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ABSTRACT Single pixel imaging (SPI) combined with compressed sensing techniques can provide
solutions for special optical imaging to avoid array detectors and raster scanning. However, the imaging
speed should be further improved for real-time SPI and the challenge is to reduce the sampling time
and post-processing time. This paper proposes a deep compressive and super-fast single pixel imaging
protocol based on reordering Hadamard basis patterns and Fourier domain regularization inversion (FDRI)
algorithm. Two reordered Hadamard basis patterns in terms of the improvement in the compressing ratio
and reconstruction quality are proposed and compared to other methods. The deterministic Hadamard
basis are reordered through their total variation (TV) in ascending order and total wavelet transformed
coefficients (TW) in ascending order to have the best performance. Numerical simulation shows that this
protocol can reconstruct a 128× 128 pixels natural image at the sampling ratio of 5% with the peak-signal-
to-noise ratio (PSNR) of 25.56 dB in 0.00039s. Terahertz near-field imaging experiment also verifies the
proposed protocol. The inherent advantage and mechanism of reordering approaches are discussed and then
revealed by comparing the coherent area generated by these reordered patterns. The TV order and TW
order Hadamard basis patterns can be deterministically described mathematically and easily constructed.
Meanwhile, it results in a significant improvement both in the compression ratio and image reconstruction
quality. Finally, the realization this protocol in real SPI system in the future will bring the real-time SPI
closer to practical applications.

INDEX TERMS Single-pixel imaging, Hadamard basis, total variation, wavelet transform, Fourier domain
regularization.

I. INTRODUCTION
Single pixel imaging (SPI) technology, which enables to build
compact, low-cost and fast imaging devices, has drawn more
research attentions [1], [2]. It has been widely used in 3D
imaging [3], [4], terahertz imaging [5], [6], ghost imaging [7]
and video acquisition [8]. A general SPI setup is achieved
only by a spatial light modulator (SLM) and a single point
detector, which records the inner product of the scenes with
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specific SLM patterns. The image is reconstructed numeri-
cally after a sequence of measurements acquired by a series
of SLM patterns. Methods of recovering the images include
compressed sensing [9] and basis scan [10], [11].

One of the greatest challenges for SPI is real-time imag-
ing technique [8]. When the hardware performance such
as switch rate and modulation speed of SLM and sampling
speed of single point detector cannot be improved anymore,
the best choice is to reduce the measurements (also called
compressive measurement) to improve the imaging speed.
Hence, the SLM patterns and reconstruction methods are
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crucial to the design of SPI system. The compressed sens-
ing (CS) theory [12] provides an excellent theoretical frame-
work for image reconstruction. It is based on the random
SPL patterns and iterative optimization methods such as
l1-magic algorithm [1], Orthogonal Matching Pursuit (OMP)
algorithm [13] and TVAL3 algorithm [14]. These algorithms
require the images to satisfy the sparse constraint. However,
without prior information of the scene, the sparsity ratio
of the image remains unknown. Meanwhile, they are not
sufficiently fast to allow real time imaging for amedium sized
image due to their iterative process. One solution is to find a
fast reconstruction method such as one-step reconstruction
algorithms for real-time imaging at an appropriate image
reconstruction quality. Fortunately, Czajkowski has proposed
the Fourier domain regularization inversion (FDRI) recon-
struction [15], [16]. This method can make the reconstruction
process simplified to one-stepmatrixmultiplication, resulting
in super-fast image reconstruction.

The other method to further reduce the imaging time is
to reduce the SLM patterns, i.e., compressive measurement.
However, there is a tradeoff between the compression ratio
and image resolution. For the general images, one cannot
acquire a good image quality when the sampling ratio is
below 30% in a practical SPI imaging due to the noises. One
promising direction is that better designed SLM patterns can
improve the image reconstruction quality at a low sampling
ratio. Generally used SLM patters include Gaussian matrix,
Bernoulli matrix, DCT matrix [15], Hadamard matrix [17].
For most SPI systems, DMDs are used as the SLM, which
are inherently limited to be either on or off, can only project
1s and 0s on the modulator [17]. Consequently, Hadamard
matrix is the easiest to construct and implement on hard-
ware without binarization or sacrificing the pattern switch
rate [18]. Furthermore, it has been found that using a dif-
ferential measurement of the Hadamard matrix enhances the
signal noise ratio (SNR) because it subtracts background
noise [19]. Additionally, a significance-based ordering of the
Hadamard basis provides a better reconstruction from fewer
measurements [20]. The ‘‘Russian Dolls’’ (RD) ordering and
‘‘cake cutting’’ (CC) ordering Hadamard basis approaches
are proposed [20], [21]. CC order was proved to be able to
acquire high quality images with super sub-Nyquist sampling
ratio even below 0.2% for 1024×1024 images [21]. However,
RD order is difficult to construct and has a limited spatial
resolution, and CC order can only be fast constructed from the
Walsh ordered Hadamard empirically. One also can resort the
normal Hadamard basis in other orders. A natural question
one would ask is that how to make the most significant
patterns projected firstly and which ordering has the optimal
compressive ratio and best image recover quality. Besides, the
inherent math and physical mechanism existing reordering
methods remains unknown.

In this paper, two novel Hadamard basis sorting method:
total variation method and total absolute wavelet decompo-
sition coefficients method are put forward. Combined with
FDRI reconstruction method, a deep compressive (very low

sampling ratio) and super-fast SPI protocol is achieved which
can reconstruct a 128 × 128 image in a few microsecond
at the sampling ratio below 5%. Based on this protocol,
the reconstructed images obtained from different reordered
Hadamard matrices and Gaussian matrix through three image
quality assessment indices are numerically compared to find
the optimal sorting order and analyze the inherent physics
nature.

The rest of this paper is organized as follows. Section II
describes the Hadamard basis, fast reconstruction protocol
and the image assessment indices adopted. Section III intro-
duces the different principle of reordering Hadamard basis
patterns. Section IV gives the numerical simulation and
experimental results. Finally, we discuss the influence factors
and analyze the inherent physics nature of reordering indica-
tors in Section V and report our conclusions in Section VI.

II. HADAMARD BASIS AND RECONSTRUCTION
PROTOCOL
A. HADAMARD BASIS
Hadamard basis generated from the built-in function of
MATLAB is the normal Hadamard matrix, which is a
symmetric square matrix with elements ±1. Let Hn be a
Hadamard matrix of order n, then the Hadamard matrix of
higher order can be given by the following recursive formula,

H2n =

[
Hn Hn
Hn −Hn

]
(1)

where the H1 = [1],H2 =

[
1 1
1 −1

]
. Complementary

measurement strategy is used when projecting the Hadamard
patterns. The Hadamard matrix can be easily divided into two
complementary matrices: a positive and a negative subset,
expressed as H = H+ − H−. Figure 1 illustrates the com-
plementary matrices of Hadamard.

FIGURE 1. Complementary matrices of Hadamard patterns.

B. RECONSTRUCTION PROTOCOL
The reconstruction process of compressive sensing is to solve
following ill-posed problem,

Y = H · X (2)

where Y is measured vector, H is the patterns and X is
the object. FDRI algorithm is based on the multiplication
of the generalized inverse of rectangular measurement matrix
by the measurement vector [15]. For a specific compressed
ratio, the measurement matrix and calculation the corre-
sponding pseudoinverse matrix M are calculated and stored
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firstly, then the image is recovered by matrix multiplication.

X = M · Y (3)

The computational time is only the time of one step
matrix multiplication. Combined with Hadamard basis pat-
terns, FDRI can be a super-fast reconstruction protocol for
SPI. For comparison, we also used the TVAL3 [14] to show
the superiority of proposed reconstruction protocol.

C. RECONSTRUCTION ASSESSMENT INDICES
Three different metrics are chosen to quantitatively assess the
quality of retrieved images: root mean squared error (RMSE),
PSNR, and structural similarity index (SSIM). RMSE is
the root-mean-square error between the contaminated recon-
struction image and the original image. Assuming I is the
original image and K is the reconstructed image, the RMSE
is calculated as follow:

MSE =
1

N × N

N∑
i=1

N∑
j=1

|I (i, j)− K (i, j)|2 (4)

RMSE =
MSE

1
N×N

N∑
i

N∑
j
I (i, j)

(5)

where N is the size of the images in number of pixels.
I (i, j) is the value of the pixel in ith row and jth row in the orig-
inal distribution, and K (i, j) is the value of the corresponding
pixel in the reconstructed image.

PSNR is a full-reference image quality assessment crite-
rion. It is the ratio between themaximum signal power and the
noise power. The greater the PSNR value is, the less distorted
the reconstruction images will be. In a 2-D imaging process,
the PSNR is calculated as follow:

PSNR = 10× log10(
Max(I )
MSE

) (6)

SSIM is calculated through mean value, square deviation
and covariance of original images and recovered images.
Here, the built − in function ssim in MATLAB is used.

III. REORDERING OF HADAMARD BASIS
To achieve deepest compressive sampling ratio, a smallest
fraction of most important patterns which can contribute
most to the image reconstruction should be projected firstly.
Since it is hard to know a priori which patterns can gener-
ate the most significant intensity values, one must perform
a complete sampling and then pick up the crucial patterns
needed according to the recorded signal. Hence, as shown
in Figure 2, by using full sampling, the measured signals are
sorted in a descending order of absolute value form |Y | for
a 128 × 128 pixels sparse image(Fig.2(a) and Fig.2(c)-(d))
and a natural image (Fig.2(b) and Fig.2(d))), respectively. It is
called ‘‘power order’’ Hadamard basis.

In this sparse image, all intensities of the white letters and
geometries are 0.3, while all values of the black background
are 0. According to figure 2, the measured signals of normal

FIGURE 2. Original images and measured signal by normal order and
‘‘power order’’ Hadamard basis.

order Hadamard are natural distributed. After sorting, few
fractions of the corresponding patterns which generate most
significant measurements for image reconstruction are used
to sample the object. Retrieved images by FDRI at different
sampling ratio are shown figure 3. Both sparse image and
natural reconstructed by FDRI show a good PSNR at even
5% sampling ratio at ‘‘power order’’. For the sampling ratio
under 5%, FDRI has a better reconstruction for the natural
image than the sparse image. Table 1 shows the comparison
of reconstruction results of the natural image by TVAL3 and
FDRI. FDRI performs much better in reconstruction time,
using just a few microseconds, while the TVAL3 use tens
of seconds and more. What’s more, these 3 indices confirm
that FDRI has a good performance in super-fast image recon-
struction quality using Hadamard basis patterns.

TABLE 1. Comparison of reconstruction results of TVAL3 and FDRI.

However, for a practical SPI system, it is unlikely to have
priori which patterns can generate the most significant val-
ues and whether the image is sparse or not, and one can-
not measure the signals first and select the most important
part. There are many orders for the Hadamard matrix, such
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FIGURE 3. Reconstruction of sparse image and natural image by FDRI at different sampling ratio (number below the image
is PSNR).

FIGURE 4. Example of reordering the 16 × 16 Hadamard matrix.

as sequence order, dyadic order, Paley-I order, and so on.
But none of them can make the important patterns appear
first until the ‘‘RD’’ and ‘‘CC’’ order are proposed. The
‘‘RD’’ order is very complicated and difficult to construct.
CC order is proposed by Wenkai-Yu which generates an
optimized sort of the Hadamard basis. It takes each reshaped
basis patterns as a piece of cake and resorting these pat-
terns by their counting their connected regions. The ‘‘CC’’
order is fast calculated and achieved empirically from the
Walsh-Hadamard matrix by regularity [21]. Inspired by these
methods, we proposed another two different reordering meth-
ods: total variation (TV) ascending order (TV order), wavelet
coefficients ascending order (TW order), and add another
reordering methods into the global comparison: total discrete
Fourier transform coefficients ascending order (FFT order)
and total discrete Fourier transform coefficients ascending
order (DCT order).

A. TOTAL VARIATION ASCENDING ORDER
Total variation is the sum of vertical and horizontal variation
of each row of a normal order Hadamard matrix. For a N ×N

Hadamard matrix, its total variation of each row is calculated
as follows,

TVi =
∑√

(hiDx)2 + (hiDy)2 (7)

where Dx and Dy is the discretized variation operators for
the variation in x direction and y direction respectively,
which are N × N sparse diagonal matrices and its elements
are 0, −1 and 1; hi is the ith row of normal Hamdard
matrix; TVi is the sum of variations. Firstly, we generate
a normal order Hadamard matrix and calculate its total
variation of each row, then reorder the rows by their total
variation in descending order, which is called TV order.
Figure 4 gives an example of 16 × 16 Hadamard basis
patterns to illustrate how our TV order and CC order
works. The first line includes a 16 × 16 normal order
Hadamard matrix and corresponding basis patterns which are
4 × 4 matrices reshaped from each row of the normal
order Hadamard matrix. The second and third rows are the
TV order and CC order Hadamard matrices and their basis
patterns.
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B. TOTAL WAVELET COEFFICIENTS ASCENDING ORDER
Wavelet transform can decompose a matrix in multiscale and
multiresolution. By choosing a wavelet, we can obtain the
wavelet coefficients and then compute each total absolute
transformed coefficient, respectively, as shown in equation 8.

WLi =
n∑
1

n∑
1

(ww ·Mi · ww′) (8)

where the ww is wavelet transform matrix,Mi is n× nmatrix
reshaped from the ith row of N× N normal Hamdard matrix,
and the ith row is reshaped into a n × n matrix, where n is
the size of the image.WLi is the sum of wavelet coefficients.
Figure 5 shows a 128 × 128 Hadamard basis pattern and its
transformed coefficientsmatrix. The transformed coefficients
matrix is a sparse matrix which has lots of zero elements.
Then the Hadamard basis is reordered according to its total
wavelet coefficients in ascending order. By choosing dif-
ferent wavelet basis, different wavelet orders of Hadamard
are obtained. For the sake of simplicity, it is called the
‘‘TW order’’.

FIGURE 5. One Hadamard basis pattern and its wavelet transform.

C. TOTAL DISCRETE FOURIER AND COSINE TRANSFORM
COEFFICIENTS ASCENDING ORDER
Similarly, the FFT order and DCT order is obtained by
reordering the Hadamard matrix through their total discrete
Fourier transform coefficients and total discrete cosine trans-
form coefficients of each row. Figure 6 illustrates the Fourier
transform and cosine transform coefficients of a 128 × 128
Hadamard matrix. Summing up all the coefficients of each
Hadamard basis pattern and sorting them in descend order,
the FFT order and DCT order are obtained, respectively.

FIGURE 6. Fourier transform and cosine transform coefficients.

IV. SIMULATION RESULTS
A. RECONSTRUCTION OF SPARSE IMAGE
Sparsity of images has great influence on reconstruction
in compressed sensing. Imaging spatially sparse objects is
not always possible or interesting. Hence, a standard sparse
image (Figure2(a)) and a natural image (Figure2(b)) are used
to examine the feasibility of proposed protocol.

Although Gaussian random matrix consists of decimals,
it is always used in compressed sensing as sampling patterns
and has a good performance [22], [23]. Hence, the Gaussian
matrix is also added into the comparison for an extensive
comparison. The Paley-I type Hadamard matrix is proposed
to join the comparison because it has been used in single
pixel imaging [24] due to its flexibility in image size. The
Paley-I type Hadamard matrix is created by cyclic permu-
tation which is called the Paley order. We choose the Haar
wavelet basis for TW order. Figure 6 shows the performance
of 6 reordered Hadamard basis, Paley Hadamard matrix and
Gaussian random matrix. To quantitatively evaluate the qual-
ity of a reconstructed image, the RMSE, PSNR and SSIM
of each reconstructed image are calculated as a function of
sampling ratio from 1%∼100% at the step of 1%, which is
shown in Figures 7(a)-(c). All the simulations are performed
on a HP laptop with the RAM of 8 GB and the CPU of Intel
Core i7-8550U.

The three indices are computed with the original image as
a reference. According to the results, for all the three indices,
it is clear that TV order, CC order, Haar order and ‘‘power
order’’ outperform the Paley order and Gaussian matrix. The
FFT order and DCT order cannot get good reconstruction
across all the sampling ratio. At the sampling ratio below
5% and above 30%, TV order, Haar order and CC order have
best PSNR and RMSE, while the ‘‘power order’’ has the best
PSNR and RMSE at the sampling ratio between 5% and 30%.
For the SSIM, ‘‘power order’’ is the best at the sampling ratio
under 10% while the TV order, Haar order and CC order
almost have the same SSIM. For the SSIM of Haar order, two
peaks occur at the sampling ratio of 50% and 75%.

In total, the ‘‘power order’’ can provide an optimal
reconstruction at the sampling ratio below 10%. TV order
can offer near optimal reconstruction and is slightly better
than the Haar order and CC order. For deeper compres-
sive SPI, TV order is easy to calculate and is best choice
for both reduction of sampling time and reconstruction
time.

B. RECONSTRUCTION OF NATURAL IMAGE
Natural images are more common for practical SPI system.
To verify the universality of our method, we choose a set of
natural images including 49 images [25] and reconstruct these
images at sampling ratio from 1%∼100% with a step of 1%.
Figure 8(a)-(c) shows the reconstructed results.

Similarly, the proposed reordered Hadamard basis has an
overwhelming superiority for any sampling ratio and exceed
the Gaussian matrix and Paley order. For the sampling ratio
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FIGURE 7. Comparison of recovered sparse image quality of the proposed
reordering Hadamard basis.

from 1% to 100%, TV order and CC order have best PSNR,
RMSE and SSIM comprehensively. And TV order is slightly
better than CC order. For SSIM, Haar order is the best at some

FIGURE 8. Comparison of recovered natural image quality of the
proposed reordering Hadamard basis.

points. For visual comparison, figure 9 gives an example of
the reconstructed image using 5 different Hadamard matrices
at the sampling ratio between 5%∼30%. The Power order
and TV order are better than others at the sampling ratio
under 15%. The TW order is slightly better than CC order
at the sampling ratio under 10%.
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FIGURE 9. Comparison of recovered natural images by 5 different Hadamard matrices.

FIGURE 10. Comparison of recovered experimental target images by 5 different Hadamard matrices.

C. EXPERIMENTAL VERIFICATION
The compressive terahertz near-field imaging is used to verify
the proposed protocol. Imaging system setup and experi-
mental details can be seen in [26]. The experimental target

is a metal wheel. The reconstructed images from measured
signals using 5 Hadamard matrices are shown in figure 10.
The reconstruction time is only 0.001s at the sampling ratio
of 10%. It can be clearly seen that the power order is the best,

VOLUME 8, 2020 55779



X. Yu et al.: Deep Compressive SPI by Reordering Hadamard Basis: Comparative Study

and TW order and TV order is better than the CC order and
Paley order. For normal Walsh-Hadamard matrices, at least
30% sampling ratio is needed in a practical imaging system,
while the proposed TV order and TW order can recover the
image under 10% sampling ratio. Hence, the propose protocol
can save a lot of time, achieving near real-time terahertz
imaging.

V. DISCUSSIONS
A. INFLUENCE OF DIFFERENT WAVELETS
There are a large number of wavelets which are calledwavelet
family. Different wavelets may result in different TW order
and different reconstruction results. Three commonly used
wavelets, Haar wavelet, db2 wavelet and sym8 wavelet, are
compared. Figure 11(a-c) demonstrates the performance of
the three wavelets.

TV order is still better than wavelets order, and Haar
wavelet has the near TV order performance for all sampling
ratio. At some points, the SSIMofHaarwavelet order is better
than TV order. Definitely, Haar wavelet order is better than
the db2 wavelet and sym8 wavelet. From mathematic aspect,
Hadamard basis patterns are transformed intowavelet domain
which a large number of the wavelet coefficients are close to
zero also called the sparsity of the patterns. Hence, the total
absolute wavelet coefficients are related to the sparsity of the
patterns. The sparser the patter is, the smaller total absolute
value is. As a result, it will rank in the front of the reordered
Hadamard basis. But this mechanism cannot account for the
FFT order and DCT order.

B. INFLUENCE OF NOISE
Noise is unavoidable in real imaging systems especially when
the signals are weak. It is worthwhile to further compare
the reorder techniques in terms of robustness to noise to
evaluate their practical application in real imaging system.
A random noise which average amplitude is some proportion
of the measured signals is added to the measured signals.
Figure 12 shows the natural image reconstruction comparison
with different noise level, where the x axis represents propor-
tion of amplitude of noise compared the average measured
signals. We only compared the TV order, CC order, Haar
order and Gaussian matrix.

According to the results, all 3 reorder approaches are robust
to noise, and work better than Gaussian matrix.TV order
approach perform better than the other two.

C. ANALYSIS OF REORDERING MECHANISM
As mentioned above, total variation of Hadamard matrix,
total absolute wavelet decomposition coefficient of basis
patterns, and the number of connected regions of basis pat-
terns are used to reorder the Hadamard basis for TV order,
wavelet order and CC order. Measured signals from four
orders Hadamard basis patterns are shown in figure 13, which
just shows the 10-3000 points. The measured intensity from

FIGURE 11. Comparison of recovered natural image quality of different
wavelets.

different orders display similar downtrend but with clear
different distribution characteristics.

In compressive theory, the restricted isometry property
(RIP), which is described below, can be used to guide the
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FIGURE 12. Natural image reconstruction comparison with different
noise level.

design of sensing matrix.

1− ε ≤
||Av||22
||v||22

≤ 1+ ε (9)

FIGURE 13. Measured signals by different reordered Hadamard basis
patterns.

where the A is the measurement matrix, v is the object vector,
ε is a small constant. The RIP is used to judge the mea-
surement matrix whether it can recover the object signal or
not. The term ||Av||2 is the two norm of measured intensities,
which has the same distribution of the |y| used in figure 2. The
absolute value of measured signals utilizing these proposed
Hadamard matrices are replotted in figure 14. From this
figure, similar to the figure 13, we see that the measured
signals still are distributed with different characteristics.

FIGURE 14. Measured signals by proposed matrices.

Apart from analyzing the absolute value of the measure-
ments, the distribution of the eigenvalues of the sensingmatri-
ces is also a potential index. We calculated the eigenvalues
of the sensing matrices: TV order, CC order, TW order and
Normal order, and the distribution of eigenvalues is shown
in figure 15.

The eigenvalues of reorder Hadamard matrix are complex
and distributed around 128. From this figure, it can be seen
that the eigenvalues are distributed with different characteris-
tics. Therefore, it still cannot explain the relationship between
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FIGURE 15. Eigenvalues distribution of the sensing matrices.

the proposed methods and other reorder methods using the
eigenvalues of sensing matrix.

To further compare the reordering indices, total variations
and total absolute wavelet decomposition coefficients of the
four reordered Hadamard basis patterns are calculated for the
different reordered Hadamard basis patters. Figure 16 and
figure 17 shows the normalized total variation and total

FIGURE 16. Total variation of the proposed four reordered Hadamard
matrices comparison.

FIGURE 17. Total coefficients of the proposed four reordered Hadamard
matrices comparison.

wavelet decomposition coefficients of a 16384 × 16384
reordered Hadamard matrix (H128) in the four orders. In this
figure, each point represents the normalized total variation
of each row of reordered Hadamard matrix. All the total
variations and total wavelet decomposition coefficients have
an overall rising trend between 0 and 1. For total variation,
similar to the TV order, the CC order has a smoother shape,
while Haar order and ‘‘power order’’ have another rising
trend which has some violent fluctuations during the rising
process. Same with the total variation, total absolute wavelet
decomposition coefficients (figure 17) also have the rising
trend. But the CC order has the most similarity to the Haar
order.

From the viewpoint of mathematic and physical, the com-
plementary Hadamard patterns only consist of 0 and 1,
if adjacent elements have different values, it will contribute
to the increase of total variation and the number of con-
nected regions, and the decrease of sparsity in a basis pattern.
Figure 18 gives the examples of Hadamard basis patterns with
different connected regions. Hence, one pattern, which has
the smallest total variation, has the least connected region
number as well as the best sparsity in wavelet transform.
Consequently, this pattern will rank in the front of the resort
Hadamard basis patterns. In a practical system, the area of
connected elements which have the same value or called
connected region in mathematical topology, will reflect the
same modulation light, resulting in a coherence area.

According to the [27], for a specific object, the signal noise
ratio (SNR) of reconstruction is correlated with the coherence
light area. The relationship is described as follows.

SNR ∝
m · Acoh
Abeam

(10)

where m is measurement times, Abeam is the area of illumi-
nation beam, Acoh is the coherence area. Hence, the bigger
the total coherence area is, the more it will contributed to the
measured signals and reconstruction. Hence, number of the
connected regions of reordered Hadamard matrices accounts
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FIGURE 18. Examples of connected region numbers.

for inherent nature mechanism. In a nutshell, all the three
reordering approaches, TV order CC order and TW order, can
provide almost same reconstruction with the ‘‘power order’’
at deep compressive sampling, and even better performance at
higher sampling ratio above 30%. TV order and TW order are
better than CC order and have clear mathematic and physical
mechanism.

VI. SUMMARY AND CONCLUSION
In this paper, we propose a deep compressive and super-fast
single pixel imaging protocol based on reordering Hadamard
basis patterns and FDRI reconstruction algorithm. This proto-
col can reconstruct a 128×128 natural image at the sampling
ratio of 5% with the PSNR of 25.56dB in 0.00039s, which
allows video rate image acquisition. Deep compressive mea-
surement is achieved by using the structured characteristic of
Hadamard matrix to reorder the sequences of Hadamard basis
patterns. Seven reorder strategies are compared by numerical
simulation from sampling ratio of 1%-100%. Results show
that the TV order and TW order can be described mathe-
matically and are easy to build, and they can recover the
images with the similar image quality of ‘‘power order’’.
Proposed deep compressive single pixel imaging and super-
fast reconstruction are applied to terahertz near-field imag-
ing, achieving near real-time terahertz imaging. The possible
mechanisms are discussed and the best core idea and inher-
ent nature of reorder approaches is that it makes the basis
patterns which have larger coherence light area modulated

first. The TV order and TW order can be deterministically
described inmathematics and are the best approaches in terms
of computational efficiency and reconstruction performance
for any size of images. Finally, the realization of the system
hardware in the future will bring the real-time single-pixel
imaging closer to practical applications, for example, real-
time terahertz single-pixel imaging.
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