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ABSTRACT Linear discriminant analysis (LDA) has attracted many attentions as a classical tool for
both classification and dimensionality reduction. Classical LDA performs quite well in simple and low
dimensional setting while it is not suitable for small sample size data (SSS). Feature selection is an effective
way to solve this problem. As a variant of LDA, sparse optimal scoring (SOS) with `0-norm regularization is
considered in this paper. By using a new continuous nonconvex nonsmooth function to approximate `0-norm,
we propose a novel difference of convex functions algorithm (DCA) for sparse optimal scoring. The most
favorable property of the proposed DCA is its subproblem admits an analytical solution. The effectiveness of
the proposed method is validated via theoretical analysis as well as some illustrative numerical experiments.

INDEX TERMS Linear discriminant analysis, sparse optimal scoring, `0-norm, dc algorithm.

I. INTRODUCTION
Linear discriminant analysis is a classical method for classi-
fication and dimensionality reduction in many applications,
because of its simplicity, robustness, and predictive accu-
racy [1]. A test observation with predictor is classified to the
class with centroid closest to the predictor, where distance is
measured in theMahalanobismetric using the pooled within-
class covariance matrix. The observation is then assigned to
the class having the maximum posterior class probability.
LDA has gained considerable attention due to its general-
ization performance and it has been widely used in many
real-world problems such as particle identification, epileptic
detection [2], and decision making analytic [3], etc.

There are three different ways to tackle LDA, which are
based on solving the normal model, Fisher’s discriminant
problem and the optimal scoring problem. For two-class
problems, Mai and Zou [4] established the equivalence
between the three methods which can be formulated as
constrained versions of the Fisher’s discriminant problem,
the optimal scoring problem, and a least squares formula-
tion of linear discriminant analysis, respectively, [4]–[6]. For
simple and low-dimensional data, classical LDA enjoys quite
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well performance and it is known to fail for SSS datasets
because the within-class covariance matrix of the features is
singular. Consequently, sparse discriminant techniques have
become popular due to their ability to provide increased
interpretation as well as predictive performance for SSS data,
since sparse classifier leads to easier model interpretation and
may reduce overfitting of the training data.

Feature extraction and feature selection are two important
techniques in dimensionality reduction of small samples with
high dimensions in different application fields. Feature selec-
tion removes irrelevant features and redundancy to reduce the
impact of the noise data and improve model interpretability
by choosing the important features. Embedded method is one
of feature selection method which integrates the search for
an optimal subset of features into the classifier construc-
tion. A common strategy for embedded method is to use
regularization term to induce sparsity with respect to input
features, i.e., using norm constraints on the coefficient vector.
This trick has been widely used for dimensionality reduction,
such as graph based sparse feature extraction (OGSFE) [7],
multi-class sparse discriminant analysis (MSDA) [8], sparse
linear embedding (SLE) [9], discriminative low-rank preserv-
ing projection (DLRPP) [10], sparse principal component
analysis (SPCA) [11], etc. In 2015, Mai and Zou [8] pro-
posed MSDA based on the Bayes rule formulation of linear
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discriminant analysis by using `1-norm penalty. Besides, all
discriminant directions can be found at once byMSDA.Ames
and Hong [12] proposed zero-variance sparse discriminant
analysis approach which formulates the sparse discriminant
analysis problem as an `1 penalty nonconvex optimization
problem and discriminative directions can be found sequen-
tially in the null-space of within-class scatter matrix. The
sparse optimal scoring problem (SOS) was originally intro-
duced by C. Clemmensen et al. in [5] for multi-class problem
seeking at most K − 1 sparse discriminant directions. There
are two main differences between SOS and MSDA. The first
one is that SOS imposes an elastic net penalty term (`1 plus
`2-norm). The addition of `2-norm is beneficial to the pre-
diction performance of SOS. Another difference is that SOS
finds discriminant directions sequentially while MSDA seeks
discriminant directions at once. A block coordinate descent
method for SOS was proposed by using `1 regularization [5].
In [13], S. Atkins et al. suggested two kinds new numerical
optimization schemes for solving the sparse optimal scor-
ing formulation of LDA based on block coordinate descent,
the proximal gradient method and the alternating direction
method of multipliers. Meanwhile, the per-iteration costs of
these methods were also discussed.

The most natural way to obtain sparse classifier is to
use `0-norm in the regularization term. However, problem
with `0-norm regularization term is NP-hard due to the dis-
continuous and combinatorial property of `0-norm. Hence,
the general strategy used in above literatures is to replace
`0-norm with `1-norm in order to circumvent this difficulty
[5], [13], [14]. It’s worth mentioning that Le Thi and Phan
[15] studied the optimal scoring problem with `0-norm regu-
larization term and SOS is solved alternatively by using two
continuous nonconvex approximation of `0-norm. Motivated
by [15], a new DC algorithm (DCA) will be proposed to
solve sparse optimal scoring in this paper by using a suit-
able approximation of `0-norm. Different from the algorithm
of [15], the subproblem of our new DCA is not only smooth
but also admits an analytical solution.

The paper is organized as follows. Section II briefly dwells
on sparse optimal scoring problem and proposes a new con-
tinuous nonconvex approximation of `0-norm and a block
coordinate descent method by using the new approximation.
In Section III, we state a new DC algorithm for the subprob-
lem of the alternative schemes. In Section IV, we compare our
new approximation of `0-norm with other related approxima-
tions. The main algorithm for SOS and its convergence prop-
erties are presented in Section V. The numerical experiments
are reported in Section VI, and concluding remarks are given
in Section VII.

II. SPARSE OPTIMAL SCORING PROBLEM
A. PROBLEM FORMULATION
Let X be an n×p data matrix, where the rows of X correspond
to observations inRp sampled from one ofQ classes, (Q ≥ 2).
We assume that the data has been centered so that the sample

mean is the zero vector. Optimal scoring generates a sequence
of discriminant directions and conjugate scoring vectors as
follows. Suppose that we have obtained the first k − 1 dis-
criminant vectorsw1,w2, . . . ,wk−1 ∈ Rp and scoring vectors
θ1, θ2, . . . , θk−1 ∈ RQ. The kth discriminant vector wk and
scoring vector θk can be obtained by solving the following
optimal scoring problem

min
wk ,θk

‖Y θk − Xwk‖22

s.t.
1
n
θTk Y

TY θk = 1,

θTk Y
TY θl = 0, l = 1, . . . , k − 1. (1)

where Y denotes the n × Q indicator matrix for class mem-
bership, defined by Yij = 1 if the ith observation belongs to
the jth class, and Yij = 0 otherwise.

In this paper, we will study sparse optimal scoring prob-
lem which employs regularization via the combination of
`0-norm and `2-norm, where the `0-norm is used for fea-
ture selection making model easy interpretate, and `2-norm
may reduce overfitting of the training data. As before,
suppose that we have identified the first k − 1 discrimi-
nant vectors w1,w2, . . . ,wk−1 ∈ Rp and scoring vectors
θ1, θ2, . . . , θk−1 ∈ RQ. To calculate the kth sparse discrim-
inant vector wk and scoring vector θk , we solve the following
sparse optimal scoring problem [15]

min
wk ,θk
‖Y θk − Xwk‖22 + λ1‖wk‖

2
2 + λ2‖wk‖0

s.t.
1
n
θTk Y

TY θk = 1,

θTk Y
TY θl = 0, l = 1, . . . , k − 1. (2)

Here λ1 ≥ 0 and λ2 ≥ 0 are tuning parameters, and
‖wk‖0 denotes the `0-norm of wk , i.e. the number of non-
zero elements of vector wk . The optimization problem (2)
is nonconvex because of nonconvex spherical constraints.
Furthermore, problem (2) is NP-hard due to the presence of
`0-norm.

B. NEW CONTINUOUS APPROXIMATION OF `0-NORM
In this section, we use a continuous nonconvex function to
approximate `0-norm. For α > 0, let

ηα(x) = min{1, αx2}, ∀x ∈ R. (3)

Then the nonconvex approximation of `0-norm is defined by

‖x‖0 ≈
n∑
i=1

ηα(xi). (4)

Using the approximation (4), we can reformulate prob-
lem (2) in the form

min
(wk ,θk )∈Rp×�k

‖Y θk − Xwk‖22+λ1‖wk‖
2
2 + λ2

p∑
i=1

ηα(wki)

(5)
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where �k
= {θk ∈ RQ : θTk Dθk = 1, θTk Dθl = 0, l = 1,

. . . , k − 1} and D = 1
nY

TY .
It is not easy to solve formulation (5) efficiently due to

the nonconvex set �k although `0-norm has been approxi-
mated by a continuous function. The block coordinate descent
method given by [5] will be adopted to iteratively approxi-
mate solution of problem (5). Specifically, suppose that we
have an estimate (wt , θ t ) of (wk θk ), at each iteration, we per-
form two steps alternately:

1. Fix θk = θ t and compute wt+1 by solving

wt+1 = argmin
w∈Rp

‖Y θ t − Xw‖22 + λ1‖w‖
2
2 + λ2

p∑
i=1

ηα(wi),

(6)

2. Fix wk = wt+1 and compute θ t+1 by solving

θ t+1 = argminθ∈�k‖Y θ − Xw
t+1
‖
2
2. (7)

An explicit solution of problem (7) can be found in poly-
nomial time whenwk is fixed based on the following Lemma.
Lemma 1: [5] The problem (7) has optimal solution

θ t+1 = sk/
√
sTk Dsk , where sk = (I − Qk−1QTk−1D)D

−1

Y TXwt+1, andQk−1 is theQ× (k−1) matrix whose columns
are the previous k − 1 solutions θ1, θ2, . . . , θk−1 consecu-
tively.

Now, we are going to develop alternative schemes based
DCA for SOS and present the convergence property of our
method.

III. ALTERNATIVE SCHEMES FOR SOS
A. OUTLINE OF DC PROGRAMMING AND DCA
DC Programming and DCA address the problem of minimiz-
ing a function f which is a difference of convex functions on
the Rn. Generally speaking, a so-called standard DC program
takes the form

α = inf {f (x) := g(x)− h(x)|x ∈ Rn} (Pdc)

where g, h are lower semi-continuous proper convex func-
tions on Rn. Such a function f is called a DC function, and
g−h, a DC decomposition of f , while the convex functions g
and h are DC components of f . Note that, the closed convex
constraint x ∈ C can be incorporated in the objective function
of (Pdc) by using the indicator function on Cdenoted by XC
which is defined by XC (x) = 0 if x ∈ C , and+∞ otherwise.
For a convex function θ , the subdifferential of θ at x0 ∈

domθ is denoted by ∂θ (x0) := {y ∈ Rn|θ (x) ≥ θ (x0)+ <

x− x0, y >,∀x ∈ Rn}. The subdifferential ∂θ (x0) generalizes
the derivative in the sense that θ is differentiable at x0 if and
only if ∂θ (x0) = ∇θ (x0).
DCA is based on local optimality conditions and duality in

DC programming The necessary local optimality condition
for DC program (Pdc) at x∗ is given by ∅ 6= ∂h(x∗) ⊂ ∂g(x∗).
If ∂g(x∗) ∩ ∂h(x∗) 6= ∅, then x∗ is called a critical point of
g − h, or a generalized Karush-Kuhn-Tucker point (KKT)
of (Pdc). The main idea of DCA is simple: each iteration

t of DCA approximates the concave part −h by its affine
majorization that corresponds to taking yt ∈ ∂h(x t ) and
minimizes the resulting convex function. The generic DCA
scheme can be described as follows:
Initialization: Let x0 ∈ Rn be an initial guess, t = 0.
Repeat
-Calculate yt ∈ ∂h(x t )
- Calculate x t+1 ∈ argmin{g(x)− < x, yt > |x ∈

Rn} (Pt )
Until Convergence.
DCA is a descent method (without linesearch) and has a

linear convergence for DC programs. For more details on the
convergence of DCA the reader is referred [16], [17]. DCA
was first introduced especially for the standard DC program
by Pham Dinh Tao in 1985. It has been successfully applied
to a lot of different and various nonconvex optimization prob-
lems [17], [18].

B. DC FORMULATIONS AND DCA FOR (6)
To solve problem (5) by using the block coordinate descent
method, we now focus on how to solve problem (6) effi-
ciently. In this subsection, a newDC approach for problem (6)
will be proposed by using suitable DC decomposition for the
objective function of problem (6). In fact, the approximation
ηα(x) can be rewritten as a DC function

ηα(x) = g(x)− h(x), (8)

where g(x) = αx2, h(x) = −1 + max{αx2, 1} are both
convex functions defined on R. Then `0-norm of vector x =
(x1, . . . , xp)T ∈ Rp can be approximated by a DC function in
the form

‖x‖0 ≈
p∑
i=1

ηα(xi) = α‖x‖22 −
p∑
i=1

h(xi). (9)

Using the above DC decomposition, we can reformulate
problem (6) as the following DC programming

min
w∈Rp

Fθ (w) = G(w, θ t )− λ2H (w) (10)

where H (w) =
∑p

i=1 h(wi) and G(w, θ
t ) = ‖Y θ t − Xw‖22 +

(λ1 + λ2α)‖w‖22 are both convex functions, hence prob-
lem (10) is a standard DC program and can be iteratively
solved by DCA. At each iteration, we need to calculate the
subgradient vl ∈ ∂H (wl) and solve the convex subproblem of
the DCA scheme, namely

min
w∈Rp
‖Y θ t − Xw‖22+(λ1 + λ2α)‖w‖

2
2 − λ2〈v

l,w〉. (11)

Expanding the the objective of (11) and dropping the con-
stant term show that (11) is equivalent to minimizing

wT [XTX + (λ1 + λ2α)I ]w− wT (2XTY θ t + λ2 vl).

Obviously, the objective function of subproblem (11) is
strongly convex and it admits a unique solution over Rp. More
precisely,

wl+1=
1
2
[XTX + (λ1 + λ2α)I ]−1(2XTY θ t+λ2vl). (12)
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By Sherman-Morrison-Woodbury Lemma, we have

[XTX + (λ1 + λ2α)I ]−1

= M−1 −M−1XT (I + XM−1XT )−1XM−1,

where M = (λ1 + αλ2)I and I + XM−1XT ∈ Rn×n. Then
an analytic solution of subproblem (11) could be given as
follows

wl+1 =
1
2
[M−1 −M−1XT (I + XM−1XT )−1XM−1]

× (2XTY θ t + λ2vl). (13)

The closed form (13) is better than (12) in terms of compu-
tational complexity, since it involves computing the inverse
matrix of n order matrix I + XM−1XT instead of p order
matrix XTX + (λ1 + λ2α)I . Moreover, the inverse matrix of
I + XM−1XT is computed only once.
Now, we give a new DC algorithm for subproblem (6)

which is summarized in Algorithm 1 as follows.

Algorithm 1 DCA for Subproblem (6)

Initialization: Let l = 0 and choose w0
∈ Rp.

Repeat

1. Compute vl ∈ ∂H (wl).
2. Compute wl+1 by

wl+1 =
1
2
[M−1 −M−1XT (I + XM−1XT )−1XM−1]

(2XTY θ t + λ2 vl).

3. l = l + 1.
Until Convergence.

In step 1, the subgradient of H (wl) can be calculated by

vli =

{
2αwli if α(wli)

2
≥ 1

0 else .
(14)

Since the global convergence of DCA is shown in [16]
for a general problem setting including (6), the convergence
property is also valid for Algorithm 1.
Theorem 1: Let {wl} be the sequence generated by Algo-

rithm 1. The following statements hold.
(i) The sequence {Fθ (wl)} is decreasing.
(ii) If the sequence {wl} is bounded, then every limit point

of {wl} is a critical point of problem (6).

IV. SOME RELATED NONCONVEX APPROXIMATIONS
FOR `0-NORM
Generally, there are three kinds of methods for treating
`0-norm: convex approximation, nonconvex approximation
and nonconvex exact reformulation. Till now, some noncon-
vex continuous approximation functions have been proposed
for `0-norm, such as Capped-`1 approximation and piece-
wise exponential concave approximation. Recently, these two
renowned nonconvex approximations have been successfully

applied to SOS problem in [15], where the corresponding
subproblem can be written as

min
w∈Rp

∥∥Y θ t − Xw∥∥22 + λ1‖w‖22 + λ2α‖w‖1 − 〈vl,w〉 .
(15)

Obviously, problem (15) is nonsmooth and it is difficult
and time consuming to solve this subproblem. On the con-
trary, the corresponding subproblem (11) of our new DCA
(Algorithm 1) is not only smooth but also admits analytic
solution.

In [15], the coordinate descent method is used to solve
the nonsmooth subproblem (15), and the per-iteration com-
putational costs of their method isO(κnp2), where κ denotes
the number of iterations of the coordinate descent method.
As a comparison, we give a brief discussion on per-iteration
computational costs of Algorithm 1. In step 1, O(p) floating
point operations is required to compute ∂H (wl). In step 2,
the inverse matrix of I + XM−1XT can be computed at a
cost ofO(n3) and wl+1 can be updated by usingO(n3+ n2p)
flops. Please note that I+XM−1XT is independent of l and its
inverse will be computed only once. Hence, when n is much
smaller than p, then the per-iteration cost of our algorithm
is O(p), i.e., the per-iteration cost of our approach scales
linearly with the number of features of our data. Therefore,
we can conclude that our algorithm is theoretically faster than
the methods in [16].

V. MAIN ALGORITHM AND ITS CONVERGENCE
PROPERTIES
In this section, we describe a new coordinate descent method
based on DCA and investigate the convergence properties of
our method which can be described as follows.

Algorithm 2 Alternating Scheme Based on DCA for
Problem (5)
for k = 1 to K , compute k−th discriminant vector wk as
follows:
Initialization: Choose w0

k ∈ Rp. Let θ0k = s0k/
√
(s0k )

TDs0k ,

where s0k = (I − Qk−1QTk−1D)D
−1Y TXw0

k .
Repeat

1. For fixed θ lk , compute wl+1k by Algorithm 1 using wlk as
initialization.

2. For fixed wl+1k , compute

sl+1k = (I − Qk−1QTk−1D)D
−1Y TXwl+1k

and set θ l+1k = sl+1k /

√
(sl+1k )TDsl+1k .

3. l = l + 1.
Until convergence.
End for

Theorem 2: (i) Let F(wk , θk ) be the objective function of
the problem (5). Then Algorithm 2 generates the sequence
{(wtk , θ

t
k )}, k = 1, . . . ,K , such that {F(wtk , θ

t
k )} is convergent.

(ii) If the sequence {(wtk , θ
t
k )} is bounded, then every limit

point of this sequence is a critical point of the problem (5).
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Proof: We first prove property (i). We assume that
{(wtk , θ

t
k )} is generated by Algorithm 2. Note that wt+1k is

a solution of (6) and wlk is also feasible for (6). Therefore,
we get

F(wtk , θ
t
k ) ≥ F(w

t+1
k , θ tk ).

On the other hand, θ t+1k is the solution of (7) withwk = wt+1k ,
then we have

F(wtk , θ
t
k ) ≥ F(w

t+1
k , θ tk ) ≥ F(w

t+1
k , θ t+1k ).

Thus {F(wtk , θ
t
k )} is nonincreasing. Moreover {F(wtk , θ

t
k )} is

convergent since F(wk , θk ) is nonnegative for all wk and θk .
This proves (i).

Now, we prove property (ii). Suppose that {(wtk , θ
t
k )}

is bounded. Then there exists a convergent subsequence
{(w

tj
k , θ

tj
k )} and a pair (w∗k , θ

∗
k ) such that {(w

tj
k , θ

tj
k )} →

(w∗k , θ
∗
k ) as j → ∞. We will prove that (w∗k , θ

∗
k ) is a critical

point of problem (5), i.e.,

∅ 6= ∂wkG(w
∗
k , θ
∗
k ) ∩ ∂wkH (w∗k ), (16)

{θ∗k } = arg min
θk∈�k

Fw∗k (θk ). (17)

Since {θ
tj−1
k } is a subsequence of {θ tk}, {θ

tj−1
k } is also

bounded. Without loss of generality, we can suppose that
θ
tj−1
k → θ∗∗k as j→∞. Combining with

F(wtk , θ
t
k ) ≤ F(w

t
k , θ

t−1
k ) ≤ F(wt−1k , θ t−1k ),

we have

lim
t→∞

F(wtk , θ
t
k ) = lim

t→∞
F(wtk , θ

t−1
k ).

Using the fact that F(wk , θk ) is continuous, we have

F(w∗k , θ
∗
k ) = F(w∗k , θ

∗∗
k ).

Hence we can conclude that θ∗k = θ
∗∗
k , because problem (7)

has a unique solution. Since w
tj
k is a solution of problem (6)

with θ = θ
tj−1
k , we deduce immediately from (ii) of Theo-

rem 3.1 that

∅ 6= ∂wkG(w
tj
k , θ

tj−1
k ) ∩ ∂wkH (w

tj
k ).

Therefore, there exists vtj such that

vtj ∈ ∂wkG(w
tj
k , θ

tj−1
k ) ∩ ∂wkH (w

tj
k ).

Moreover, we have vtj = ∇wkG(w
tj
k , θ

tj−1
k ) = 2[XTX + (λ1+

λ2)αI ]w
tj
k − 2 XY θ

tj−1
k since G(wk , θk ) is smooth.

Thus,

vtj → v∗ = 2[XTX + (λ1 + λ2)αI ]w∗k − 2 XY θ∗k , j→∞.

Consequently, invoking the definition of conjugate func-
tion and using Lemma 2 in [16], we have

v∗ ∈ ∂wkG(w
∗
k , θ
∗
k ) ∩ ∂wkH (w∗k ),

i.e., condition (16) holds.

From the step 2 in Algorithm 2, we have

θ t+1k = st+1k /

√
(st+1k )TDst+1k

where st+1k = (I − Qk−1QTk−1D)D
−1Y TXwt+1k . Let t →∞,

we have

θ∗k = s∗k/
√
(s∗k )

TDs∗k

here s∗k = (I−Qk−1QTk−1D)D
−1Y TXw∗k . Thus condition (17)

holds since problem (7) has a unique solution and this
proves (ii).

VI. NUMERICAL EXPERIMENTS
In this section, to investigate the performance of the new
proposed algorithm (called `0-DCA), we compare our algo-
rithm with four state-of-the-art algorithms: ADCA proposed
in [15] where the subproblem of the alternative schemes
is also solved by DCA, and the three new methods for `1
regularized SOS based proximal method SDAP, SDAAP and
SDAD which were proposed in [13]. Specifically, SDAP
and SDAAP apply proximal gradient method and accelerated
proximal method to solve the subproblem of the alternative
schemes respectively, while SDAD employs the alternating
direction method of multipliers to solve the subproblem of
the alternative schemes. We use Python to implement our
approach with the aid of Numpy a very popular open-source
software library for numerical computation. All experiments
are conducted on a personal computer with an Intel core
i7-8750H CPU 8GB RAM. We train these algorithms to get
suitable discriminant vectors, and predict the test observa-
tions by solving the problem:

argmin
k

∥∥χTW − µTkW∥∥22
where W is the linear transformation W = [ω1, ω2, ω3,

. . . , ωk ], ωi (i = 1, 2, 3, . . . , k) are discriminant vectors.
As for the problem of selecting hyper-parameters, the stan-

dard 10-fold cross-validation technique is employed, where
the parameters α, λ1, and λ2 are selected from the sets
{1, 5, 10, 25, 50, 100, 200, 400}, {0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8, 0.9} and {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}
respectively. We take 10−10 as the value of the stop tol-
erance. The initial vector ω is ones vector. Furthermore,
if |ωki| < 10−3 we will view ωki as an uncorrelated feature
for k = 1, 2, 3, . . .K .

A. DATASETS
The datasets which will be used for numerical experiment
contain synthetic datasets and seven real world datasets col-
lected from UCI or UCR Archive 2018. We train the mod-
els to get suitable discriminant vectors for the following
data sets.

1) SYNTHETIC DATASETS
We first generate two Gauss simulation datasets to evaluate
the effect to classification of our algorithm following the
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strategy of [13]. Specifically, we obtain observations corre-
sponding to the ith class, i = 1, 2, . . . ,K , by sampling 30
observations from the Normal distribution with mean µi ∈
RP, if it’s entries indexed by 100(i−1), · · · 100i, the elements
value will equal to 0.7 and all remaining equal to 0, the covari-
ance matrix

∑
∈ Rp×p constructed as follows.

• Data1: in this simulation process, all features are cor-
related with

∑
ij = r for all i 6= j and

∑
ij = 1

for all i. The experiment conducted by K ∈ {2, 4}, r ∈
{0, 0.1, 0.5, 0.7, 0.9}.
• Data2: in the second simulation process,

∑
is a block

diagonal matrix with 100× 100 blocks. For each pair of
indices (i, j) in the same block we set

∑
ij = r |i−j|, and set∑

ij = 0 otherwise. As before, we repeat the experiment for
each K ∈ {2, 4}, r ∈ {0, 0.1, 0.5, 0.7, 0.9}.

For each experiment, we sample 15 testing observations
from each class. For each (K , r) pair we generate a dataset
with 20 observations and use nearest centroid classification
following projection onto the span of the discriminant direc-
tions to test ADCA, SDAP, SDAAP and SDAD. We use
10-fold cross validation to train the regularization parameters
in the same environment.

2) REAL WORLD DATASETS
We also compare our classifier `0-DCA with the four
renowned methods on seven benchmark datasets: Dbbodies,
Dbsubjects, Beef, Coffee, ECG, Pen and OliveOil, in terms
of classification accuracy, training time, and the number of
selected features. These real world datasets are described as
follows and the details are shown in Table 1.

TABLE 1. The details of the real world datasets.

Dbbodies [19] and Dbsubjects [19] data sets con-
sist of 64 e-mails from DBWorld news letter. Each
attribute corresponds to a precise word or stem in the
entire data set vocabulary. It is available from the link:
http://archive.ics.uci.edu/ml/datasets/DBWorld+e-mails.
Beef [21] data set consists of four classes of beef spec-

trograms, from pure beef and beef adulterated with varying
degrees of offal. The data were first used in the time series
classification literature by Bagnall et al. [20]. It is avail-
able from the link: http://www.timeseriesclassification.com/
description.php? Dataset=Beef.
Coffee [22] data set is a two-class problem to distin-

guish between Robusta and Aribica coffee beans. The
data were first used in the time series classification lit-
erature by Bagnall et al. [20]. It is available from the

link: http://www.timeseriesclassification.com/description.
php? Dataset=Coffee.
ECG data set is from a 67 year old male. The two classes

correspond to two dates that the ECG was recorded. It is
available from the link: http://www.timeseriesclassification.
com/description.php?Dataset=ECGFiveDays.
Pen data set is multi-spectral images of three Penicillium

species which was used in Clemmensen et al. [24]. It can be
found in this acticle.

Each class of OliveOil [23] data set is an extra virgin olive
oil from alternative countries. The data set can be found
from the link: http://www.timeseriesclassification.com/
description. php?Dataset=OliveOil.

B. EXPERIMENTS ON GUESS DATASETS
Table 2 shows the classification results of these five classifiers
on synthetic data sets. In this table, the average percentage of
accuracy of classifiers (ACC), the number of selected features
(Feats), training time in seconds and their corresponding
standard deviation over 10 trials are reported. From Table 2,
we can see that (i) all classifiers get nice performance of
classification. Moreover, our method get the best accuracy on
both two data sets, which means that our classifier can select
important features for classification. (ii) In terms of training
time, our method is comparable. On Data1, the training time
of `0−DCA is much less than that of other four methods.

C. EXPERIMENTS ON REAL WORLD DATASETS
We now compare our classifier with the four latest methods
for sparse optimal scoring problem on seven benchmark data
sets in terms of classification accuracy (ACC) and the number
of selected features (Feats). In Table 3, the classification
accuracy and the number of selected features for these five
classifiers are listed, and the best results is shown by bold
figure. From Table 3, we can get the following conclusions.
Accuracy: the accuracy of our method `0−DCA is 100.00,

achieving the best results and is better than ADCA and SDAD
on Dbbodies and Coffee datasets. SDAP and SDAAP work
as well as `0−DCA on these two datasets. Table 3 shows
that `0−DCA attains better classification accuracy than other
four methods on all data sets except ECG. On ECG dataset
SDAP is slightly better than `0−DCA. SDAP and SDAAP
perform best on 4/7 datasets. In a world, all of the five
methods perform well on the seven real word datasets in term
of accuracy.
Sparsity: as is shown in Table 3, the number of selected

features in classification of our algorithm is less than some of
the algorithms in ADCA, SDAP, SDAAP and SDAD. In term
of the number of selected features, ADCA performs best on
6/7 dataset. The number of features selected by our algorithm
is very close to that of ADCAwhich shows that `0−DCA also
enjoy good feature selection capability.
Time: Figures 1-7 tell us that our method consumes less

time than other four methods on all datasets we conduct.
The time cost of the other four algorithms is several or
even dozens of times that of our method on Dbsubjects and
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TABLE 2. Comparing the classification performance with the latest methods ACDA, SDAP, SDAAP, SDAD on the synthetic datasets. Bold fonts indicates the
best results in each row.

TABLE 3. Comparing the classification performance with the latest methods ACDA, SDAP, SDAAP, SDAD on seven real world datasets. Bold fonts indicates
the best results in each row.

FIGURE 1. Training time on the Dbbodies dataset.

FIGURE 2. Training time on the Dbsubjects dataset.

Coffee datasets. In general, our method `0-DCA outperforms
the other four methods on these real datasets in term of
training time. This can be explained by the fact that the
computational resources required for each iteration scales
linearly with the dimension of the data, since the subproblem
in our method is smooth and admits closed form solutions.

FIGURE 3. Training time on the Beef dataset.

FIGURE 4. Training time on the Coffee dataset.

Now, we want to illustrate the discriminant vectors can be
used to visualize the datasets. The visualization of classifica-
tion on oliveoil data set is shown in Figures 8-10, where the
samples in each class are shown by using a distinct symbol.
Figure 9 shows that the 1st discriminant vector and the 3rd
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FIGURE 5. Training time on the ECG dataset.

FIGURE 6. Training time on the Pen dataset.

FIGURE 7. Training time on the OliveOil dataset.

FIGURE 8. The oliveoil data is projected onto the 1st and the 2nd
discriminant vectors.

discriminant vector obtained by our method could separate
four classes samples very well.

Before the end of this section, we analyze the influence
of three parameters to the accuracy of `0−DCA on all of
the datasets used in this paper including synthetic datasets.
We study the effect of different candidate value for one of
the hyperparameters by fixing the other optimal parameters

FIGURE 9. The oliveoil data is projected onto the 1st and the 3rd
discriminant vectors.

FIGURE 10. The oliveoil data is projected onto the 2nd and the 3rd
discriminant vectors.

FIGURE 11. The influence of the different parameters α on the accuracy
in `0−DCA.

FIGURE 12. The influence of the different parameters λ1 on the accuracy
in `0−DCA.

to show its influence to accuracy. Figure 11 shows that accu-
racies attain the best results for most of datasets when α = 25
although there are some fluctuation on several datasets. From
Figures 11-12, we can find that on most datasets, accuracy is
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FIGURE 13. The influence of the different parameters λ2 on the accuracy
in `0−DCA.

not sensitive to the value of λ1 and λ2 except for the Oliveoil
dataset, data2 and the ECG dataset.

VII. CONCLUSION
In this paper, we study sparse optimal scoring problem with
`0 regularization. An alternating scheme based on DCA
is proposed by using a nonconvex continuous function to
approximate `0-norm and making suitable DC decomposi-
tion. One of the advantages of the new DCA is that its
subproblems are smooth and have closed form solution at
every iteration. The computational resources required for
each iteration scale linearly with the dimension of the data.
Moreover, we establish that any convergent subsequence of
iterates generated by our algorithm converges to a critic
point. Finally, experimental results show the efficiency of
the proposed algorithm on accuracy and training time. For
future work, we will focus on robust sparse optimal scoring
problem with data uncertainty which affects classification
accuracy and yields low quality solutions. How to find robust
discriminant vectors for classification is our future work.

ACKNOWLEDGMENT
The authors would like to thank the referees for their valuable
comments that have largely improved the presentation of this
paper.

REFERENCES
[1] D. J. Hand,‘‘Classifier technology and the illusion of progress,’’ Stat. Sci.,

vol. 21, no. 1, pp. 1–14, Feb. 2006.
[2] M. I. Khalid, T. Alotaiby, S. A. Aldosari, S. A. Alshebeili,

M. H. Al-Hameed, F. S. Y. Almohammed, and T. S. Alotaibi, ‘‘Epileptic
MEG spikes detection using common spatial patterns and linear
discriminant analysis,’’ IEEE Access, vol. 4, pp. 4629–4634, 2016,
doi: 10.1109/access.2016.2602354.

[3] J. Kah Phooi Seng and K. Li-Minn Ang, ‘‘Big feature data ana-
lytics: Split and combine linear discriminant analysis (SC-LDA) for
integration towards decision making analytics,’’ IEEE Access, vol. 5,
pp. 14056–14065, 2017, doi: 10.1109/access.2017.2726543.

[4] Q. Mai and H. Zou, ‘‘A note on the connection and equivalence of three
sparse linear discriminant analysismethods,’’ Technometrics, vol. 55, no. 2,
pp. 243–246, May 2013.

[5] X.-D. Chen and H.-X. Lin, ‘‘Sparse discriminant analysis,’’ J. Comput.
Appl., vol. 32, no. 4, pp. 1017–1021, Apr. 2013.

[6] M. C. Wu, L. Zhang, Z. Wang, D. C. Christiani, and X. Lin, ‘‘Sparse
linear discriminant analysis for simultaneous testing for the significance
of a gene set/pathway and gene selection,’’ Bioinformatics, vol. 25, no. 9,
pp. 1145–1151, 2008.

[7] Z. Liu, Z. Lai, W. Ou, K. Zhang, and R. Zheng, ‘‘Structured
optimal graph based sparse feature extraction for semi-supervised
learning,’’ Signal Process., vol. 170, May 2020, Art. no. 107456,
doi: 10.1016/j.sigpro.2020.107456.

[8] Q. Mai, Y. Yang, and H. Zou, ‘‘Multiclass sparse discriminant
analysis,’’ 2015, arXiv:1504.05845. [Online]. Available: http://arxiv.
org/abs/1504.05845

[9] Z. Lai, W. K. Wong, Y. Xu, J. Yang, and D. Zhang, ‘‘Approximate orthog-
onal sparse embedding for dimensionality reduction,’’ IEEE Trans. Neural
Netw. Learn. Syst., vol. 27, no. 4, pp. 723–735, Apr. 2016.

[10] Z. Liu, J. Wang, G. Liu, and L. Zhang, ‘‘Discriminative low-rank preserv-
ing projection for dimensionality reduction,’’ Appl. Soft Comput., vol. 85,
Dec. 2019, Art. no. 105768.

[11] M. Journée, Y. Nesterov, P. Richtárik, and R. Sepulchre, ‘‘Generalized
power method for sparse principal component analysis,’’ J. Mach. Learn.
Res., vol. 11, pp. 517–553, Mar. 2010.

[12] B. P. W. Ames and M. Hong, ‘‘Alternating direction method of multipliers
for penalized zero-variance discriminant analysis,’’ Comput. Optim. Appl.,
vol. 64, no. 3, pp. 725–754, Jul. 2016.

[13] S. Atkins, G. Einarsson, B. Ames, and L. Clemmensen, ‘‘Proximal
methods for sparse optimal scoring and discriminant analysis,’’ 2017,
arXiv:1705.07194. [Online]. Available: http://arxiv.org/abs/1705.07194

[14] C. Leng, ‘‘Sparse optimal scoring for multiclass cancer diagnosis and
biomarker detection using microarray data,’’ Comput. Biol. Chem., vol. 32,
no. 6, pp. 417–425, Dec. 2008.

[15] H. A. Le Thi and D. N. Phan, ‘‘DC programming and DCA for sparse opti-
mal scoring problem,’’Neurocomputing, vol. 186, pp. 170–181, Apr. 2016.

[16] P. D. Tao and L. T. H. An, ‘‘Convex analysis approach to D.C. Pro-
gramming: Theory, algorithms and applications,’’ Acta Math. Vietnamica,
vol. 22, no. 1, pp. 289–355, 1997.

[17] H. A. Le Thi and T. PhamDinh, ‘‘DC programming and DCA: Thirty years
of developments,’’Math. Program., vol. 169, no. 1, pp. 5–68, May 2018.

[18] C. Wu, C. Li, and Q. Long, ‘‘A DC programming approach for sensor
network localization with uncertainties in anchor positions,’’ Journal of
Industrial and Management Optimization, vol. 10, no. 3, pp. 817–826,
2014.

[19] M. Filannino, ‘‘DBWorld e-mail classification using a very small cor-
pus,’’ in Project of Machine Learning Course. Manchester, U.K.: Univ.
of Manchester, 201;.

[20] A. Bagnall, L. Davis, J. Hills, and J. Lines, ‘‘Transformation based ensem-
bles for time series classification,’’ in Proc. SIAM Int. Conf. Data Mining,
Apr. 2012, pp. 307–318.

[21] O. Al-Jowder, E. K. Kemsley, and R. H.Wilson, ‘‘Detection of adulteration
in cooked meat products by mid-infrared spectroscopy,’’ J. Agricult. Food
Chem., vol. 50, no. 6, pp. 1325–1329, Mar. 2002.

[22] R. Briandet, E. K. Kemsley, and R. H. Wilson, ‘‘Discrimination of Arabica
and Robusta in instant coffee by Fourier transform infrared spectroscopy
and chemometrics,’’ J. Agricult. Food Chem., vol. 44, no. 1, pp. 170–174,
Jan. 1996.

[23] H. S. Tapp, M. Defernez, and E. K. Kemsley, ‘‘FTIR spectroscopy and
multivariate analysis can distinguish the geographic origin of extra virgin
olive oils,’’ J. Agricult. Food Chem., vol. 51, no. 21, pp. 6110–6115,
Oct. 2003.

[24] L. H. Clemmensen, M. E. Hansen, J. C. Frisvad, and B. K. Ersbøll,
‘‘A method for comparison of growth media in objective identification of
Penicillium based on multi-spectral imaging,’’ J. Microbiolog. Methods,
vol. 69, no. 2, pp. 249–255, May 2007.

GUO-QUAN LI received the master’s degree from
the Department of Mathematics, Chongqing Nor-
mal University, China, in 2006, and the Ph.D.
degree in operational research and cybernetics
from Shanghai University, China, in 2009. He is
currently an Associate Professor with the School
ofMathematical Science, Chongqing Normal Uni-
versity. His research interests include data mining,
machine learning, and optimization methods.

53970 VOLUME 8, 2020

http://dx.doi.org/10.1109/access.2016.2602354
http://dx.doi.org/10.1109/access.2017.2726543
http://dx.doi.org/10.1016/j.sigpro.2020.107456


G.-Q. Li et al.: New DC Algorithm for SOS Problem

XU-XIANG DUAN is currently pursuing the
degree with the Department of Mathematics Sci-
ence, Chongqing Normal University, China. His
research interests include datamining andmachine
learning.

CHANG-ZHI WU received the Ph.D. degree from
Zhongshan University, China, in 2006. In 2006,
he joined Chongqing Normal University as a Lec-
turer, where he was promoted as a Professor,
in 2009. In 2013, he joined the Australasian Joint
Research Centre for Building Information Mod-
elling, Curtin University, as a Senior Research
Fellow. He is currently a Professor with the School
of Management, Guangzhou University. His main
interests include both theoretical and practical

aspects of optimization and optimal control and their applications in signal
processing, civil engineering, and construction management.

VOLUME 8, 2020 53971


	INTRODUCTION
	SPARSE OPTIMAL SCORING PROBLEM
	PROBLEM FORMULATION
	NEW CONTINUOUS APPROXIMATION OF 0-NORM

	ALTERNATIVE SCHEMES FOR SOS
	OUTLINE OF DC PROGRAMMING AND DCA
	DC FORMULATIONS AND DCA FOR (6)

	SOME RELATED NONCONVEX APPROXIMATIONS FOR 0-NORM
	MAIN ALGORITHM AND ITS CONVERGENCE PROPERTIES
	NUMERICAL EXPERIMENTS
	DATASETS
	SYNTHETIC DATASETS
	REAL WORLD DATASETS

	EXPERIMENTS ON GUESS DATASETS
	EXPERIMENTS ON REAL WORLD DATASETS

	CONCLUSION
	REFERENCES
	Biographies
	GUO-QUAN LI
	XU-XIANG DUAN
	CHANG-ZHI WU


