Netw.Berlin, Germany: Springer, 2011,
pp. 270–279.

[29] G. Panchal, A. Ganatra, Y. Kosta, and D. Panchal, ‘‘Behaviour analysis of
multilayer perceptrons with multiple hidden neurons and hidden layers,’’
Int. J. Comput. Theory Eng., vol. 3, no. 2, pp. 332–337, 2011.

[30] I. Rebai, Y. BenAyed, and W. Mahdi, ‘‘Deep multilayer multiple kernel
learning,’’Neural Comput. Appl., vol. 27, no. 8, pp. 2305–2314, Nov. 2016.

[31] D. Saguil and A. Azim, ‘‘Time-efficient offloading for machine learning
tasks between embedded systems and fog nodes,’’ in Proc. IEEE 22nd Int.
Symp. Real-Time Distrib. Comput. (ISORC), May 2019, pp. 79–82.

[32] B. Schmidt and L. Wang, ‘‘Cloud-enhanced predictive maintenance,’’ Int.
J. Adv. Manuf. Technol., vol. 99, nos. 1–4, pp. 5–13, Oct. 2018.

[33] G. Serpen and Z. Gao, ‘‘Complexity analysis of multilayer perceptron neu-
ral network embedded into a wireless sensor network,’’ Procedia Comput.
Sci., vol. 36, pp. 192–197, Jan. 2014.

[34] J. E. Smith, P. Caleb-Solly, M. A. Tahir, D. Sannen, and H. Van-Brussel,
‘‘Making early predictions of the accuracy of machine learning appli-
cations,’’ 2012, arXiv:1212.1100. [Online]. Available: http://arxiv.org/
abs/1212.1100

[35] G. A. Susto, A. Schirru, S. Pampuri, S. McLoone, and A. Beghi, ‘‘Machine
learning for predictive maintenance: Amultiple classifier approach,’’ IEEE
Trans Ind. Informat., vol. 11, no. 3, pp. 812–820, Jun. 2015.

[36] S. Teerapittayanon, B. McDanel, and H. T. Kung, ‘‘Distributed deep neural
networks over the cloud, the edge and end devices,’’ in Proc. IEEE 37th Int.
Conf. Distrib. Comput. Syst. (ICDCS), Jun. 2017, pp. 328–339.

[37] C.-W. Tsai, C.-F. Lai, M.-C. Chiang, and L. T. Yang, ‘‘Data mining for
Internet of Things: A survey,’’ IEEE Commun. Surveys Tuts., vol. 16, no. 1,
pp. 77–97, 1st Quart., 2014.

[38] A. Varangaonkar. (Mar. 28, 2018). Deep Learning in Games—Neural
Networks Set to Design Virtual Worlds. Accessed: Feb. 19, 2020.
[Online]. Available: https://hub.packtpub.com/deeplearning-games-
neural-networks-design-virtual-world/

[39] S. Wang, X. Zhang, Y. Zhang, L. Wang, J. Yang, and W. Wang, ‘‘A survey
on mobile edge networks: Convergence of computing, caching and com-
munications,’’ IEEE Access, vol. 5, pp. 6757–6779, 2017.

[40] Zalando Research, Berlin, Germany. (2017). Dataset. Accessed: Mar.
25, 2020. [Online]. Available: https://github.com/zalandoresearch/fashion-
mnist

[41] K. Židek, A. Hošovský, and J. Dubják, ‘‘Diagnostics of surface errors
by embedded vision system and its classification by machine learning
algorithms,’’ Key Eng. Mater., vol. 669, pp. 459–466, Oct. 2015.

DARREN SAGUIL received theM.A.Sc. degree in
applied sciences from the Department of Electri-
cal, Computer and Software Engineering, Ontario
TechUniversity under the supervision of Dr. Azim.
He is a member of the Real-Time Embedded
Software (RTEMSOFT) Research Group, Ontario
Tech University, Oshawa. His main research
focuses on real-time embedded systems, cloud
computing, the Internet of Things, and machine
learning.

AKRAMUL AZIM (Senior Member, IEEE) is an
Assistant Professor with the Department of
Electrical, Computer and Software Engineer-
ing, and the Head of the Real-Time Embed-
ded Software (RTEMSOFT) Research Group,
Ontario Tech University, Oshawa, ON, Canada.
His research interests include real-time sys-
tems, embedded software, software verifica-
tion and validation, safety-critical software,
and intelligent transportation systems. He is a

Professional Engineer of Ontario.

VOLUME 8, 2020 59469

