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ABSTRACT A novel two degree-of-freedom (DOF) ball-joint-like hydraulic spherical motion mecha-
nism (SMM) for use in robotic applications is proposed to achieve smooth spherical motion in all directions.
Unlike traditional systems that use serial or parallel mechanisms for generating multi-DOF rotations, the
proposed SMM is capable of producing continuous 2-DOF rotational motions in a single joint without
intermediate transmission mechanisms. The proposed SMM has a compact structure, low inertia, and high
stiffness. First, the architecture and operating principle of the proposed SMM is introduced. Then, the
kinematic model is established using Euler transformation, following which factors (such as workspace
and dexterity) that have an impact on motion performance are evaluated. As the foundation of dynamics
analysis and controller design, the Lagrange’s equations of the second kind are used to establish the dynamic
model. To achieve high tracking accuracy, the radial basis function neural network–based sliding mode
controller is applied to the mechanism. The simulation results indicate that the designed controller not only
improves trajectory tracking capability but also enhances robustness against external disturbance and system
uncertainty. Finally, experiments are performed on a prototype SMM to validate the performance of the
proposed SMM and evaluate the control method.

INDEX TERMS Spherical motion mechanism, kinematic modeling, motion performance, dynamic model-
ing, radial basis function neural network–based sliding mode control.

I. INTRODUCTION
Spherical motion, which is probably the most important type
of motion after rotary motion, is a multi-DOF rigid body
motion along a spherical surface with a permanent cen-
ter of rotation. Currently, multi-DOF spherical motions are
commonly realized by connecting at least two or three actu-
ators in serial or parallel mechanisms; such a configuration
results in transmission systems that are quite complex and
bulky [1]–[5], which affects the dynamic performance and
servo-tracking accuracy. To overcome these drawbacks, this
paper presents a novel 2-DOF ball-joint-like hydraulic spheri-
cal motionmechanism (SMM). The SMM,which can achieve
smooth spherical motion in all directions with a single joint
and without intermediate complex connecting parts, has a
compact structure, low inertia, and high stiffness. The SMM
could be used in the field of robotics; it could be used as a
robotic wrist joint, shoulder joint, hip joint, etc.
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approving it for publication was Rui-Jun Yan .

Spherical motion can be achieved by spherical
manipulators through either serial or parallel mechanisms.
A spherical wrist based on the serial mechanism with four
revolute joints was reported in [3]. An SMM designed
with serial links was studied in [6]. Furthermore, spherical
parallel mechanisms (SPMs) have attracted the attention
of many researchers over the last two decades because
they have higher stiffness, precision, and load carrying
capacity than serial spherical mechanisms. Typical SPMs
are the 3-RRR type manipulators, where R stands for
the revolute joint [7]–[11]. However, the torsion motion
achieved using general symmetrical SPMs is limited. More-
over, SPMs have low positioning accuracy. To overcome
these drawbacks, asymmetrical SPMs [12] were proposed.
Karouia et al. [13] proposed new structural types of asym-
metrical non-overconstrained 3-DOF SPMs, which had
three limbs of distinct architectures. Wu et al. [12] and
Wu and Ping [14] designed four types of asymmetrical
SPMs, which consisted of an outer ring and an inner ring
with a revolute joint.
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In addition, redundantly actuated SPMs [15], [16] have
been proposed in recent decades; these SPMs allow for
an increase in workspace [17], the enhancement of stiff-
ness [18], [19], removal of singularity, and augmentation of
dexterity [1], [20]. Many redundantly actuated SPMs have
been studied for use in different applications, such as a robotic
shoulder [21], wrist [22], and haptic device [23]. Recently,
an improved parallel platform with a redundant limb that
can adjust the pose in three directions was developed based
on the traditional 3RPS parallel mechanism [24]. However,
redundantly actuated SPMs require a high number of drivers,
resulting in transmission systems that are complex and
bulky.

The performance of mechanisms depends on the control
algorithms to a certain extent. The system of the SMM is
multivariable, strongly coupled, highly nonlinear, etc., which
makes it difficult to achieve precise control. In terms of con-
trollers, the traditional PID controller is commonly employed
in the industry; however, this type of controller does not
always guarantee high performance owing to the complexity
and diversity of the system [25]. Sliding mode control (SMC)
is an effective nonlinear control method that is currently
being used owing to its rapid response and robustness against
external disturbance and uncertainty of a system; moreover,
it does not depend on a precise dynamic model [26], [27].
Radial basis function neural network (RBFNN) is commonly
used to identify the uncertainty and un-modeled dynamics of
a system because they can approximate nonlinear functions
with proper accuracy [28]–[30]. Therefore, an RBF neural
network–based SMC (RBFSMC) is employed to control the
SMM.

A novel 2-DOF ball-joint-like hydraulic SMM with an
RBFSMC is proposed in this study to achieve spheri-
cal motion. The remainder of this paper is arranged as
follows:

The architecture and operating principle of the SMM is
presented in Section II. The kinematic model is established
through Euler transformation in Section III, and the motion
is evaluated in Section IV. The dynamic model is derived by
Lagrange’s equations in Section V. Then, the RBFSMC is
designed, and the asymptotic stability of the control system
is proven in Section VI. A simulation and experiment are
performed to verify the proposed mechanism and evaluate the
control method in Section VII. Finally, conclusions are drawn
in Section VIII.

II. DESCRIPTION OF THE SMM
Fig. 1 shows the computer-aided design (CAD) model of the
SMM, which is a ball-joint-like mechanism, and a prototype
SMM was manufactured based on the CAD model shown
in Fig. 2.

The architecture of the SMM is shown in Fig. 3. The
principal structure consists of two rotors, two stators, a rudder
blade, a measurement system, and a hydraulic actuator. The
detailed architecture and fundamental operating principle of
the SMM is described as follows.

FIGURE 1. CAD model of the SMM.

FIGURE 2. Prototype of the SMM.

For the sake of analysis, the following right-hand orthog-
onal reference coordinate frames are defined, as shown
in Fig. 5.
• A fixed O-X0Y0Z0 right-hand orthonormal reference
coordinate frame is located at the stator, and the point
O is the rotation center. X0 and Y0 are collinear with the
rotation axis of the X and Y rails, respectively.

• A moving O-X1Y1Z1 right-hand orthonormal reference
coordinate frame is attached to the rudder blade with Z1
and X1 along the axis of the rudder blade and the central
axis of the rudder cap, respectively.

• AmovingO-xyz right-hand orthonormal reference coor-
dinate frame is attached to the rotor with x along the X0
axis and z along the axis of the rotor.

• An auxiliary O-UVW right-hand orthonormal reference
coordinate frame represents the final orientation of the
rotor.
Furthermore, it is assumed that the established reference
coordinate framesO-X0Y0Z0,O-X1Y1Z1, andO-xyz have
the same orientation in the initial state.

There are two stators (upper and lower stators) and two
rotors (upper and lower rotors). The upper and lower rotors
as well as the upper and lower stators are connected through
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FIGURE 3. Architecture of the SMM.

screw threads. All spherical parts of the SMM are concentric.
The rudder blade, which is supported concentrically by the
lower stator via a spherical pair, can rotate around the X1 axis.
The clearance between the rudder blade and the lower stator
is filled with hydraulic oil. The shafts of the rotor and the
rudder blade are coaxial. The lower rotor, which is supported
concentrically by the rudder blade via another spherical pair,
can tilt with the rudder blade and rotate around the z axis
relative to the rudder blade. The upper rotor is in contact
with the upper stator via a spherical pair, allowing the rotor
to rotate around the point O.
The orientation of the rotor relative to the stator can be

measured via the measurement system. The measurement
system consists of two arc-shaped rails (the X and Y rails),
two sliding blocks (the X and Y sliding blocks), and two
encoders (the X and Y encoders), as shown in Fig. 1. The X
and Y rails mounted on the upper stator via four ball bearings
are placed perpendicular to each other so that they can spin
freely around the X0 and Y0 axes. The rotation angles of
the rails relative to the fixed reference coordinate frame are
measured by the X and Y encoders. Therefore, the orientation

of the moving coordinate frame relative to the stator can be
determined by the encoder readings. In addition, any external
force acting on the rotor through its center of gravity must be
supported by the reaction forces via the X rail, the Y rail, and
ball bearings. In other words, the X and Y rails must also bear
the external force exerted on the rotor. The external torque can
be balanced by the output torque of the hydraulic system.

The rudder blade is shown in Fig. 4. The rudder cap is
cylindrical and its axis passes through the spherical center.
Support belts A and B play the important role of providing
auxiliary support. The SMM has four independent flow chan-
nels: A, B, C and D. All these channels are arranged on the
rudder blade, as shown in Fig. 3(a) and (b).

The hydraulic actuator consists of a swing hydraulic motor
that actuates the rudder blade, a rotor to tilt an angle β around
the X1 axis, and a spin hydraulic motor that drives the rotor to
spin an angle α around the z axis relative to the rudder blade.
The stator, the rotor, and the rudder blade form two closed

oil chambers A and B, which are the working chambers of
the swing hydraulic motor. To seal the two oil chambers, seal
rings A and B are set between the lower rotor and the rudder
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FIGURE 4. Rudder blade.

blade and between the lower stator and the rudder blade,
as shown in Fig. 4. Thus, the swing hydraulic motor consists
of oil chambers A and B, flow channels A and B, and oil ports
A and B, as shown in Fig. 3(b). The working principle of the
swing hydraulic motor is that the rudder blade and the rotor
tilt an angle β around the X1 axis when the pressure in oil
chamber A is not equal to that in oil chamber B.

The spin hydraulic motor, mounted on the shaft of the
rudder blade via a nut and ball bearings, comprises a primary
motor and a secondary motor. The spin hydraulic motor is
an ultra-full-cycle hydraulic motor that can rotate more than
360◦, as shown in Fig. 3(a) and (c). In Fig. 3(c), a, c, e, and g
represent the oil chambers and b, d, f, and h represent blades.
The oil chambers a and e are connected to each other through
the flow channel E. Consequently, different hydraulic pres-
sure drops can induce different driving torques and actuate
the rotor to achieve the desired equilibrium orientation.

There are two critical mechanical constraints.
Constraint 1: The hydrostatic slip ring is supported by the

rudder cap via a cylindrical pair, as shown in Fig. 4. The
hydrostatic slip ring is restricted to the X0Y0 plane by the
upper stator, and hence, it has only one degree of freedom
(i.e., rotation around the Z0 axis).
Constraint 2: The X sliding block is fixed on the rotor.

There is a planar pair between the X sliding block and the X
rail, as shown in Fig. 3(b). Therefore, the rotor does not spin
around the z axis relative to the X rail. However, the rotor can
rotate around the z axis relative to the Y rail.

According to the above analysis, the orientation of the rotor
can be determined by three rotations in order:

• The rotor tilts an angle β around the X1 axis.
• The rotor spins an angle α around the z axis relative to
the rudder blade.

• Due to Constraint 1, the rotor spins an angle θ about the
Z0 axis at the same time as it spins an angle α around the
z axis relative to the rudder blade

Therefore, the SMM has two degrees of freedom: tilting
an angle β around the X1 axis and spinning an angle θ around

TABLE 1. Geometric parameters of the SMM.

FIGURE 5. Orientation representation of the tilt– torsion– spin angles.

the Z0 axis.The main geometric parameters of the SMM are
listed in Table 1.

III. KINEMATICS
In this section, the forward kinematics of the SMM is pre-
sented by virtue of Euler transformation. The orientation of
the SMM is illustrated by an intuitive representation of the
tilt–torsion–spin (β,−α, θ) angles, as shown in Fig. 5.K ′ and
K ′′ represent the coordinate axes in the process of coordinate
transformation.

Because only the rotation angles of the X and Y rails,
θx , and θy, can be measured, the relationships among the
angles α, β, θ , θx , and θy are required for carrying out the
analysis. In general, three rotations taken about fixed axes
yield the same final orientation as three rotations taken about
the axes of the moving frame. Thus, the relationships among
all above mentioned angles can be derived by the equivalent
Euler transformation with respect to the coordinate frames
O-xyz and O-yxz.

Based on homogeneous transformation, the orientation
transformation matrix of the rotor about the X0zZ0 conver-
sions can be formulated using Euler angles β, −α, and θ .

T

= RX0 zZ0
(β,−α, θ) = RZ0 (θ )RX0 (β)Rz(−α)

=

CαCθ + SαCβSθ SαCθ − CαCβSθ SβSθ
CαSθ − SαCβCθ SαSθ + CαCβCθ −SβCθ
−SαSβ CαSβ Cβ


(1)
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FIGURE 6. Illustration of the X and Y rails.

where C = cosine and S = sine. Rk (ω) denotes a transfor-
mation matrix when an angle ω is spun about the k axis.
Fig. 6 shows the parameters employed in the derivation of

the kinematic equations. B and C are the intermediate points
of the X and Y rails, respectively. D is the intersection of the
X and Y rails. The lines U and V intersecting at point D are
tangential to the X and Y rails, respectively. The first Euler
transformation matrix can be formulated using Euler angles
θx ,ψy, andψz satisfying the xyz conversions (2), shown at the
bottom of the next page.
where θx is the tilt angle of the X rail, ψy = 6 BOD, and ψz
is the rotation angle of the rotor around the z axis relative to
the X rail, ψz = 6 BDB0.

The second Euler transformation matrix can be writ-
ten using Euler angles θy, ξx , and ξy satisfying the yxz
conversions:

T2

= Ry(θy)Rx(ξx)Rz(ξz)

=

 SθySξxSξz+CθyCξz SθySξxCξz − CθySξz SθyCξx
CξxSξz CξxCξz −Sξx

CθySξxSξz − SθyCξz CθySξxCξz+SθySξz CθyCξx


(3)

where θy is the tilt angle of the Y rail, ξx = 6 COD, and ξz is
the rotation angle of the rotor around the z axis relative to the
Y rail, ξz = π /2−φ, where φ is the angle between the line U
and V .

Solving equations (1)= (2) and (1)= (3), respectively, the
following relations can be obtained as

tanθx = tanβCθ (4)

tanθy = tanβSθ (5)

tan θ = tanα
/
Cβ (6)

Equations (4)–(6) indicate the relationships among rotation
angles of the X rail, the Y rail, the rudder blade, and the rotor.

IV. PERFORMANCE OF THE MOTION MECHANISM
A. WORKSPACE
In this section, the workspace of the SMM is calculated in
the Cartesian space. It should be noted that 0 ≤ θ ≤ 2π .

The position vector of the end effector can be defined as

P = T
[
0 0 Lz

]T
= Lz

[
SβSθ −SβCθ Cβ

]T (7)

where [0 0 Lz] denotes the initial position of the end effector
initial position, and Lz is the distance between the end effector
and rotation center O.
As shown in Fig. 7, the workspace of the SMM is a part of

a sphere whose radius is Lz. Moreover, the end effector of the
SMM can tilt up to±45◦, which is determined by β, and can
spin 360◦, which is determined by θ .

FIGURE 7. Workspace of the SMM.

B. DEXTERITY
The relationship between the angular velocity of the end
effector and that of the driving joint of the SMM can be
expressed using the Jacobian matrix.

ωr = Jϑ̇ (8)

where ϑ̇ = [ β̇ θ̇ ]T , J is the Jacobian matrix, ωr represents
the angular velocity of the rotor under the coordinate system
O-X0Y0Z0.

ωr =
[
ωr .x ωr .y ωr .z

]T
=

Cθ −SβSθ 0
Sθ SβCθ 0
0 −Cβ 1

 β̇α̇
θ̇

 (9)

Taking the inverse tangent of (6), α can be expressed as

α = arctan(tanθCβ) (10)
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FIGURE 8. Performance index.

Differentiating (10) with respect to time yields (11)

α̇ =

(
Cβ sec2 θ

)
θ̇ − (tan θSβ) β̇

1+ tan2 θC2β
(11)

Substituting (11) into (9), the Jacobian matrix can be writ-
ten as

J =


Cθ +

tan θSθS2β
1+ tan2 θC2β

−
SθSβCβ sec2 θ
1+ tan2 θC2β

Sθ −
CθS2β

1+ tan2 θC2β

SβCβ sec θ
1+ tan2 θC2β

tan θSβCβ
1+ tan2 θC2β

1−
C2β sec2 θ

1+ tan2 θC2β

 (12)

To obtain better insight into the singularities and dexterity
performance of the SMM, the condition number is calculated.
The condition number of a dimensionally homogeneous Jaco-
bian matrix is defined as

κ(J) = ‖J‖
∥∥∥J−1∥∥∥ (13)

with

‖J‖ =

√
1
n
tr(JT J)∥∥∥J−1∥∥∥ = √1

n
tr[(JT J)−1]

where ||J || is the weighted Frobenius norm of Jwith n = 2 as
weight. κ(J) can have values from unity to infinity, and for
that reason the performance index ζ (J), given by its inverse,
is employed. ζ (J) ≈ 0 denotes a singular pose, whereas
ζ (J) = 1 denotes an isotropic pose.
Fig. 8 shows ζ (J) against the actuated rotations. It can be

estimated that approximately 10% of points reached in the
theoretical workspace given ζ (J) ≤ 0.25, indicating behav-
ior far from isotropy. Approximately 75% of points have
ζ (J) > 0.75, indicating behavior close to isotropy.

Therefore, the singular pose is reached whenever β = 0.
In that case, the Z1(z) axis coincides with the Z0 axis. Even if
the rudder blade spins about the Z1 axis, the position of the
end effector remains unchanged.

V. DYNAMICS
In this section, for designing the controller, the dynamic
model of the SMM is determined systematically based on
Lagrange’s equations. The entire system can be divided into
three parts: rudder blade, rotor, and spin motor. The mod-
eling process includes selecting the generalized coordinates,
formulating the kinetic and potential energy, and calculating
Lagrange’s equations.

A. CHOICE OF GENERALIZED COORDINATES
Because the dynamics modeling is based on rigid body
dynamics and employs hydraulic transmission, the following
two assumptions are made:
Assumption 1: Ignoring the elastic effects of the system, all

parts of the SMM are regarded as rigid bodies.
Assumption 2: Ignore the viscosity damping force/torque

when sharing the oil film between faces.
According to the above working principle analysis,

q = [α β]T can be selected as the generalized coordinates.
For the SMM, α and β denote the rotation angles around the
z and X1 axes, respectively.

B. KINETIC ENERGY
The total kinetic energy is the sum of the kinetic energies
of the rudder blade, rotor, and spin hydraulic motor. The
SMM has only rotational motion. Thus, the kinetic energy
of the SMM is composed of only rotational kinetic energy.
Therefore, the total kinetic energy can be expressed as

K = Kb + Kr + Km (14)

where Kb, Kr , and Km denote the kinetic energies of the
rudder blade, rotor, and spin motor, respectively.

Ki =
1
2
ωTi Iiωi, i = b, r,m (15)

where ωi and Ii denote the angular velocity and inertia
moment, respectively. The subscripts b, r , and m denote the
rudder blade, rotor, and spin hydraulic motor, respectively.

Based on the theory of fixed-point rotation, the angular
velocity of the rudder blade, ωb, can be expressed as

ωb = [ β̇ θ̇Sβ θ̇Cβ ]T (16)

T1 = Rx(θx)Ry(ψy)Rz(ψz)

=

 CψyCψz −CψySψz Sψy
CψzSθxSψy + SψzCθx CθxCψz − SθxSψySψz −SθxCψy
SθxSψz − CθxSψyCψz CψzSθx + CθxSψySψz CθxCψy

 (2)
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The rotation angle of the rotor around the z axis is −α.
Thus, the angular velocity of the rotor, ωr , can be written as

ωr =

 θ̇SβS(−α)+ β̇C(−α)θ̇SβC(−α)− β̇S(−α)
θ̇Cβ + (−α̇)

 (17)

Owing to its two-stage structure, the spin hydraulic motor
rotates an angle−α/2 around the z axis. Therefore, the angu-
lar velocity of the spin hydraulic motor, ωm, can be obtained
as

ωm =

 θ̇SβS(−α/2)+ β̇C(−α/2)θ̇SβC(−α
/
2)− β̇S(−α

/
2)

θ̇Cβ +
(
−α̇

/
2
)

 (18)

Ii = diag( Ii.xx Ii.yy Ii.zz ) (19)

where Ii.xx , Ii.yy, and Ii.zz denote the inertia moment with
respect to the Xi, Yi, and Zi axes in the self-coordinate system,
respectively. Because of axial symmetry, Ii.xx = Ii.yy 6= Ii.zz.

C. POTENTIAL ENERGY
The total potential energy is the sum of the potential energies
of the rudder blade, rotor, and spin hydraulic motor. To sim-
plify the analysis, assume the X0Y0 plane has zero potential
energy.

The potential energy of the rudder blade, Pb, can be given
as

Pb = mbglb0Cβ (20)

The potential energy of the rotor, Pr , can be expressed as

Pr = mrglr0Cβ (21)

The potential energy of the spin hydraulic motor, Pm, can
be obtained as

Pm = mmglm0Cβ (22)

wheremi denotes mass, and li0 is the distance from the center
of gravity to the rotation center.

Therefore, the entire potential energy of the SMM P can
be formulated as

P = Pb + Pr + Pm (23)

D. DYNAMIC EQUATIONS
Lagrange’s equations can be expressed as:

L =
n∑
i=1

Ki −
n∑
i=1

Pi (24)

τq =
d
dt
∂L
∂ q̇
−
∂L
∂q

(25)

where L is the Lagrange function, and τq denotes the gen-
eralized force or torque vector in the generalized coordinate
system.

Based on the foregoing analysis, the dynamic characteristic
of the SMM can be formulated as

M(q)q̈+ C(q, q̇)q̇+G(q) = τ (26)

where M(q) is the inertia matrix, C(q, q̇) denotes the com-
bined centripetal and Coriolis torque vector, G(q) is the
gravitational torque vector, and τ represents the equivalent
generalized torque vector applied on the rotor in the gener-
alized coordinate system. The centripetal and Coriolis torque
can be ignored in low-speed motion. The explicit expressions
of the terms in (26) are given in the appendix.

VI. RBFSMC DESIGN
From the dynamics analysis, it can be observed that the sys-
tem of the SMM exhibits highly nonlinear and multivariable
characteristics. The dynamic model is determined after some
reasonable simplifications. Because SMC does not depend on
a perfect mathematical model and is robust against external
disturbances and model uncertainties, select the RBFSMC to
track the desired trajectory accurately.

A. SELECTION OF THE SLIDING SURFACE
Considering the external disturbance, the dynamic model can
be expressed as

M(q)q̈+ C(q, q̇)q̇+G(q)+ τd = τ (27)

where τd denotes the external disturbance, including friction,
and neglected nonlinear terms.

The tracking errors can be defined as

e = qd − q (28)

where qd and q represent the desired and actual position
trajectories, respectively.

Next, choose the sliding surface function as

R = Kd ė+ Kpe (29)

where Kd = diag(λd1, λd2) and Kp = diag(λp1 , λp2 ) are
positive definite constant matrices, ė = q̇d − q̇.

B. LYAPUNOV FUNCTION DEFINITION
After selection of the sliding surface, the Lyapunov function
for SMC is defined.

Combining (27), (28), and (29), the following equations are
obtained as

q̇ = q̇d −K−1d R+K−1d Kpe (30)

MK−1d Ṙ = MK−1d [Kd q̈d +Kpė−Kd q̈]

= M(q̈d +K−1d Kpė)+ C(q̇d +K−1d Kpe)

+G− CK−1d R+ τd − τ (31)

with

f(x) =M(q̈d +K−1d Kpė)+ C(q̇d +K−1d Kpe)+G (32)

where x = [e, ė,qd , q̇d , q̈d ]T is the system input. f(x)denotes
the uncertain term.

The approximate control law can be designed as

τ = f̂(x)+KvR (33)

where f̂(x) denotes an estimation of f(x) used RBFNN, and
Kv = diag(λv1 , λv2 ) is a positive definite constant matrix.
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FIGURE 9. Block diagram of the RBFSMC.

Substituting (32) and (33) into (31), (31) can then be
rewritten as

MK−1d Ṙ = (f− f̂)− (CK−1d +Kv)R+ τd (34)

The Lyapunov function can be defined as

L =
1
2
RTMK−1d R (35)

Differentiating (35) with respect to time yields (36)

L̇ = RTMK−1d Ṙ+
1
2
RT ṀK−1d R

=
1
2
RT (ṀK−1d −2CK

−1
d −2Kv)R+RT (f− f̂+ τd ) (36)

It can be seen that the stability of the control systemmainly
depends on f − f̂ + τd , that is, the approximate error f − f̂
and the interference term τd . For this reason, the RBFNN is
employed to approximate f.

C. RBFNN AND STABILITY ANALYSIS
1) STRUCTURE OF RBFNN
To improve the stability of the system, utilize the RBFNN
to estimate the uncertain term f. The block diagram of the
RBFSMC is shown in Fig. 9.

The structure of the RBFNN is as follows:
• The input layer: x = [e, ė,qd , q̇d , q̈d ]T is a vector of
five inputs to the network.

• The hidden layer: δ = [δ1, δ2. . . ,δn]T is a vector of n
activation functions of RBFNN. The activation functions
of RBFNN based on Gaussian function [28] can be
expressed as

δj =

n∑
j=1

φ(
∥∥x − cj∥∥2) = e

−
‖x−cj‖

2

2σ2j (37)

where cj and σj denote the center vector of the jth hidden
network node and standard constant of RBFNN, respectively.
• The output layer: The output value can be written as

f = wj
n∑
j=1

φ(
∥∥x − cj∥∥2) =WT δ (38)

where W = [w11,w21, . . . ,wn1;w12,w22, . . . ,wn2 ]T

denotes the ideal network weight vector that connects the
hidden layer and the output layer.

2) TRAINING AND CENTER PLACEMENT IN AN RBFNN
Generally, the training procedure for RBFNN is divided into
two stages: an unsupervised training for the center adjustment
of the activation functions in the hidden layer, followed by
a supervised training for the weight adjustment between the
output layer and the hidden layer. In this study, the centers of
the activation functions are adjusted by the k-mean algorithm.

3) THE K-MEAN ALGORITHM FOR CENTER ADJUSTMENT
The k-means algorithm is an unsupervised method for data
clustering. It divides the input space into k classes, as follows:
• Choose a number of classes (k = 5 is the number of

inputs to the RBFNN).
• Initialize the centers of the activation functions (cj(0)

and β(0))
• Compute the Euclidean distance between the center of

each activation function and the input vector X

dj(t) = ‖ x(t)− cj(t − 1) ‖, (j = 1, 2, · · · , a) (39)

cr =
{
cj, dr = min

{
dj(t)

}}
(40)

• Adjust the vector of centers using the following adaption
law.

cr (t) = cr (t − 1)+ β(t)[x(t)− cr (t − 1)] (41)

• Update the learning rate using the following adaption
law.

β(t) = β(t − 1)
/√

1+ int(t/a) (42)

where t is the time, a is the number of the hidden nodes,
int(t/a) is the integer part of t/a, β(t) represents the learning
rate and 0 ≤ β(t) ≤ 1, and r denotes the sequence number of
the hidden node when the distance between x(t) and cj(t−1)
is minimum.

When β(t) → 0, stop the iteration and obtain the values
of cj.

4) STABILITY ANALYSIS AND WEIGHT ADAPTION
The network weights are updated by the decreasing gradient
method so that the final output of the RBFNN gradually
approximates the sliding mode equivalent control along the
sliding surface in which the sliding mode state is asymptot-
ically stable. The RBFNN adaption output can be expressed
as

f̂ = ŴT δ(x) (43)

f− f̂ = W̃T δ(x)+ ε (44)

where W̃ = W − Ŵ, Ŵ is the RBFNN adaptation law, and
ε denotes an approximate error.
Substituting (43) into (33), the approximate control law can

be derived as

τ = ŴT δ(x)+KvR− v (45)

v = −(εN + εd )sgn(R) (46)

sgn(R) =

{
1 if R > 0
−1 if R < 0

(47)
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where v is the robust term to overcome the approximate error
and interference term τ d , ||ε|| ≤ εN , ||τ d || ≤ εd , εN and εd
are robust coefficients.

Substituting (45) into (31), (31) can be rewritten as

MK−1d Ṙ=W̃T δ(x)− (CK−1d +Kv)R+ (τd + ε)+ v (48)

To ensure the system is asymptotically stable, L̇ must be
negative. Therefore, the following function can be regarded
as the RBFNN adaptation law.

˙̂W = − ˙̃W = KRδRT (49)

Thus, the network weight can be updated as follows:

W(t) =W(t−1)+KRδRT (50)

where KR is a positive definite constant matrix.
The Lyapunov function can be redefined as

L =
1
2
RTMK−1d R+

1
2
tr(W̃TK−1R W̃) (51)

Differentiating (51) with respect to time yields (52)

L̇ = RTMK−1d Ṙ+ (RT ṀK−1d R)
/
2+ tr(W̃TK−1R

˙̃W)

= RT W̃T δ(x)− RT (CK−1d +Kv)R+ RT (τd + ε + v)

+(RT ṀK−1d R)
/
2+ tr(W̃TK−1R

˙̃W)

= [RT (Ṁ− 2C)K−1d R]
/
2− RTKvR+ RT (τd + ε + v)

+RT W̃T δ(x)+ tr(W̃TK−1R
˙̃W)

= [RT (Ṁ− 2C)K−1d R]
/
2− RTKvR+ RT (τd + ε + v)

+trW̃T [K−1R
˙̃W+ δRT ]

= −RTKvR+ RT (τd + ε + v) (52)

Due to

RT (τ d + ε + v) = RT (τ d + ε)+ RT v

= RT (τ d + ε)−
∥∥∥RT

∥∥∥ (εN + εd )
≤ 0 (53)

Therefore

L̇ ≤ −RTKvR ≤ 0 (54)

In summary, according to Lyapunov theory, the RBFSMC
can ensure asymptotic stability of the control system. When
t →∞, the following dynamic characteristic can be achieved

R = Kd ė+Kpe = 0 (55)

Consequently, the tracking error approaches zero along the
sliding surface.

TABLE 2. Mass and inertia properties of the SMM.

VII. RESULTS
A. SIMULATION VERIFICATION
In this section, to validate the feasibility of the designed SMM
and RBFSMC, some simulations are implemented using the
MATLAB/Simulink. The mass and inertia properties of the
SMM considered in the simulations are listed in Table 2.

In this study, the SMC is designed as follows:
The sliding surface function is defined as

Rs = Kdsė+Kpse (56)

The control rule is designed as

τs = KvsR+ (εNs + εds)sgn(R) (57)

where Kds, Kps, and Kvs are positive definite constant matri-
ces, εNs and εds are robust coefficients.

To comprehensively evaluate the control method, two cases
are simulated.
Case 1: Choose step signal as input.
Case 2: Choose sinusoidal signal as input. Two piece-

wise functions are employed to simulate equivalent external
disturbance.

Define the initial states [αα̇ββ̇] = [0000]. The relevant
controller parameters are listed in Table 3. The Gaussian
parameters are as follows.

c =


−2 −1.5 −1 0 1 1.5 2
−2 −1.5 −1 0 1 1.5 2
−2 −1.5 −1 0 1 1.5 2
−2 −1.5 −1 0 1 1.5 2
−2 −1.5 −1 0 1 1.5 2

 ,
σj = 0.2 j = 1, 2, . . . , 7

First, the step response is simulated to investigate the
dynamic performance. The reference values of settling time
and overshoot are 0.5 s and 5%, respectively. As seen
in Figs. 10 and 11, the SMMwith RBFSMC can rapidly reach
the desired trajectory in the α and β directions respectively

TABLE 3. Relevant controller parameters.
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FIGURE 10. Step response in the α direction.

FIGURE 11. Step response in the β direction.

with a settling time of 0.1 s and 0.2 s, and an overshoot
of 0 rad and 0.01 rad. Note that the system using the RBFSMC
responds quickly and has only a small overshoot in the β
direction. The SMM with SMC has the same settling time
as RBFSMC. However, it has a large overshoot of 0.25 rad
and 0.04 rad in the α and β directions, respectively.
Furthermore, to validate the universality of RBFSMC,

the other desired trajectory is selected as

q = [ S(t
/
2) π

/
4S(t

/
2) ], Lz = 192mm (58)

For demonstrating the robustness of the control method,
two piecewise functions are employed to simulate the equiv-
alent external disturbance:

τd =

{
[0 0] t ≤ 5
[2S(π t) 2S(π t)] t > 5

(59)

The trajectory tracking results and the corresponding
torque inputs using the RBFSMC and SMC are given
in Figs.12-15, respectively. The rotation angles of the X
and Y rails using the RBFSMC and SMC are shown in
Fig. 21(a) and (b), respectively. The reference value of track-
ing errors is 5%, i.e., 0.05 rad and 0.04 rad in the α and β
directions, respectively.

As shown in Figs. 12 and 14, the RBFSMC gives a small
error about 0.05 rad and 0.01 rad in the α and β directions
respectively, while the SMC gives an error about 0.25 rad
and 0.08 rad. Hence, the RBFSMC achieves higher tracking
accuracy than the SMC.

FIGURE 12. Trajectory tracking in the α direction.

FIGURE 13. Torque input in the α direction.

FIGURE 14. Trajectory tracking in the β direction.

At T = 5 s, the equivalent external disturbance is applied
to the system. The torque inputs using the SMC are observed
to give larger oscillations than before, especially in the β
direction. Apparently, the fluctuation of torque inputs using
the RBFSMC is smaller than that of the SMC, which shows
strong robustness of the RBFSMC (Figs. 13 and 15).

Fig. 16 shows the approximating curve of RBFNN, which
indicates that the RBFNN using a Gaussian function as the
activation function has a good adaptive approximation per-
formance.
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FIGURE 15. Torque input in the β direction.

FIGURE 16. Approximation curve of RBFNN.

TABLE 4. Parameters of main parts.

FIGURE 17. Schematic of the hydraulic system.

B. EXPERIMENTAL VERIFICATION
To further explore the designed SMM and validate the
control method, experiments are carried out based on the

FIGURE 18. Test bench.

FIGURE 19. Block diagram of control system implementation.

FIGURE 20. RBFSMC program flowchart.

aforementioned theoretical analyses and simulations. The
schematic of the hydraulic system used in the test bench is
shown in Fig. 17. The test bench, which is composed of a
motor, a pump, two servo valves, two encoders, and a servo
control module, is shown in Fig. 18. The parameters of the
main parts are listed in Table 4.
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FIGURE 21. Comparison of the simulation and experimental results.

As shown in Fig. 19, the whole control system consists
of a host computer and control module. The host com-
puter is employed to communicate with the control module.
A graphical user interface (GUI) program is developed in
Labview2018 on the host computer. Therefore, the control
mode selection, status displaying, control parameters setting,
and data acquisition can be easily done through GUI. More-
over, the acquired data is recorded on the host computer, such
as the current and rotation angles of the X and Y rails.

The control module consists of a digital signal proces-
sor (DSP), D/A, A/D, V/I converter, and current sampling
function modules. As the core part of the control module,
the DSP TMS320C6657 with two fixed/floating-point pro-
cessing units and 1.25GHz high speed processing capability
is responsible for communicating with computer and algo-
rithm processing. The D/A chip AD5754R can offer 4 chan-
nels with 16-bit resolution digital-to-analog converting. The
power amplifier OPA549 contained in the V/I converting
circuit am employed to convert the analog voltage signals
fromAD5754R to the current input. The positive and negative
supply voltages of OPA549 are set as ±30 V. The current
feedback is obtained by measuring the voltage drop of the
current sampling resistor. Then the A/D chip MAX1309 with
4 channels and 12-bit resolution is employed for the digital-
ization of the voltage signal.

The control algorithm is programmed via C codes in the
CCSV6.2. The control program flowchart is shown in Fig. 20.

To evaluate themotion performance of themechanism, two
encoders are used for measuring the rotation angles of the X
and Y rails, θx and θy, respectively. The speed and acceler-
ation of the rotor are zero in the initial state. Equation (58)
is selected as the desired trajectory to allow the experimental
results to be compared with the simulation results.

A comparison of the simulation and experimental results
on the rotation angles of the X and Y rails are shown
in Fig. 21(a) and (b), respectively. The maximum errors of
θx and θy using the RBFSMC are approximately 0.07 rad
and 0.04 rad respectively, while the SMC gives errors about
0.09 rad and 0.09 rad. Meanwhile, it can be seen that the

tracking trajectory using the SMC is fluctuating obviously,
while the chattering is almost eliminated when using the
RBFSMC.

In summary, the simulation and experimental results are
in good agreement. Therefore, the SMM with RBFSMC can
smoothly track the desired trajectory with high tracking pre-
cision.

VIII. CONCLUSION
This paper presents a novel 2-DOF SMM that can tilt up
to ±45◦ and spin 360◦. This 2-DOF SMM can be used
in robotic applications. Unlike the traditional serial/parallel
mechanisms, the proposed SMM with a compact structure,
low inertia, and high stiffness is a ball-joint-like hydraulic
spherical motion mechanism that can realize continuous
2-DOF rotational motions. The fundamental structure and
working principle of the SMM was introduced in detail. Fac-
tors that have a bearing on the motion performance, such as
workspace and dexterity, were evaluated. Since the system is
nonlinear, strongly coupled, and multivariable, the RBFSMC
is expected to overcome the influence of imperfect modeling
and external disturbance. In addition, the asymptotic stability
of the control system was proven. The simulation results
showed that the SMM with the RBFSMC can achieve fast
response and high tracking precision; moreover, it is highly
robust against external disturbance and system uncertainty.
Finally, good agreement was observed between the experi-
mental and simulation results, demonstrating the feasibility
of the mechanism and the effectiveness of the mathematical
models and control method.

This research can provide a new direction and reference
point for the design of 2-DOF SMMs.

APPENDIX
The dynamic model of the SMM can be expressed as

M(q)q̈+ C(q, q̇)q̇+G(q) = τ (A1)

The explicit expressions of the terms in the above equation
are shown at the top of the next page.
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M (q) =
(
tan2 α + C2β

)−2

×


(
tan2 α + C2β

)2
I44 + sec2 αC2β

 I55 sec2 α
−I11

(
tan2 α + C2β

)  tanαSβCβ

 I55 sec2 α
−0.5I11

(
tan2 α + C2β

) 
tanαSβCβ

 I55 sec2 α
−0.5I11

(
tan2 α + C2β

)  I22
(
tan2 α + C2β

)2
+ I55 (tanαSβ)2


C (q, q̇) = sec2 α

(
tan2 α + C2β

)−3

×


sec3 αCβ

 2SαCβ
(
I11C2αS2β − I55 tan2 α

)
α̇

+CαSβ
(
2I11S2α − I55 tan2 α + I55C2β

)
β̇

 SβCβ
(
2I55 tan2 α − 0.5I11C2β

)
α̇

+ tanαC2β
(
I55 sec2 α − 0.5I11

)
β̇

SβCβ
(
I55 sec4 α + 0.5I11 tan2 α

)
α̇

− tanαS2β
(
I55 sec2 α − 0.5I11S2α

)
β̇

I55Sβ

 tanαSβ
(
C2β − tan2 α

)
α̇

+S2αCβ
(
sec2 α + S2β

)
β̇




G(q) =

[
0

− (mbglb0 + mrglr0 + mmglm0) Sβ

]

where I11 = Im.zz + 2Ir .zz, I22 = Id .xx + Im.xx + Ir .xx , I33 =
Id .zz + Im.zz + Ir .zz, I44 = Im.zz

/
4+ Ir .zz, I55 = (I22 + I33)

/
2
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