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ABSTRACT Recently, unmanned aerial vehicles (UAVs) as flying wireless communication platform have
attracted much attention. Benefiting from the mobility, UAV aerial base stations can be deployed quickly
and flexibly, and can effectively establish Line-of-Sight communication links. However, there are many
challenges in UAV communication system. The first challenge is energy constraint, where the UAV battery
lifetime is in the order of fraction of an hour. The second challenge is that the coverage area of UAV aerial base
station is limited and the commercial UAV is usually expensive. Thus, covering a large target region all the
time with sufficient UAVs is quite challenging. To solve above challenges, in this paper, we propose energy
efficient and fair 3-D UAV scheduling with energy replenishment, where UAVs move around to serve users
and recharge timely to replenish energy. Inspired by the success of deep reinforcement learning, we propose a
UAV Control policy based on Deep Deterministic Policy Gradient (UC-DDPG) to address the combination
problem of 3-D mobility of multiple UAVs and energy replenishment scheduling, which ensures energy
efficient and fair coverage of each user in a large region and maintains the persistent service. Simulation
results reveal that UC-DDPG shows a good convergence and outperforms other scheduling algorithms in
terms of data volume, energy efficiency and fairness.

INDEX TERMS UAV communication, energy efficiency, fairness, energy replenishment, deep reinforce-
ment learning, DDPG.

I. INTRODUCTION
Unmanned aerial vehicle (UAV) as flying wireless
communication platform is a promising technology to
enhance the wireless network with its inherent attributes
such as mobility, flexibility and adaptive altitude [1]. For
example, UAVs can act as mobile aeriel base stations (BSs)
to provide on-the-fly communication, which can significantly
improve the coverage of ground wireless devices and boost
the capacity of wireless networks. Compared to the terrestrial
BS, the advantage of using UAV-based aerial BS is that
it can fast deploy communication infrastructure to provide
cost-effective connectivity when communication networks
are disrupted by a natural disaster [2] or areas are poorly
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covered by terrestrial networks [3]. In addition, UAV-based
aerial BSs can effectively establish Line-of-Sight (LoS) com-
munication links by adjusting their location and are likely
to have better communication channels than terrestrial net-
works.

Although UAV-based aerial BS has huge advantages, UAV
communication system still faces many challenges. The first
challenge is that battery operated UAVs [5] usually have
limited on-board energy due to the aircraft’s size and weight
constraint. The energy constraint has a large impact on the
endurance and performance of UAV systems, where the
battery lifetime is in the order of fraction of an hour (typically
15-30 minutes) for most commercial consumer-grade
UAVs [4], [5]. Thus, energy efficient based communication
strategies have been studied to prolong the UAV network
service lifetime under a broad range of aspects [6]–[15].
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The authors in [6]–[8] optimized the UAV placement and
trajectory of single UAV to maximize the coverage and
throughput by using the minimum transmission power. The
works in [9]–[12] further studied the optimal 3-D loca-
tions of multiple UAVs to maximize the downlink coverage
performance with minimum transmission power. In [13],
the authors determined the optimal 3-D mobile trajectory of
multiple UAVs with a minimum energy consumption to adapt
to the time-varying nature of user density. Energy-aware
control protocols [14] minimize the unnecessary maneuvers
of mobile devices and energy-aware network layer protocols
are extensively surveyed in [5] to reduce battery consumption
or conserve power. However, above works do not consider the
energy replenishment of UAVs, which is inevitable in prac-
tice. Up to now, the works on energy replenishment through
scheduling of UAVs are quite limited. In [15], the authors
presented deployment strategies for multiple UAVs to maxi-
mize the stationary coverage of a target region to guarantee
the continuity of the service by energy replenishment oper-
ations at ground charging stations. However, this work just
addressed stationary coverage where the UAVs are at fixed
positions.

As we know, UAVs can work as BSs to provide wire-
less communication for ground users by carrying current
wireless technologies, such as LTE or Wi-Fi. On the other
hand, the cost of each commercial UAV is usually several
thousand dollars. Thus, covering a large target region all the
time with sufficient UAVs is quite challenging due to the
limited communication range and relatively high costs, which
is the second challenge. Therefore, UAVs moving around to
ensure each user to be covered is of paramount importance.
In [16], the authors proposed a deep reinforcement learn-
ing (DRL) framework to control the mobile trajectory of a
group of UAVs to achieve fairness coverage while maintain-
ing their connectivity with minimum energy consumption.
However, this work assumes all UAVs have the same altitude.
Besides, it does not consider on-board circuit power, com-
munication power, 3-D deployment of aerial BSs and energy
replenishment.

Different from the aforementioned existing works under
the assumption of either 2-D or stationary UAV coverage,
inspired by the success of DRL, we propose a UAV Control
policy based on Deep Deterministic Policy Gradient (DDPG)
algorithm [17] (UC-DDPG) to address the combination prob-
lem of 3-D mobility of multiple UAVs and energy replen-
ishment scheduling, which ensures energy efficient and fair
coverage of each ground user in a large target region, while
maintaining the persistent service.

The main contributions of this paper are listed as
follows:
• Detailed UAVs communication system models are built,
including channel model, data rate model and energy
model.

• In contrast with other papers, this paper takes UAV
battery lifetime and energy replenishment into account,
so as to maintain persistent service.

• In order to improve energy efficiency and guarantee
service fairness, we develop a 3-D UAV deployment
scheduling algorithm based on DDPG algorithm, which
takes the residual energy of UAV, circuit power, com-
munication power, mobility power and hover power into
account.

The rest of paper is organized as follows. Section II
presents the relatedworks. Section III presents systemmodels
and problem definition. The preliminaries of DDPG is intro-
duced in Section IV. The proposed UC-DDPG is detailedly
introduced in Section V. In Section VI, the convergence and
performance of the proposed algorithm are verified by numer-
ical results. Finally, Section VII concludes the paper.

II. RELATED WORK
A. UAV 3-D DEPLOYMENT AND COVERAGE
Recently, most studies have been carried out to optimize
the deployment of UAV BSs, aiming at coverage range,
number of active UAVs, transmit power. In [6], the authors
optimized the UAV position to satisfy the rate requirement
of users in the entire high-rise building with minimum total
transmit power. In [18] and [19], the hovering altitude of
the UAV can be determined to maximize the radio coverage
on the ground. An optimum placement of multiple UAVs
is further investigated in [20] to maximize the number of
covered users in the target region. Similarly, the studies in [9]
and [21] investigate the optimal 3-D placement of UAVs to
maximize the coverage while minimizing the transmitting
power of the UAVs. In [22] and [23], the authors minimize
the number of UAVs that must be deployed for covering all
the ground terminals in the target region. The works in [10]
proposed a framework to achieve energy-efficient uplink data
collection from ground IoT devices by jointly optimizing the
3-D placement, device-UAV association and uplink power
control in single time slot. Then, the works optimize the
UAV’s mobile trajectory by allowing UAVs to dynamically
update their locations depending on the time-varying device’s
activation process, where the total energy consumption of the
UAVs while updating their location is minimized. In [13],
the optimal placement of multiple UAVs, such as altitude and
coverage radius, is derived in a single time slot when the
transmit power of UAV equals to their on-board circuit power.
Then, the optimal placement updating problem in multiple
time slot duration is also addressed to achieve near minimal
energy consumption in polynomial time.

B. UAV ENERGY MANAGEMENT
The problem of prolonging the UAV working time has
been extensively studied in the existing literature, such as
energy-based protocol [7], [8], [14], [24], [25] to reduce
the UAV’s energy consumption, and replenishment strategies
[15], [26]–[29] by leveraging the presence of charging infras-
tructures on the ground. The authors in [7] studied the opti-
mization of the throughput of a relay-based UAV system
by jointly controlling the UAVs trajectory as well as the
source/relay transmit power. Later, the authors extend the
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work in [7] to optimize the energy efficiency of the relay-
based UAV system by optimizing the UAV’s trajectory [8].
In [14], the authors illustrate that energy efficiency based
protocol minimizes the unnecessary maneuvers, which can
be implemented via carefully controlling the movement of
UAVs and optimizing the communication strategies with the
minimum energy expenditure. In [24], the authors propose
the use of passive scanning for the mobiles and periodic
beaconing for UAVs as access points, where a cooperative
game theory is used to provide effective coverage for mobile
users. The authors in [25] design an energy efficient traveling
path algorithm considering the peculiar feature of UAVs, such
as the available energy, weight, maximum speed, etc.
The authors in [26] and [27] study the continuous coverage

problem for mobile targets, where [26] properly allocates the
charging slots for replenishing energy while [27] replaces the
UAV that runs out of energy by a new one during the coverage
process. Shakhatreh et al. [28] improve the model in [26]
to the scenario with multiple UAVs. Considering the on-
board circuit power and mobility power, the UAV control for
scheduling fly or recharge has been investigated to guarantee
persistent coverage of a target area by exploiting charac-
teristics of fixed terrestrial charging infrastructures on the
ground [15], [29]. The works in [30], [31] describe the design
of reliable charging station for UAV. In [30], the ground
charging station is designed to achieve the reliable recharging
process, while a guidance system enabling the UAV to land
on a charging station is described in [31].

The study for extracting energy from the environmental
forces has also been applied in UAVs system. In [32], [33]
and [34], the authors plan a path for UAV to extend the flight
duration by exploiting the wind energy, while [34] considers
the uncertainty of the wind field and the variation with respect
to time. The authors in [35], [36] study the wireless power
transfer techniques enabled by radio frequency signals to
charge the UAVs. Similarly, the laser energy harvesting sys-
tem is expected to efficiently prolong the UAV’s flight dura-
tion, where a laser transmitter sends laser beams to charge
a fixed-wing UAV in flight [37]–[39]. In [40], the authors
present a rotational energy harvester using a brushless Direct-
Current (DC) generator to harvest ambient energy from the
propellers of the UAVs in order to prolong the UAV’s flight
duration.

C. DEEP REINFORCEMENT LEARNING IN WIRELESS
NETWORK
DRL has recently attracted much attention from wireless
communication field and is used to solve various prob-
lems [49]. In [50], an artificial intelligence framework (AIF)
for smart wireless network management was proposed.
DCRQN [51] which is a novel Wi-Fi handoff management
scheme based on Deep Q-Network (DQN) [52] effectively
improves the data rate during the handoff process. In [53],
the authors presented DeepNap, which uses a DQN to
learn effective BS sleeping policies and reduces the energy
consumption of Wi-Fi networks. In [54], a novel channel

FIGURE 1. The scenario of UAV communication system.

allocation algorithm based on DRL was presented, which
improves spectrum efficiency and decreases the co-channel
interference for multi-beam satellite systems. The authors
in [55] proposed to use DRL to obtain the optimal inter-
ference alignment (IA) user selection policy in the cache-
enabled opportunistic IA networks. In [56], a DRL approach
was proposed to maximize the channel utility for multi-user
wireless networks with less computation and limited obser-
vations. In UAV communication networks, a DRL frame-
work for multi-user access control is proposed in [57],
which effectively improves system throughput. Recently, aQ-
learning [59] based framework [58] is proposed for quality of
experience (QoE) driven deployment and movement of UAV-
BSs, and shows good performance and low complexity.

III. SYSTEM MODELS AND PROBLEM DEFINITION
In this section, we introduce the system models of the paper
in the first place, including the scenario, channel model,
data rate model as well as energy model. Then, the problem
definition of energy efficient 3-D UAV control for persistent
communication service and fairness is presented.

A. SCENARIO
We consider a rectangular geographical area of size a×b m2,
as shown in Figure 1, within which a set K = {1, 2, . . . ,K }
of K ground users are distributed. In this system, a set
A = {1, 2, . . . ,N } of N rotary wing UAVs are deployed to
provide communication coverage to the ground users in the
target area. Because the number of UAVs is limited, the users
cannot be completely covered by hovering UAVs. As a result,
the UAVs should move around to provide service for all users.
The total service time is T . The locations of user k ∈ K and
UAV i ∈ A are, respectively, given by (xk , yk ) and (xi, yi, hi),
where xi, xk ∈ [0, a] and yi, yk ∈ [0, b]. The height of the
UAV, hi, belongs to [hmin, hmax], where hmin and hmax are the
minimum andmaximum allowed height of UAV, respectively.
A charging station SE locates at the center of the plane where
the altitude is hmin, and it can be used to recharge the UAV’s
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battery at a speed of CSE Watt. We assume all the UAVs start
with the fully charged batteries, and the battery capacity is
Emax . Assume $ is the angle of the sensing cone. With hi,
the radius of the cover area can be given by [15], [18],

R(hi) = hi · tan(
$

2
). (1)

For simplicity, T is divided into consecutive time slots
{t0, t1, . . . , tend } of length equal to tslot , and there is a con-
trol center which can collect information from UAVs and
command UAVs. In tj, UAV i can fly, hover, serve users
and replenish energy, which is determined by the commands
of control center. The users which are in the coverage of
UAV i can be served by UAV i simultaneously. The users are
assigned to different channel where the channel bandwidth
is B, and there is no interference between them. If a user is
covered by multiple UAVs, it will connect to the first UAV
which provides communication service. The residual energy
of UAV i at the beginning of time slot tj is denoted by Ei,tj .
If a UAV replenishes energy in charging station SE , it will not
serve users.

B. CHANNEL MODEL
1) AIR-TO-GROUND PATH LOSS MODEL
According to [18], the air-to-ground (A2G) path loss model
can be characterized into LoS links and non Line-of-Sight
(NLoS) links, which can be given respectively by

L ikLoS = 20 log(
4π fcdik

c
)+ ηLoS ,

L ikNLoS = 20 log(
4π fcdik

c
)+ ηNLoS

(2)

where fc is the carrier frequency; dik is the distance
between the UAV i and the user k , given by dik =√
(xi − xk )2 + (yi − yk )2 + hi2; c is the speed of light; ηLoS

and ηNLoS are the mean value of the excessive path loss on the
top of the free space for LoS and NLoS links, determined by
environment (suburban, urban, dense urban, highrise urban or
others).

For A2G communications, each transmitter-receiver pair
will typically have a LoS link with a given probability, which
depends on the environment, location of the users and the
UAV as well as the elevation angle [18]. Therefore, we have
the LoS probability [18], [20]

PikLoS (ϑik ) =
1

1+ ψ exp(−ζ (ϑik − ψ))
(3)

whereψ and ζ are constant values which depend on the envi-
ronment and ϑik = 180

π
arcsin( hidik ) is the elevation angle. Note

that, the NLoS probability is PikNLoS (ϑik ) = 1− PikLoS (ϑik ).
Therefore, the average path loss of A2G channel can be

expressed as

L ik (hi, ϑik ) = 20 log(
4π fcdik

c
)+ PikLoS (ϑik )ηLoS

+PikNLoS (ϑik )ηNLoS . (4)

2) SMALL-SCALE FADING CHANNEL MODEL
We consider the small-scale channel fading following Rician
distribution [42]. A Rician distribution is an adequate choice
due to the possible combination of LoS and multiple scatters
that can be experienced at the receiver. The complex channel
gain between the pair of the UAV and its user is denoted by
gik . Then the probability distribution function (PDF) of gik
can be expressed as [41]

fgik (x) =
2(1+ K (ϑik ))x

�
e(−K (ϑik )−

(1+K (ϑik )x
2)

�
)

× I0(2x

√
K (ϑik )(1+ K (ϑik ))

�
), x > 0 (5)

where gik is the complex channel gain between the pair
of the UAV and its user; I0(·) is the zero-order modified
Bessel function of the first kind, which can be defined by

I0(x) =
∞∑
n=0

(x/2)2n

n!0(n+1) ; K (ϑik ) is the Rician factor defined as

the ratio of the power in the LoS component to the power in
the NLoS multiple scatters. � is the average fading power
where � = 1.

Based on [43], the Rician factor can be modeled as a non-
increasing function of ϑik , which can be expressed as

K (ϑik ) = κ0 · exp[
2
π
ln(
κ π

2

κ0
)ϑik ] (6)

where κ0 = K (0) and κ π
2
= K (π2 ).

Then, the expectation of K can be estimated according
to [44],

K = E[K (ϑ)] ≈
∫ π

2

0
ϑ · κ0 · exp[

2
π
ln(
κ π

2

κ0
)ϑ]dϑ

=
π2κ π

2

4 ln(
κ π
2
κ0

)
[1−

1

ln(
κ π
2
κ0

)
+

κ0

κ π
2
ln(

κ π
2
κ0

)
]. (7)

C. DATE RATE MODEL
Assume the allocated transmit power to the interested user k
is Pt . The instantaneous signal-to-noise ratio (SNR) between
the UAV i and the user k can be modeled as

γ SNRik =
10log10 Pt−L

ik (hi,ϑik )/10

σ 2 gik (8)

where σ 2 is the noise power.
Then, the PDF of γ SNRik is obtained by introducing a change

of variables in the expression for the PDF fgik (x), yielding

fγ SNRik
(γ ) =

fgik (
√
�γ/γ̄ik )

2
√
γ γ̄ik/�

where γ ik =
10log10 Pt−L

ik (hi,ϑik )/10

σ 2
is the average SNR. There-

fore, the PDF of γ SNRik can be given by [41]

fγ SNRik
(γ ) =

(1+ K (ϑik ))
γ ik

e(−K (ϑik )−
(1+K (ϑik ))γ

γ ik
)

× I0(2

√
K (ϑik )(1+ K (ϑik ))γ

γ ik
), γ > 0. (9)
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Based on the Shannon-Hartley theorem, the average data
rate between the UAV-BS i and the user k can be given by

Rik =
∫
∞

0
Blog2(1+ γ )fγ SNRik

(γ )dγ

which can be approximated to [45]

Rik = (B log2 e)(ln(1+ γ ik )−
E[γ 2]− γ 2

ik

2(1+ γ ik )2
). (10)

To evaluate (10), the second moment of γ is required,
which can be formulated as [45]

E[γ 2] =

∞∫
0

γ 2fγ SNRik
(γ )dγ. (11)

Then, combining (9) and (10), a second-order approxima-
tion for Rik can be attained as

Rik ≈
B
ln 2

[ln(1+ γ ik )

−

γ 2
ik

(
2e−K (ϑik )(3K (ϑik )2 + 3K (ϑik )+ 1)

− (1+ K (ϑik ))2

)
2(1+ γ ik )

2(1+ K (ϑik ))2
]. (12)

D. ENERGY MODEL
The total energy consumption of the UAV network includes
communication energy and propulsion energy. The communi-
cation energy is needed due to the radiation, signal processing
and other circuitry while the propulsion energy is required to
ensure that the UAV remains aloft as well as for supporting its
mobility. However, the propulsion energy is different accord-
ing to the UAV’s flying state. In this subsection, the energy
models including communication energy, hover energy as
well as mobility energy are illustrated.

1) COMMUNICATION ENERGY
Assume the on-board circuit power is set to be Pcu. Since the
UAVs fly on the target areas to serve users, the corresponding
communication time for the UAV i to the users is depended
on the control policy. Let tcom denote the duration that UAV
i communicates with the users and ni,tj denote the number of
the served users by UAV i in tj. Then, at tj, the communication
energy of UAV i, ECi , can be given by

ECi (tj) = (ni,tjPt + Pcu)tcom. (13)

2) HOVER ENERGY
According to the [47], [48], the hover energy consumption of
UAV can be derived using power consumption of a multirotor
helicopter, which is approximately linearly proportional to
the weight of its battery and payload. Then, the hover power
in Watt by the UAV can be given by [48]

Phover =
MG

3
2√

2ρπβ2
(14)

where M is the number of rotors of the helicopter;
G = (W+m)g is the thrust in Newton, given the frameweight

W in kg, the battery and payload weight m in kg, and gravity
g in N/kg. ρ is the fluid density of the air in kg/m3, and β is
the rotor disk radius in m.
Therefore, the energy consumed of UAV i in hover at tj can

be computed as

EHi (tj) = Phover thover (15)

where thover denotes the duration that UAV i hovers in tj.

3) MOBILITY ENERGY
Let Ph, Pa and Pd denote the mobility power in the hor-
izontal direction, ascending power and descending power,
respectively. Similarly, vh, va and vd represent the velocity in
the horizontal direction, ascending velocity and descending
velocity, respectively. Assume the UAV i updates its location
in the considered area at tj. Then, the mobility energy of UAV
i at tj can be given by [13]

EiM (tj) = Ph
d(i, tj)
vh
+ I (1h(i, tj))Pa

1h(i, tj)
va

− (1− I (1h(i, tj)))Pd
1h(i, tj)
vd

(16)

where d(i, tj) and1h(i, tj) are the horizontal moving distance
and the variation of the height of the UAV i at tj, respec-
tively. Then, the effective horizontal and vertical (ascend-
ing or descending) velocities will be vh = υ sinϕ and
va = vd = υ cosϕ with ϕ = arctan( d(i,tj)

1h(i,tj)
), where v denotes

the velocity of the UAV. I (1h(i, tj)) is the indicator function,
which can be expressed as

I (1h(i, tj)) =

{
1 1h(i, tj) > 0,
0 1h(i, tj) < 0.

(17)

The power consumption of the horizontal direction can be
given by [8], [10]

Ph = Pp + PI (18)

where Pp is the parasitic power for overcoming the parasitic
drag due to the aircraft’s skin friction, form drag, etc, which
can be given by [10], [46]

Pp =
1
2
ρCD0Svh

3
+
π

4
MρcbCD0w

3β4(1+ 3(
vh
wβ

)2) (19)

where CD0 is the drag coefficient, cb is the rotor chord, S is
the reference area (frontal area of the UAV), w is the angular
velocity.

And PI is the induced power for overcoming the lift-
induced drag due to the wings redirecting air to generate
the lift for compensating the aircraft’s weight. According to
[8], [10], PI can be given by

PI = G

√
λ− vh2

2
(20)

where λ =

√
vh4 + ( G

πρβ2
)
2
.
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Similarly, Pa and Pd can be given by [46]

Pa =
G
2
va +

G
2

√
va2 +

2G
πρβ2

andPd =
G
2
vd −

G
2

√
vd 2 −

2G
πρβ2

(21)

respectively.

E. PROBLEM DEFINITION
We purpose to design a control algorithm which commands
how each UAV acts in each time slot. The targets of the
control algorithm include: 1) providing persistent service
in T ; 2) maximizing communication data volume; 3) mini-
mizing the UAVs energy consumption; 4) guaranteeing the
fairness of the users. For the first target, because the bat-
tery lifetime of UAVs is much less than T , a replenishment
policy should be designed to guarantee persistent service.
In order to achieve the second objective, intuitively, appropri-
ate communication locations where there is a good channel
environment and the users are covered as many as possible
should be found. For the third target, the flight path of UAVs
should be designed carefully to reduce needless energy con-
sumption, e.g., the UAV moves to some places without any
user. Lastly, for the sake of guaranteeing the fairness of the
users, the UAVs should serve all users as evenly as possible,
rather than only serve part of users. In summary, it is a quite
sophisticated task and traditional optimization algorithms are
unsuitable. Recently, DRL has received extensive attention in
the field of wireless communication [49]. DRL can learn the
best policy by real-time interacting with the environment and
only very minimal prior knowledge is needed, which applies
to designing the UAV control algorithm. DDPG, which is
the state-of-the-art DRL algorithm, shows good performance
in solving complex tasks [17]. In the following sections,
we will detailedly present the control algorithm based on
DDPG.

IV. PRELIMINARIES ON DDPG
This section gives a brief description of reinforcement learn-
ing (RL) and DDPG. For a comprehensive presentation,
please refer to [59] and [17].

Figure 2 shows the basic form of RL. RL is learning
how to map state to action, so as to maximize a numerical
reward. The learner, i.e. the agent, is not told which actions
to take, but instead must discover which actions yield the
most reward by trying them. The agent observes the state s
of the environment, and executes an action a according to the
policy. Then, the agent receives a reward r and observes a
new state s′. The above process is repeated until the end of
the agent-environment interaction, and a complete interaction
process is referred to as an episode. This information, (s, a,
r , s′), is used to improve the agent’s policy, and the episode
will be repeated until the policy converges to the optimal
policy. Q-Learning and SARSA [59] are the most common
algorithms in RL.

FIGURE 2. The basic component and form of reinforcement learning.

FIGURE 3. The basic structure of DDPG.

However, RL is unsuitable and inapplicable to the com-
plex tasks which have continuous and high dimensional state
spaces or action spaces. DRL embraces the advantage of
deep neural network (DNN) to train learning process, thereby
improving the learning speed and the performance of RL
algorithms. DDPG [17], which is a model-free off-policy
actor-critic DRL algorithm, can learn policies in continuous,
high dimensional state spaces and action spaces. As shown
in Figure 3, the DDPG algorithm maintains a parameterized
actor neural network µ(s | θµ) which specifies the cur-
rent policy by deterministically mapping states to a specific
action. The parameterized critic neural network Q(s, a | θQ)
is learned using the Bellman equation as in Q-learning. The
actor is updated by applying the chain rule to the expected
return from the start distribution J with respect to the actor
parameters as follows:

∇θµJ ≈ E[∇θµQ(s, µ(s | θµ) | θQ)]
= E[∇aQ(s, µ(s) | θQ)∇θµµ(s | θµ)]. (22)

Specially, experience replay and target network are intro-
duced in DDPG to guarantee the convergence, which is

VOLUME 8, 2020 53177



H. Qi et al.: Energy Efficient 3-D UAV Control for Persistent Communication Service and Fairness: DRL Approach

inspired by DQN [52]. In experience replay, a replay buffer
with a finite size is used to store the sample (s, a, r, s′). When
the replay buffer was full, the oldest samples were discarded.
The actor and critic are updated by sampling a minibatch
randomly from the replay buffer. Experience replay breaks
the correlations between samples and therefore reduces the
variance of learning. In target network, a copy of the actor
and critic networks, Q′(s, a | θQ

′

) and µ′(s | θµ
′

), is created.
Q′(s, a | θQ

′

) and µ′(s | θµ
′

) are used to calculate the target
values, and their weights are then updated by having them
slowly track the original networks: θ ′← τθ + (1− τ )θ ′ with
τ � 1, which greatly improving the stability of learning.

V. UAV CONTROL BASED ON DDPG
In the section, we design a UAV control policy based on
DDPG. In this problem, the agent is the control center, and
UC-DDPG is implemented in the control center. The basic
three elements (state, action and reward) of RL are designed
as follow.

A. STATE
In time slot tj, state sj is defined as

sj = {x1, y1, h1, x2, y2, h2, . . . , xN , yN , hN ,

E1,tj ,E2,tj , . . . ,EN ,tj ,

data1,tj , data2,tj , . . . , dataK ,tj}, (23)

where (xi, yi, hi) denotes the location of UAV i at the begin-
ning of the time slot tj and Ei,tj denotes the residual energy
of UAV i at the beginning of tj. datak,tj denotes accumulative
received data volume of user k before tj.
As shown above, sj is a vector with the size of 4N +K and

consisted of three parts. The first part is the locations of all
UAVs and the second part is the residual energy of each UAV.
The last part is the accumulative received data volume of each
user. Specially, all the elements in state sj are normalized to
accelerate the process of learning. In detail, xi, yi, hi and Ei,tj
are divided by their corresponding maximum, i.e. a, b, hmax
and Emax . datak,tj is divided by

∑
k datak,tj which is the total

received data volume by all users.

B. ACTION
Obviously, action aj is

aj = {ϕ1, φ1, d1, ϕ2, φ2, d2, . . . , ϕN , φN , dN },

ϕi ∈ [0, π],

φi ∈ [0, 2π ),

di ∈ [0, dmax]. (24)

In the start of tj, the UAV flies according to action aj with
a fixed velocity v. ϕi and φi are the polar angle and the
azimuthal angle of the UAV i flight direction, respectively.
di is the flight distance and dmax is the largest allowed flight
distance. If a UAVflies off the border, it will stay at the border.
After the flight, in the remaining time of tj, if the UAV is not
in charging station, it will hover and provide communication

service for covered users. Otherwise, the UAV will charge
until the end of tj.

C. REWARD
The reward rj is calculated at the end of the time slot tj and is
designed as

rj =


7JFI ·

datatj
Etj
+

∑
i
Ii

·10(−
5
6
Ē2
i,tj −

7
6
Ēi,tj + 1) ∀Ei,tj+1 > 0,

−20 ∃Ei,tj+1 = 0.

(25)

If the residual energy of any UAV at the end of tj is larger
than 0, the first line formula will be used to calculate the
reward. Thereinto, Etj denotes the energy consumed by all
UAVs in tj, where Etj =

∑N
i=1[E

C
i (tj) + EHi (tj) + EMi (tj)].

datatj represents the data volume received by all users in tj. Ii
is the indicator function, which can be expressed as

Ii =

{
1 UAV i replenished energy in tj,
0 else.

(26)

Ēi,tj denotes the normalized residual energy of UAV i at the

beginning of tj, and is equal to
Ei,tj
Emax

. JFI is Jain’s Fairness
Index, which is used to estimate the fairness. JFI is defined
by

JFI =
(
∑K

k=1 datak,tj+1 )
2

K
∑K

k=1 data
2
k,tj+1

, (27)

and JFI ∈ [ 1K , 1]. The fairer the service is, the larger JFI is.

The first part of the first line formula, i.e. 7JFI ·
datatj
Etj

, can

be interpreted as fairness times energy efficiency. The larger
the energy efficiency and the fairness are, the larger the first
part is. The second part of the first line formula, i.e.

∑
i Ii ·

10(− 5
6 Ē

2
i,tj−

7
6 Ēi,tj+1), is used to stimulate the agent to learn

replenishment policy. It is expected that the UAV replenishes
energy when it has low energy rather than high energy. As a
result, this part is developed. If Ēi,tj is less than 60%, the value
will be positive. If not, the value will be negative.

Otherwise, the second line formula is used, where there
is a UAV without energy in tj. The agent will receive the
‘‘penalization’’ which is −20 in our implementation.

D. UC-DDPG
The pseudo-code of UC-DDPG is presented in Algorithm 1.
In the first place, we randomly initialize actor neural network
µ and critic neural network Q, and build target network Q′

and µ′. A replay buffer RB with a fixed size is also built.
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Algorithm 1 UC-DDPG
Initialization:

Randomly initialize actor neural network µ(s | θµ) and
critic neural network Q(s, a | θQ).
Initialize target network Q′ and µ′ with weights θQ

′

←

θQ, θµ
′

← θµ.
Initialize replay buffer RB.

Algorithm:
1: for episode in {1, 2, 3, . . .} do
2: Initialize a Gaussian noise N with mean 0 and vari-

ance var ← 5.
3: Randomly initialize the positions of all UAVs.
4: Initialize the UAVs with fully charged battery.
5: Receive initial observation state s0.
6: for tj in {t0, t1, . . . tend } do
7: Select action aj = µ(sj | θµ)+N .
8: var ← var × 0.995
9: All UAVs execute action according to aj.
10: UAVs serve users or replenish energy.
11: Calculate reward rj according to equation (25).
12: Get new state sj+1.
13: Store (sj, aj, rj, sj+1) in RB.
14: Sample a random minibatch of L samples

(sl, al, rl, sl+1) from RB.
15: Set yl = rl + γQ′(sl+1, µ′(sl+1 | θµ

′

) | θQ
′

).
16: Update critic by minimizing the loss:

loss =
1
L

∑
l

(yl − Q(sl, al | θQ))2.

17: Update the actor policy using the sampled policy
gradient:

∇θµJ ≈
1
L

∑
l

∇aQ(sl, µ(sl) | θQ)∇θµµ(sl | θµ).

18: Update the target networks:

θQ
′

← τθQ + (1− τ )θQ
′

,

θµ
′

← τθµ + (1− τ )θµ
′

.

19: if there is a UAV without power then
20: break
21: end if
22: end for
23: end for

At the start of each episode, the positions of all UAVs are
randomly initialized and all UAVs have fully charged batter-
ies. A random noise N which is used to balance exploration
and exploitation is initialized. In the early stage, the policy
is far from optimal, and various actions need to be explored.
As the algorithm is iterated, the policy gradually converges.
Therefore, it is needed to decrease exploration and increase
exploitation. In our implementation, we use Gaussian noise
with mean 0 and variance var . The value of var is 5 in the
beginning and times 0.995 after each time slot. The episode

terminates when there is a UAV without energy or the length
of this episode is longer than T .

At the beginning of the time slot tj, the agent determines
actions aj according to the actor network µ, current state sj
and the Gaussian noise N , where aj = µ(sj) + N . Then,
the actions are distributed to each UAV and the UAVs execute
received actions. Corresponding flight energy consumption
is calculated according to equation (16). During the flight,
the UAV does not serve users. After the flight, if the UAV
is not in charging station, the UAV will hover and provide
communication service for users in the remaining time of tj.
Otherwise, the UAV will charge until the end of tj. At the
end of tj, the communication energy consumption, hover
energy consumption, charging energy and the data volume
are calculated according to the system model in Section III.
Then, the reward rj is calculated according to equation (25)
and a new state sj+1 is observed. The tuple, (sj, aj, rj, sj+1),
is stored in the replay buffer RB. Next, a minibatch with a
size of L is randomly sampled from the RB. loss is calculated
according to the target network µ′, Q′, the critic network Q
and the samples in the minibatch, as shown in lines 15-16.
The critic network parameters are updated by minimizing
loss (line 16) and the actor network parameters are updated
by policy gradient (line 17). Finally, the target networks µ′,
Q′ are updated by slowly tracking the original networks,
as shown in line 18.

VI. SIMULATION AND PERFORMANCE EVALUATION
In this section, we present simulation to evaluate the perfor-
mance of UC-DDPG. The simulation runs are performedwith
TensorFlow 1.12 [60]. We consider the users are randomly
located within a square area with a size of 400m × 400m.
The minimum and maximum allowed height of UAV are
20m and 50m respectively. The number of UAVs is 2 and we
test the performance of UC-DDPG under three different user
numbers (10, 15 and 20). The charging station is a cuboidwith
the size of 20m× 20m× 15m. The UAVs communicate in an
urban environment withψ = 12.08, ζ = 0.11, ηLoS = 1.6 dB
and ηNLoS = 23 dB at 2GHz carrier frequency [20]. The
size of replay buffer RB is 30000 and the size of minibatch
L is 64. The total service time T is 2 hours and the time
slot tslot is 60 seconds. Therefore, there are 120 time slots
in T . The main simulation parameters are listed in Table 1.
Both actor network and critic network are feed-forward fully
connected neural network and their parameters are listed
in Table 2 and Table 3.

In particular, Random flight and Hilbert curve flight are
used as benchmark.

Random flight. Random flight is very straightforward.
In time slot tj, for each UAV i, the flight direction polar angle
ϕi, the azimuthal angle φi and flight distance di are randomly
selected in [0, π], [0, 2π ) and [0, dmax] respectively. Simi-
larly, if a UAV flies off the border, it will stay at the border.

Hilbert curve flight. Hilbert curve flight is a traversal
algorithm. The altitude of all UAVs is same and fixed, which
is 35m in our simulation. UAVsfly along the 3rd-order Hilbert
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TABLE 1. Key parameters of simulation.

TABLE 2. Parameters of actor neural network.

TABLE 3. Parameters of critic neural network.

FIGURE 4. 3rd-order Hilbert curve with the unit length of 50m.

curve, as shown in Figure 4. The two UAVs start from points
A and B respectively. In each time slot, the UAVs fly a unit
distance which is 50m in our implementation. If the UAV

FIGURE 5. The total reward of each episode during training.

FIGURE 6. The length of each episode during training.

reaches the endpoint, it will double back. Specially, if the
residual energy of the UAV is less than 20%Emax at the start
of time slot, the UAV will fly to charging station to replenish
energy until the battery is full. Then the UAV returns to the
original position and serves users sequentially.

A. TRAINING
For each scenario with different numbers of users, we execute
training with 40000 episodes. We show the training process
by the example of 10 users, and the training processes in all
scenarios are similar. The total reward of each episode and the
length of each episode are shown in Figure 5 and Figure 6.

It can be observed that the Total Reward Per
Episode (TRPE) is small and almost unchanged in the
first 10000 episodes. Then, the TRPE shows fluctuation
between 10000th episode and 17000th episode. For the
rest of episodes, it gradually increases and stabilizes.
Figure 5 and Figure 6 correspond to each other. In the first
10000 episodes, the service time of each episode is short,
which results in the small TRPE. After that, we can see that
the agent learns how to charge between 10000th episode and
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FIGURE 7. The flight trajectories of all UAVs.

17000th episode. Finally, the agent knows how to charge and
can provide persistent service in 7200 seconds, which is the
length of T . It is interesting that the agent increases the TRPE
by learning the way of charging firstly. As shown in Figure 6,
the agent has learned to charge in 17000th episode, but the
TRPE of 17000th episode is not high. Afterwards, the agent
increases the TRPE by learning how to serve user fairly and
energy efficiently.

After training, the flight trajectories of all UAVs which
are generated by the actor network µ are shown in Figure 7.
It seems that the agent learned a sort of cyclic trajectory.
All UAVs circle and repeat the pattern of flying, serving or
charging. We can also see that the UAVs do not fly to the
places without users to avoid wasting energy. It is a pity that
the agent did not learn to let twoUAVs collaborate effectively,
such as serving different users separately to further reduce
flight energy consumption. The research on effective cooper-
ation will be put into our future work.

B. ENERGY EFFICIENCY
Data volume and energy efficiency of different scenarios
are depicted in Figure 8 and Figure 9, where energy effi-
ciency equals to data volume divided by energy consumption.
We use the actor network which trained 40000 episodes
to determine actions. We can see that UC-DDPG has the
best performance. Compared with Hilbert curve flight, UC-
DDPG gets about twice the amount of data and the energy
efficiency. As expected, Random flight has the worst per-
formance. In Random flight, the UAV flies randomly and
does not know replenishing energy, therefore it runs out of
power soon. As a result, Random flight has the minimal data

FIGURE 8. Comparisons of data volume over different algorithms and
user number.

FIGURE 9. Comparisons of energy efficiency over different algorithms
and user number.

volume and the lowest energy efficiency. It can be observed
that the data volume and the energy efficiency of Random
flight increase with the growth of number of users. It is
because that UAVs have higher probability of covering users
when the number of users increases. Hilbert curve flight has
better performance than Random flight, but is not as good
as UC-DDPG. In Hilbert curve flight, the UAVs traverse
all places. However, there may be some places without any
user. Consequently, the UAVs waste energy in vain. On the
other hand, the positions used to serve users in Hilbert curve
flight may be energy inefficient due to the poor channel
environment, which leads to further deterioration of energy
efficiency. In contrast, as shown in Figure 7, UC-DDPG
avoids places where there are no users by training, and learns
the better service positions, which increases the data volume
and improves the energy efficiency.

C. FAIRNESS
Figure 10 shows the fairness in different scenarios. We can
see that both Hilbert curve flight and UC-DDPG have pretty
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FIGURE 10. Comparisons of fairness over different algorithms and user
number.

good fairness and Random flight has inferior fairness. It is
not strange that the fairness has no relation with the number
of users. Because in Random flight, the UAVs randomly fly,
it usually has very low fairness. Hilbert curve flight traverses
all places, thus it always produces good fairness. In UC-
DDPG, JFI in reward rj and normalized data volume in state
sj guide the agent to learn how to serve users fairly. After
training, the agent learned fair service policy.

VII. CONCLUSION
The energy efficient, fair 3-D deployment and energy replen-
ishment policy of multiple UAVs are jointly studied in this
paper. Firstly, we build detailed channel model, data rate
model and energy model. Then, inspired by the success of
DRL, we propose a UAV control policy based on DDPG
which is a deep actor-critic algorithm. The state, action and
reward of RL are carefully designed under the consideration
of energy efficiency, fairness and persistence. A lot of training
ensures the performance of UC-DDPG. Simulation results
show that UC-DDPG has good convergence and outperforms
other scheduling algorithms (Randomflight andHilbert curve
flight) in terms of data volume, energy efficiency and fairness.
In future work, we plan to use multi-agent DRL to improve
the cooperation between UAVs.
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