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ABSTRACT Packet processing performance of Network Function Virtualization (NFV)-aware environ-
ment depends on the memory access performance of commercial-off-the-shelf (COTS) hardware systems.
Table lookup is a typical example of packet processing, which has a significant dependence on memory
access performance. Thus, the on-chip cache memories of the CPU are becoming more and more critical for
many high-performance software routers or switches. Moreover, in the carrier network, multiple applications
run on top of the same hardware system in parallel, which requires the capacity of cache memories. In this
paper, we propose a packet processing architecture that enhances memory access parallelism by combining
on-chip last-level-cache (LLC) slices and off-chip interleaved 3 Dimensional (3D)-stacked Dynamic Ran-
dom Access Memory (DRAM) devices. Table entries are stored in the off-chip 3D-stacked DRAM, so that
memory requests are processed in parallel by using bank interleaving and channel parallelism. Also, cached
entries are distributed to on-chip LLC slices according to a memory address-based hash function so that each
CPU core can access on-chip LLC in parallel. The evaluation results show that the proposed architecture
reduces the memory access latency by 62 % and 12 % and increases the throughput by 108 % and 2 % with
reducing blocking probability of memory requests 96 % and 50 %, compared to the architecture with on-chip
shared LLC and that without on-chip LLC, respectively.

INDEX TERMS Communication systems, memory architecture, network function virtualization, perfor-
mance analysis, queueing analysis.

I. INTRODUCTION are well-known examples of recent virtualization technolo-

Packet processing performance of Network Function Virtu-
alization (NFV)-aware environment depends on the mem-
ory access performance of commercial-off-the-shelf (COTS)
hardware systems. Table lookup is a typical example of
packet processing, which has a significant dependence on
memory access performance.

Today’s COTS hardware and virtualization technology
reduce the number of memory accesses associated with the
data transfers between the network interface card (NIC)
and the applications. Intel Data Plane Development Kit
(DPDK) [1] and Single Root I/O Virtualization (SR-IOV) [2]
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gies for fast packet processing.

The on-chip cache memories of the CPU are becom-
ing more critical for high-performance software routers or
switches. While the recent virtualization technologies reduce
the number of memory accesses, lowering memory access
latency is also required in order to increase packet process-
ing performance. Several software-based packet processing
applications that intensively use on-chip cache memories to
achieve more than tens of Gbps [4], [5].

In the carrier network, multiple virtualized network func-
tions (VNFs) are deployed in the same COTS hardware sys-
tem, which requires the capacity of cache memories. There
are various network functions in the carrier network. For
the broadband connection service, the Broadband Network
Gateway (BNG) function is needed to terminate Point to Point
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Protocol (ppp) sessions from end-users. Firewall or DDoS
mitigation functions are necessary to protect users from cyber
attacks. The Evolved Packet Core (EPC) functions accommo-
date mobile data traffic. These network functions consist of
several packet processing elements such as parsing, classi-
fication, editing, and metering, each of which requires table
lookup and memory accesses. When these network functions
are running on the same hardware system, usually called
the multi-tenant environment, multiple applications issues
many memory accesses from each corresponding CPU core
in parallel. This situation requires both speed and capacity of
cache memories for high-performance packet processing.

In current COTS hardware architecture, the carrier-scale
packet processing applications cannot allocate sufficient
capacity of on-chip LLC. Moreover, the memory capac-
ity of the on-chip cache is dependent on the physical
space of the semiconductor chip. The insufficient capac-
ity of on-chip cache memories and bandwidth of off-chip
memory have been major problems of modern computer
architecture [51]-[56]. Thus, off-chip fast memory that has
larger memory capacity is required so that large data such
as lookup tables for virtualized carrier network functions
can be accommodated. The work in [24] presented a packet
processing architecture that uses 3 Dimensional (3D)-stacked
Dynamic Random Access Memory (DRAM) device as an
off-chip last-level-cache (LLC) instead of an on-chip shared
LLC. The 3D-stacked DRAM with more memory parallelism
as an off-chip LLC outperforms the on-chip shared LLC
with less memory parallelism. This result shows that 3D-
stacked DRAM provides both faster memory accesses and
larger memory capacity than on-chip shared LLC in terms
of the number of memory requests that can be processed in a
certain period of time.

The on-chip shared LLC of modern multi-core CPU usu-
ally comprises multiple slices, each of which belongs to a
CPU core. Each LLC slice can be accessed in parallel, which
increases the memory access parallelism. In the multi-tenant
environment, the operator of a system assigns computing
resources such as CPU cores, memory capacities, and LLC
slices to a particular application. The number of assigned
LLC slices is configured by using functions such as Intel
Cache Allocation Technology (CAT) [28]. When some of the
LLC slices are assigned to an application, the rest of LLC
slices can be allocated to other applications running in the
same hardware. A packet processing architecture that uses
on-chip LLC slices and off-chip 3D-stacked DRAM may
increase the memory parallelism. The relation between the
packet processing performance and the number of assigned
LLC slices needs to be understood when a multi-core CPU
with LLC slices is combined with the off-chip 3D-stacked
DRAM before we build the real system. We consider that
a better understanding of the dependency on the number
of assigned resources, including LLC slices, leads to more
efficient resource allocation in a multi-tenant NFV envi-
ronment. There is no work that evaluates the performance
dependency of the proposed architecture on the number of
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assigned resources when combining the LLC slices with
3D-stacked DRAM.

This paper proposes a packet processing architecture
that enhances memory access parallelism by combining
on-chip LLC slices and off-chip 3D-stacked DRAM devices.
Table entries are stored in the off-chip 3D-stacked DRAM,
so that memory requests are processed in parallel by using
bank interleaving and channel parallelism. Also, cached
entries are distributed to on-chip LLC slices according to a
memory address-based hash function so that each CPU core
can access on-chip LL.C in parallel. The evaluation results
show that the proposed architecture reduces the memory
access latency by 62 % and 12 % and increases the throughput
by 108 % and 2 % with reducing blocking probability of
memory requests 96 % and 50 %, compared to the architec-
ture with shared on-chip LLC and that without on-chip LLC,
respectively. These results indicate that while the memory
access parallelism of on-chip LLC slices improves the packet
processing performance, the memory access parallelism of
off-chip 3D-stacked DRAM can improve the packet process-
ing performance. The proposed architecture increases the
performance of carrier-scale packet processing applications
in a multi-tenant NFV environment.

The rest of this paper is organized as follows. Section II
describes the basic mechanism of the memory system and
the characteristics of memory devices. Section III presents
the proposed architecture. Section IV describes the system
modeling of the proposed architecture. Section V presents the
performance evaluation. Section VI describes related work.
Section VII discusses on the limitations and the future direc-
tions. Finally, Section VIII concludes this paper.

Il. BACKGROUND

A. MEMORY SYSTEM IN COTS SYSTEM

Figure 1 shows the DRAM system in today’s COTS hard-
ware system. The DRAM system is composed of memory
requestors, DRAM controllers, and DRAM memory devices.
Usually, a memory requestor is a CPU or a Direct Mem-
ory Access (DMA). The memory requestor issues memory
commands, such as read or write. According to the memory
commands, the DRAM controller physically accesses DRAM
devices.

There are two types of buses that connect a memory con-
troller and memory devices. The DRAM devices are con-
nected to the DRAM controllers via command buses and
data buses. Memory commands are transferred through a
command bus. A data bus is used for data transfer between
a memory controller and memory devices. A command bus
and a data bus are used independently. Thus, a memory
requestor can use the data bus while the memory requestor
issues memory commands at the same time.

DRAM devices and a DRAM controller are connected
via multiple memory channels. Each memory channels is
used independently, which means that a DRAM controller
can access DRAM devices in parallel via multiple memory
channels. A memory channel comprises multiple banks. Bank
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FIGURE 1. DRAM sytem overview.
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FIGURE 2. Diagrams of command bus and data bus in DRAM system.
(a) Without bank interleaving. (b) With bank interleaving.

interleaving is a well-known technique, where multiple banks
in a channel can be accessed at the same time unless there
is a collision of commands or data in each bus. As shown
in Figure 2, more data can be read from DRAM banks in less
time by using bank interleaving.

B. 3D-STACKED DRAM

3D-stacked DRAM is an emerging type of memory device
that consolidates multiple DRAMs in a single memory
device. It consists of vertically stacked DRAM layers,
each of which is connected by using Through Silicon
Via (TSV) technology so that memory requestors can access
every DRAM layer. Conventional Double Data Rate x
(DDRx) DRAM devices require more area inefficient wires
between a processor and memory devices than 3D-stacked
DRAMs, which prevents a CPU from using more mem-
ory channels. The higher density of memory channels in
the 3D-stacked DRAMs enables CPU to be connected with
more number of memory channels, compared to using con-
ventional DDRx DRAM devices. Thus 3D-stacked DRAM
provides more memory channels without losing versatil-
ity of conventional DDRx DRAM devices. This is why
we use an off-chip 3D-stacked DRAM in the proposed
architecture.
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FIGURE 4. Schematic structure of high bandwidth memory.

Hybrid Memory Cube (HMC) and High Bandwidth Mem-
ory (HBM) are well-known and commercially available
examples of 3D-stacked DRAM devices. Both HMC and
HBM consolidate conventional DRAMSs in a single memory
device, which enhances memory access parallelism com-
pared to the conventional DRAM devices by consolidating
more memory channels and banks.

Figure 3 shows the structure of HMC. HMC comprises
several DRAM layers on top of the bottom layer, the logic
base [41]. A vault is a vertical unit, which corresponds to
what is called a channel in traditional DRAM devices. Each
vault is accessible in parallel. Each DRAM layer of a vault
has several banks. In the logic base, simple arithmetic oper-
ations can be performed to the data in the DRAM layers,
which is utilized in Processing-in-Memory (PIM) architec-
ture [35], [36]. The memory controller of HMC and the
logic base are connected through several high-speed serial
links.

Figure 4 shows the schematic structure of HBM. As with
HMC, HBM has several Core DRAM Dies (DRAM layers),
each of which comprises conventional DRAM that is con-
nected through TSV. HBM has a wider I/O bus compared to
HMC to enhance the memory bandwidth. The bottom layer
of HBM, called base logic die [25].

Both HMC and HBM have several channels and banks,
which allows us to model them as parallel DRAM devices.
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C. CACHE MEMORY SYSTEM

There are several levels of on-chip cache memories in a
multi-core CPU. Each CPU core has one or two levels of
its dedicated cache memories, usually called level 1 (L1)
cache and level 2 (L2) cache. A last-level-cache (LLC) is
shared among every CPU core inside the same CPU. Usually,
the L1 cache is the fastest and has the smallest memory
capacity; on the other hand, LLC is the slowest with the
largest memory capacity.

Figure 5 shows the mechanism of a cache memory sys-
tem including off-chip memory devices. A cache line is an
elementary block of data transferred between the cache and
the off-chip memory. Usually, the data physically around a
particular data, shown as the target data in Figure 5, is likely
to be accessed next, which is known as data spatial locality of
the data. By assuming the space locality of data, cache lines
improve the hit probabilities of cache memories.

If a cache line including the target data that corresponds
to a request is found in a certain level of cache, which is
called a hit, the cache returns the corresponding cache line
of the request to the CPU core that issued the request. If any
cache line including the target data is not found in a certain
level of cache, which is called a miss, the request accesses the
next level of cache or the off-chip memory until the request
finds the corresponding cache line. A cache line is replaced so
that a newly loaded cache line can be accommodated in the
cache. The policy that decides which cache line is replaced
next is defined in the system. Typically, the least-recently-
used (LRU) policy is used, where the LRU cache line in the
L1 cache or L2 cache is evicted to the L2 cache or LLC, and
the LRU cache line in LLC is dropped.

D. ARCHITECTURE OF LAST-LEVEL-CACHE

Recent Intel’s microarchitecture later than SandyBridge has
LLC that comprises distributed slices, each of which belongs
to each CPU core, as shown in Figure 6. Every CPU core
including its LLC slice is connected via an inter-core bus that
is usually a bi-directional ring or mesh architecture [27], [31].
According to [65], Intel’s Skylake generation processor
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FIGURE 6. Architecture of LLC that consist of LLC slice connected via
mesh inter-core bus among CPU cores. The inter-core bus is shown in
green lines.

actually introduces mesh-interconnect among on-chip com-
ponents. The multiple LLC slices and the interconnect among
them may make the memory system more complicated than
those of the shared LLC that consists of a single LLC slice.
A power and area efficient router architecture for a 2D mesh
interconnect among CPU cores and LLC slices of each CPU
core was presented in [62]. Thus, although the detail of
the microarchitecture of the CPUs is not publicly known,
we consider that today’s multi-core CPU utilizes such energy
and area efficient technology to implement the intercon-
nects among CPU cores and their LLC slices. Additionally,
the analysis of power and area of an on-chip LLC was pre-
sented in [67].

Although the physical LLC slices are separated, each LLC
slice is addressable, which enables each CPU core to access
every LLC slice as a single logical LLC. Each LLC slice
has the same capacity as the other LLC slices in the CPU.
Thus the capacity of the logical LLC equals the product of
the number of CPU cores and the capacity of an LLC slice.
Each LLC slice can be accessed in parallel from different
CPU cores unless multiple CPU cores access the same LLC
slice simultaneously, which improves the effective memory
bandwidth of LLC.

Memory addresses of data and requests are mapped to each
LLC slices according to a hash-function-based rule so that the
number of requests to each LLC slice can be evenly balanced.
The detail of the hash function is usually undocumented,
while the mapping is known to be conducted by a calculation
based on a particular part of the physical memory address of a
data or a request. Thus several studies reverse-engineered the
hash function of recent CPUs [29], [30]. Figure 7 shows an
example of memory address mapping to LLC slices. In this
example, the memory address range of each cache line is
mapped to one of the LLC slices evenly. The memory address
range of ncp-th cache line is mapped to (nc, mod Nsjice +
1)-th LLC slice, where Nsjice represents the total number of
LLC slices in this example. The hash function of memory
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address mapping decides which address range of cache line
is to be stored in which LLC slice and to which LLC slice a
request that misses L2 cache is transferred.

In NFV-aware, multi-tenant environment, various applica-
tions run in the same hardware system simultaneously. Some-
times, applications that require frequent memory accesses,
usually called memory-intensive applications, dominantly
use LLC slices including LLC slices that belong to the other
CPU cores. These applications are usually called noisy neigh-
bors as they consume extra LLC slices in which the other
applications are to allocate. Regarding this problem, LLC
slices are also becoming one of the computing resources
as well as the other resources such as the CPU cores and
memory capacity. For the assignment of the LLC slices to
each CPU core that runs a certain process, several slice-aware
memory management technologies such as Intel Cache Allo-
cation Technology (CAT) [28] are becoming popular in the
operation of NFV infrastructure [29].

Ill. PROPOSED ARCHITECTURE

Figure 8 shows the proposed architecture. It consists of a
multi-core CPU, a Field Programmable Gate Array (FPGA),
a3D-stacked DRAM, a DRAM, and network interfaces. Each
CPU core has its dedicated L1 and L2 cache memories.
The LLC of the multi-core CPU comprises multiple LLC
slices. The performance counter counts the statistics related
to the performance of the CPU such as the number of LLC
misses. An FPGA connects a CPU and an off-chip 3D-stacked
DRAM. An external DRAM is used as a packet buffer.

Each incoming packet is processed as follows. (1) A packet
that comes from the network interface is directly transferred
to the DRAM by using DMA, where the packet is buffered
in the packet buffer. The packet is randomly assigned to
one of the CPU cores. (2) The assigned CPU core reads the
header information of the packet from the packet buffer in the
DRAM. Then, the CPU core issues memory requests to read
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table entries stored in the cache memories and the 3D-stacked
DRAM in order to decide the next action for the packet.
(3) The CPU core sends the packet including its payload from
the packet buffer in the DRAM through the network interface.

In the proposed architecture, both on-chip LLC slices
and off-chip 3D-stacked DRAM enhance the memory access
parallelism to increase the packet processing performance.
The distribution of table data in the 3D-stacked DRAM was
presented in [6], [26]. Table data is split into several partial
tables as many as the number of banks in a channel. Each
partial table is allocated to each bank so that the partial tables
comprise the original table in the channel. Then, the copy of
the data in the channel is placed in the rest of the channels
in the 3D-stacked DRAM. The type of data stored in the 3D-
stacked DRAM is not limited to lookup tables. Information
on other packet processing such as Quality of Service (QoS)
controlling function can be stored in the 3D-stacked DRAM.

An FPGA accommodates the circuits of the following
functions: a memory controller of the 3D-stacked DRAM,
the skip selection logic, and a hash-function-based distribu-
tor of memory requests. The distributor distributes memory
requests to the appropriate channel/bank sets so that the num-
ber of interleaved banks in each channel is minimum. The
distributor has an internal table in the FPGA that records the
state of each channel/bank set, which is utilized to determine
the appropriate channel/bank set. As presented in [6], [26],
the state of channel/bank is idle or busy with w-interleaving,
where w is the number of interleaved bank in a channel.

Several semiconductor companies have already released
the IP core products of the 3D-stacked DRAM controller
for FPGAs [57]-[61]. Additionally, Intel released an FPGA
that has integrated HBMs in a single device package, which
can utilize the maximum bandwidth of up to two HBM
devices [71]. Also, this FPGA-based product may make it
easier to use the 3D-stacked DRAMs with less hardware mod-
ification from today’s COTS hardware, compared to newly
designing and implementing the hard-coded logic. The pro-
cessing latency of FPGA, which is based on Static Random
Access Memory (SRAM), is sufficiently smaller than the
DRAM access latency. Therefore the memory parallelism
and bandwidth are more critical metric than the additional
latency introduced by the FPGA. Thus we assume that an
FPGA is a good candidate to use the 3D-stacked DRAM.
Recent CPUs have inter-chip links such as Intel Quick Path
Interconnect (QPI) or Ultra Path Interconnect (UPI). These
inter-chip links can be used to connect the CPU and the
FPGA [7]-[9].

An operator of the proposed architecture assigns a certain
number of CPU cores and LLC slices to an application.
If none of the LLC slices is assigned to an application,
the application skips accessing the on-chip LLC. In other
words, the application directly accesses off-chip 3D-stacked
DRAM when there is a miss in the L2 cache. Also, the oper-
ator sets the threshold of the LLC miss rate to the skip selec-
tion logic in the FPGA. The skip selection logic determines
whether an application should skip the on-chip LLC slices
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by comparing the statistics of the LLC miss rate measured
in the performance counter of the CPU with the threshold.
We explain this feature in Section V-D.

IV. SYSTEM MODEL
A. SYSTEM MODEL OF PROPOSED ARCHITECTURE

Figure 9 shows the system models of the proposed architec-
ture for two example cases. Both models have multiple CPU
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cores in the CPU, 3D-stacked DRAM that is connected to the
CPU via a 3D-stacked DRAM controller. Each CPU core has
a queue and dedicated level 1 (L1) and level 2 (L2) caches.
The on-chip LLC comprises LLC slices, each of which has a
queue. The queues of LLC slices and all the CPU cores are
connected via inter-core bus so that each CPU core can access
every LLC slice.

Let the system has Csys CPU cores and Lgys LLC slices. The
operator of the system assigns some of the Csys CPU cores
and Lgys LLC slices to a specific application. We define the
number of assigned CPU cores and LLC slices to the appli-
cation as C and L, where 0 < C < Cyys and 0 < L < Lgys,
respectively. Figure 9(a) shows the system model of proposed
architecture where C = Csys CPU cores and L = Lgys LLC
slices in the system are assigned. Figure 9(b) shows system
model of proposed architecture where C < Cgys CPU cores
and L < Lgys LLC slices are assigned.

The on-chip L1 cache, L2 cache, and LLC in the CPU
store the copies of frequently used data based on an LRU
manner. Each LLC slice can be accessed by at most one CPU
core at a time. There is no duplicate cache line throughout
the logical LLC to simplify the data coherency among LLC
slices. Therefore, requests to the same cache line need to wait
until the LLC slice that contains the corresponding cache line
finishes serving the previous request.

The table lookup model in the 3D-stacked DRAM was pre-
sented in [6], [26]. When a memory request arrives at the 3D-
stacked DRAM controller, the hash-function-based distribu-
tor classifies the request to one of the queues that correspond
to each partial table located in a bank of 3D-stacked DRAM.
The banks in the same channel can be interleaved, which
enables the multiple partial tables in the same channel to be
accessed efficiently. A request entering the queue is served
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at a channel/bank set in a first come first served (FCFS)
policy. The channel/bank set to which a request transferred
is selected so that the number of interleaved bank in each
channel is minimum.

When a packet comes to the system, a CPU core that
processes the packet is randomly selected from the assigned
CPU cores. Then, the packet waits at the queue in front of the
selected CPU core. At each CPU core, the packet is processed
as an FCFS policy. The CPU core issues a memory request to
process the packet. Each issued request accesses the L1 cache
of the CPU core at first. When there is a miss, the request
accesses the L2 cache. The inter-core bus transfers a request
that misses the L2 cache to the queue in front of the LLC
slice according to the memory address of the request. In this
system model, the memory address range that corresponds to
the n-th cache line in the memory address space is mapped
to the (n mod L + 1)-th LLC Slice. In each LLC slice,
a request in the queue in front of the LLC slice is processed
as an FCFS policy. A request that misses the LLC is trans-
ferred to the 3D-stacked DRAM controller to wait for being
distributed to one of channel/bank sets of the 3D-stacked
DRAM.

Figure 10 describes an example state of the system model
of the proposed architecture. In the example, the system
model consists of five assigned CPU cores, three assigned
LLC slices, 3D-stacked DRAM, and its controller; this exam-
ple corresponds to the case presented in Figure 9(b). Each
CPU core and LLC slice has its own queue in front of it.
There are ten incoming packets in the order of P1, P2, ...,
P10. The first five of them are processed in the five CPU
cores, and the other five packets are randomly distributed
to the queue of each assigned CPU core regardless of the
state of each CPU core. Each CPU core issues a memory
request that corresponds to the packet. In other words, the five
memory requests R1, R2, ..., RS correspond to the first five
incoming packets P1, P2, ..., P5. R1 misses all the levels of
cache memories, and then it is in the queue of the 3D-stacked
DRAM controller. R2 and R3 are transferred to the topmost
LLC slice according to their memory addresses via inter-core
bus. R2 is accessing the LLC slice. R3 is waiting in a queue
of the same LLC slice as R2. R4 is transferred to the third
LLC slice from the top according to its memory address via
an inter-core bus. RS is accessing L2 cache.
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A memory request finishes when its corresponding table
entry is found in any part of the system. In the system,
the total number of requests is limited including all the wait-
ing requests in each queue and the requests that are processed
by each CPU core. Let K be the maximum number of requests
in the system. A newly issued memory request by a CPU core
is blocked when the total number of requests that are in the
system equals K. Each queue in front of each CPU core stores
the incoming packets to the system. The size of each queue
is not less than K, which means that there is no packet loss in
each queue.

Let My, M12, Mslice, and M3p denote the memory capac-
ities of L1 cache, L2 cache, LLC slice, and 3D-stacked
DRAM, respectively, each of which is given in the system
model. The memory sizes of each cache line and each table
entry are represented by B, b, respectively. When there is a
miss in LLC, B/b table entries are copied to L1 cache from
off-chip 3D-stacked DRAM. Then, the LRU cache line in the
L1 or L2 cache of the corresponding CPU core is evicted to
the L2 cache of the CPU core or LLC slice according to the
aforementioned address mapping rule, and the LRU cache
line in the LLC slice is dropped.

When there is a hit, the cache line that has the requested
table entry is allocated in the L1 cache as the most recently
used cache line. When there is a miss, the LRU cache line in
the L1 or the L2 cache is evicted to the L2 cache or LLC.

B. SYSTEM MODEL OF REFERENCE ARCHITECTURE
Figure 11 shows the two system models of a reference archi-
tecture to be compared with the proposed architecture. The
devices that comprise the reference architecture are the same
as the proposed architecture.

Figure 11(a) shows the system model of a reference archi-
tecture that has a physically shared LLC. The LLC is shared
among all the CPU cores in the CPU. The capacity of shared
LLC s given and is defined as My 1 c. The behavior of this sys-
tem model is the same as the system model shown in Figure 9,
except for how a request that misses L2 cache moves before
it hits or misses the LLC. We assume that the shared LLC
in this model comprises a single LLC slice whose memory
capacity is My c, which has a shared queue. A request that
misses L2 cache, it waits for the access to the shared LLC in
the shared queue in front of the shared LLC.

Figure 12 describes an example state of the system model
of reference architecture shown in Figure 11(a). In this exam-
ple, the system model consists of a CPU equipped with six
CPU cores, each of which has a queue in front of it and has
dedicated L1 and L2 cache, a shared LLC with a queue in
front of it, a 3D-stacked DRAM and its controller. The five of
the six CPU cores are assigned for packet processing. As well
as the example shown in Figure 10, there are ten incoming
packets in the order of P1, P2, ..., P10. The first five of
them are processed in the five assigned CPU cores, and the
other five packets wait in each queue in front of the ran-
domly selected CPU core until the processing of the previous
packet finishes. Each CPU core issues memory requests that
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Csys = 6, C = 5. There are ten packets P1, P2, ..., P10.

correspond to the packet. In other words, the five memory
requests R1, R2, ..., RS that correspond to the first five
incoming packets P1, P2, ..., P5. R1 misses all the levels of
cache memories, and then it is in the queue of the 3D-stacked
DRAM controller. R2 and R3 also miss the L2 cache of each
CPU core, and then they are transferred to shared LLC. R2 is
accessing LLC, and R3 is waiting for access to LLC until
LLC finishes serving R2. R4 is accessing the L2 cache, and
R5 is accessing the L1 cache. If R4 and RS miss both the
L1 cache and the L2 cache, they will be transferred to shared
LLC.

Figure 11(b) shows the system model of reference archi-
tecture without on-chip LLC as presented in [24]. All the
behavior of this system model is the same as the other system
models except for LLC. A request that misses L2 cache is
transferred to a common queue and enters the 3D-stacked
DRAM controller as an FCFS policy.

For both system models that correspond to Figure 11,
the system parameters Csys, C, K, M1, M12, M3p, B, and
b are common with the description in Section IV-A. When
the LRU cache line in the L2 cache is evicted, the cache line
is transferred to the shared LLC in the system model that
corresponds to Figure 11(a). For the system model that cor-
responds to Figure 11(b), the LRU cache line in the L2 cache
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is dropped if the LRU cache line in the L1 cache is evicted to
the L2 cache.

V. PERFORMANCE EVALUATION

A. TRAFFIC MODEL

For performance evaluation of the caching mechanism, there
are several types of traffic modeling; based on the real traffic
traces [14]-[16]; by generating the synthetic traces where the
content popularity is taken into account [17], [18]. In [17],
[18], a Zipf-like distribution [19] used to model the requests
for Web pages and IP table lookup. A Zipf-like distribution
can be applied to various situations where a few most popular
contents are frequently requested; on the other hand, the rest
of the contents are rarely requested.

In the Zipf-like distribution, the parameter « has different
values for various traffic traces [19]. It is reported that @ =
1 is the special case of the Zipf-like distribution, which is
known as the strict Zipf’s law, does not suit the content
distribution such as IP addresses. Typical value of « is in
the range of 0 < a < 1. The value of « is larger for the
traffic traces of network with diverse users than that of a
homogeneous environment. Thus, when « becomes larger,
a few most popular contents are requested more frequently.

In our performance evaluation, we assume that the packet
arrival at the system follows a Poisson arrival process whose
average rate is A. We define / as the number of whole table
entries accommodated in a channel of 3D-stacked DRAM.
The table entries are in order of decreasing popularity. We
assume that the requested table entry of each packet follows
a Zipf-like distribution. This means that the probability of the
ith most popular ent{y is requested is denoted as l.la, which

is represented as —;~— when normalized to constant. Note
that, in our perform?lﬂllclg evaluation, the Poisson and Zipf-like
distributions are orthogonal or independent from each other.
According to [19], we set = 0.83 in performance evaluation
unless otherwise stated.

We assume that each bank of the 3D-stacked DRAM has an
equal probability of being accessed when the content popu-
larity is taken into account. We apply the table lookup scheme
presented in [6], [26], where requests randomly access banks
of 3D-stacked DRAM.

B. SYSTEM ASSUMPTION
In this subsection, we introduce our assumption of the system
model for the simplicity of the numerical simulation.

We assume in-order CPU cores and blocking cache mem-
ories. Each CPU core processes only one request at a time.
Thus the number of issued memory requests at a time is at
most the number of CPU cores that the system has, Cgys.
Thereby we assume that the size of the queue in front of each
LLC slice, the shared LLC, and 3D-stacked DRAM controller
equals the number of CPU cores, Ciys.

We consider that the clock frequency of CPU cores and its
associated L1/L2 caches may dynamically change in oper-
ation. For instance, Intel’s Turbo Boost Technology [70]
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automatically increases clock frequency of CPU cores
for peak loads if the power consumption and tempera-
ture of the CPU are below the specification limits. Thus,
in the simulations, we assume that the processing times in
L1/L2 caches follow exponential distributions. According
to [29], the access time to LLC slice varies depending on
the distance between a CPU core and an LLC slice. In the
simulations, we assume that the processing time of LLC
slices follows an exponential distribution. The processing
time of 3D-stacked DRAM is considered based on the DRAM
mechanism, such as precharge, where the row buffer is writ-
ten back to the DRAM cell before loading another row.

We also assume that the system is in a stable condition,
where there is no memory write requests for such as table
update. This assumption allows us to ignore cache coherency.
Every data transfer between each level of cache memory
and the off-chip 3D-stacked DRAM is performed in 8-byte
blocks.

We assume that, in carrier-scale networks, the data that
associate with VNFs may not be accommodated in the
on-chip caches due to a large number of subscribers. For
instance, the virtualized EPC (VEPC) functions and functions
of gateway routers or edge routers have multiple internal
packet processing functions, each of which has its own data.
While we take the table lookup as an example of packet pro-
cessing, the type of data in such VNFs are not limited to the
lookup tables, and there can be other data considered for the
VNFs. As a result, some of the data may be accommodated
outside of the on-chip caches. To reproduce this situation,
the memory capacity of each cache and the number of table
entries are considered to be smaller than those of today’s
COTS hardware in our evaluation. Without this assumption
on the memory capacity of each cache and the number of
table entries, we cannot finish our numerical simulations in
a practical time. For instance, if we set M1 = 64 [KiB],
Mo = 512 [KiB], Msjice = 1 [MiB], Mi1c = 28 [MiB],
the estimated time to obtain a one-plot result is at least one
month.

C. BLOCKING PROBABILITY AND AVERAGE WAITING
TIME

Let R denote a set of requests that are issued by CPU cores
during a certain period of time. The total number of requests
in R is represented by |R|. A memory request is blocked if
the total number of already accommodated requests in the
system equals K. Let Rj, be the set of blocked requests, where
|Rp| denotes the number of blocked requests. Blocking prob-
ability is a probability that a newly issued memory request is
blocked. Thus, blocking probability is defined by P) = %.
Throughput, X, is defined by A, = A(1 — P}). For accepted
request r € R\Rp, we define 7, as the waiting time until it
is processed by the CPU core. Thereby, we define W, as the

. .. . > 1,
average effective waiting time by W, = ﬁ

We consider the 3D-stacked DRAM that has S chan-
nels each of which has two banks. The processing rates
of 3D-stacked DRAM channel with and without memory
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interleaving are © = w1 and uy, respectively. Let p be a
traffic load, which is defined by p = ﬁ S means the
average number of memory requests that a system can process
per unit time.

Let N denote the number of table entries stored in the
3D-stacked DRAM. We consider the Internet Protocol (IP)
addresses lookup based on DIR-24-8-BASIC [21] algorithm
for the benchmark of the packet processing, where the size of
each entry is 2 byte. Thereby, we set b = 2 [B]. We also set the
following values for each system parameter unless otherwise
stated, K = 100, « = 0.83, M| = 128 [B], M1, = 512 [B],
Msiice = 146 [B], M Lc = 4096 [B], Csys = 28, Lsys =28,
p=07,N=2x10% up; = 100, ur2 = 50, urLc = 10,
w=pur =1, u = 0.7, 8 = 32. The memory capacity of
3D-stacked DRAM is considered as M3p = 4 [GiB], which
is large enough to store all the entries in the system.

D. NUMERICAL SIMULATION RESULTS

We present the numerical simulation results of three sys-
tem models, each of which corresponds to the following
architecture: (a) proposed architecture with on-chip LLC
slices and off-chip 3D-stacked DRAM, (b) architecture with
on-chip shared LLC and off-chip 3D-stacked DRAM, and
(c) architecture without on-chip shared LLC and with off-chip
3D-stacked DRAM. In this subsection, we label these three as
Proposed, With LLC, and Without LLC.

Figures 13, 14, and 15 show the blocking probabilities,
average effective waiting times, and throughputs for different
numbers of entries in each cache line with different archi-
tectures, respectively, where C = 28, L = 28, p = 0.7,
and N = 2 x 10% the set of numbers of entries in each
cache line is considered as {1, 2, 4, 16, 32, 64}. We observe
that, as the number of entries in each cache line increases,
the blocking probability increases; the average effective wait-
ing time increases; the throughput decreases. This is because
that more entries which are unpopular but are stored in the
same cache line with some popular entries appear in each
cache as the number of entries in each cache line increases.
As aresult, the capacity of each cache is utilized inefficiently,
which decreases the hit probability in each level of cache
and degrades the system performances in terms of the block-
ing probability, the average effective waiting time, and the
throughput. We observe that the proposed architecture outper-
forms the other two architectures in terms of each considered
aspect. Today’s typical computer systems have 64-byte cache
lines, which corresponds to B/b = 32. When B/b = 32,
the proposed architecture reduces the memory access latency
by 62 % and 12 % and increases the throughput by 108 %
and 2 % with reducing the blocking probability by 96 % and
50 %, compared to the architecture with on-chip shared LLC
and that without on-chip LLC, respectively.

These results can be converted to packet processing per-
formance by using the required number of memory accesses
of a packet processing application to process a packet. For
instance, let the system have a lookup table for IP addresses
lookup, where table entry of each IP address is allocated
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in a flat manner so that every lookup for a packet finishes
with one memory access. Typical latency of single memory
access to HMC is usually between 100-180 [ns] with an
average of 125 [ns], according to [68], [69]. Thus we assume
that the service rate of the 3D-stacked DRAM, u, is 8 M
services per second. As well as the same configuration for
Figures 13, 14, 15, we set C = 28, L = 28, § = 32,
K =100,p=0.7,a =0.83,B/b=32,and N = 2 x 10*.
Based on these configurations, we calculate the throughput
of processing 64 [B] packets and latency of single memory
access. The calculated throughput and latency of the proposed
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architecture, the architecture without LLC, and the architec-
ture with LLC are 89.8 [Gbps] and 333 [ns], 87.8 [Gbps] and
381 [ns], and 43.0 [Gbps] and 896 [ns], respectively.

Figures 16, 17, and 18 show the dependencies of blocking
probabilities, average effective waiting times, and through-
puts in different levels of caches to the number of assigned
LLC slices,! respectively, with considering three values of «,
C =28,B/b =232, p =07 and N = 2 x 10%; the set
of numbers of assigned LLC slices, L, is considered as {1,
4, 8, 16, 28}. We observe that, as the number of assigned
LLC slices increases, since LLC can process more packets
at the same time, which reduces the total time processing
each packet, the system performs better in terms of each
considered aspect. When L is relatively small compared to C,
the system performance increases rapidly as L increases. The
on-chip cache memories become more effective for larger
o where only a few most popular entries are frequently
requested.

Figures 19, 20, and 21 show the blocking probabilities,
average effective waiting times, and throughputs for differ-
ent numbers of assigned CPU cores considering different
numbers of assigned LLC slices with different architectures,

INote that the same value of rrc is used for different values of L.
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respectively, where B/b = 32, p = 0.7,and N = 2 x 104;
the set of numbers of assigned CPU cores is considered
as {4, 8, 12, 16, 20, 24, 28}. As the number of assigned
CPU cores increases, more requests can be processed at the
same time. Consequently, the blocking probability decreases;
the average effective waiting time decreases; the throughput
increases. As the number of assigned LLC slices increases,
the performance of the proposed architecture becomes better.
Especially, the architecture without LLC outperforms the
proposed architecture with L = 4, but when L is set to
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16 and 28, the proposed architecture outperforms the archi-
tecture without LLC.

Figures 22, 23, 24, and 25 show the blocking probabilities,
average effective waiting times, throughputs, and hit rates of
each level of cache for different total numbers of entries in the
system with different architectures, respectively, where C =
28, L =28, B/b =32, and p = 0.7, the set of total numbers
of entries in the system is considered as { 103, 10%, 2x 10%, 3x
10%, 4 x 10*, 5 x 10*, 6 x 10*}. We observe that, as the total
number of entries in the system increases, the blocking proba-
bility increases; the average effective waiting time increases;
the throughput decreases. This is because, as the total number
of entries in the system increases, the proportion of entries
stored in the caches decreases, which degrades the efficiency
of the cache. As a result, the hit rate in each level of cache
decreases, and the system perform worse in terms of each
considered aspect. We observe that the increasing speeds of
blocking probability and average effective waiting time and
the decreasing speed of throughput are slower as the total
number of entries increases. When the value of N is small,
or N = 10*, the proposed architecture significantly outper-
forms the architecture without LLC. The benefit of proposed
architecture decreases as the value of N increases; when the
value of N is greater than one point, the architecture without
LLC slightly outperforms the proposed architecture. For a
larger total number of entries than a certain point where the

VOLUME 8, 2020



T. Korikawa et al.: Packet Processing Architecture Using Last-Level-Cache Slices and Interleaved 3D-Stacked DRAM

IEEE Access

-®-  With LLC

Py
o
L
L )
v
ll
'
'
'
'
|
]

-4 Without LLC

o
o
L

S —#- Proposed

b
=)
L

by
=3

w
=3
L

2.0

Average effective waiting time

0 10,000 20,000 30,000 40,000 50,000 60,000
Total number of entries in system, N

FIGURE 23. Average effective waiting time depending on total number of
entries.

24.0
- Proposed
220 A we Without LLC
-8~ With LL
200 - th LLC
S 180
2.
=
2
2 160 {e,
o \
= N
&0 {0\
12.0
10.0 ‘ ----- ol e L SLLEE LESl =
0 10,000 20,000 30,000 40.000 50,000 60,000

Total number of entries in system, N

FIGURE 24. Throughput depending on total number of entries.

1.0E+00
1-\ -m- LLC, Proposed

LLC, With LLC
L2, Proposed

. L
L2, With LLC

N~

1.0E-01 A Without LLC

L1, Proposed

Hit rate

- L1, Without LLC

1.0E-02 A L1, With LLC

1.0E-03

0 10,000 20,000 30,000 40,000 50,000 60,000
Total number of entries in system, N

FIGURE 25. Hit rate of each cache level depending on total number of
entries.

architecture without LLC begins to outperform the proposed
architecture.

For better operation of the proposed architecture when
the benefit of on-chip LLC slices decreases, there are sev-
eral approaches: to skip the on-chip LLC [42], [43], which
allows the requests that miss the L2 cache directly access the
off-chip 3D-stacked DRAM or to skip the on-chip LLC when
allocating unlikely to be reused cache line instead of replacing
the LRU content of the LLC for every cache miss [44]-[49].
In the proposed architecture, an application may skip the
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on-chip LLC slices based on the operator’s assignment of
LLC slices or the determination of the skip selection logic
in the FPGA. By considering the skip of on-chip LLC slices,
the proposed architecture will behave similar to the archi-
tecture without LLC when the total number of entries is
larger than a certain point where the architecture without LLC
starts to outperform the proposed architecture. Meanwhile,
the released LLC slices may be assigned to other applications
in the multi-tenant NFV environment.

VI. RELATED WORK

Several studies presented software-based packet processing
on top of COTS hardware systems in [3]-[5], [20]. Route-
Bricks [3] is the first study that makes the most of the
parallelism of modern multi-core CPUs. Lagopus [4] is a
high-performance OpenFlow switch software that achieves
10 Gbps switching with 1 M flow entries by using DPDK and
on-chip cache memories. These approaches improve packet
processing performance compared to the previous packet
processing applications running on single-core CPUs. How-
ever, in NFV-aware, carrier-scale environment, the capacity
of on-chip cache memories are too small to accommodate
multiple huge tables, which requires faster, more parallel,
and larger memory devices. Graphics Processing Unit (GPU)
is used in order to augment the parallelism of packet pro-
cessing in [20], which is a reasonable extension of COTS
hardware. However, the study assumes every packet goes
through the same processing in order to leverage the GPU’s
Single Instruction Multiple Data (SIMD) parallelism. In gen-
eral, NFV applications process the packets from various
users, each of which may have different destination, priority,
and packet size, for example. Thus the SIMD-based parallel
packet processing may not be applicable to multi-tenant,
virtualized carrier networks. Poptrie [5] is a software scheme
for high-performance IP routing. It provides 200 M lookups
per second performance on a single CPU core. However, this
software scheme depends on the small on-chip cache mem-
ories. Also, this approach is only for the routing tables and
it cannot be applied to other general NFV applications. The
proposed architecture improves the overall memory access
performance for NFV applications rather than a specific
application.

An HMC, a sort of 3D-stacked DRAM device, is used for
a packet matching system in [22]. It implements a packet
matching circuit in FPGAs, and the FPGA performs table
lookups from the HMC. However, there is no detailed discus-
sion on both channel level parallelism and bank interleaving
of an HMC. CasHMC [23] provided a cycle-accurate simula-
tor of HMCs. However, it does not cover the bank interleaving
of HMCs and is limited to HMC devices itself, which may
not be used for combined architecture for CPUs including
on-chip cache memories and HMCs.

The thermal feasibility of 3D-stacked DRAM devices
was studied in [32]-[34]. For Processing-in-Memory (PIM),
the logic layer of HMC can be used to perform logical
operations to the data in the DRAM layers. Although PIM
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reduces the latency of data transfer between the processor
and the HMC, PIM also produces much heat, which requires
powerful cooling. According to the studies above, PIM use
cases using 3D-stacked DRAM are feasible if the system has
high-end active cooling. Thereby, the proposed architecture is
feasible since it uses 3D-stacked DRAM for simple memory
accesses without depending on the functions of the logic
layer of 3D-stacked DRAM, which enables us to use the
commodity coolers of COTS systems.

3D die-stacked DRAM cache architectures were studied
in [37]-[40]. These approaches directly stack DRAM cache
memories on the CPU, which lowers access latency to the
DRAM cache memories compared to the off-chip DRAMs
while 3D die-stacked DRAM cache extends the capacity of
cache memories instead of using small on-chip SRAM-based
cache memories. Although there are some GPU products or
co-processor products that use 3D-stacked DRAM, applying
the 3D die-stacked DRAM cache to the mainstream server
CPUs such as Intel Xeon needs significant modification of
chip’s microarchitecture.

In terms of utilizing LLC slices, data replication among the
LLC slices was introduced to increase the effective memory
access bandwidth in parallel processing in [50]. It improves
the processing speed and the energy efficiency based on
the LLC slices. Due to the limited memory capacity of the
on-chip LLC slices, the data replication technique is not
applicable to the packet processing that requires larger mem-
ory space.

The methods to improve the packet processing perfor-
mance in the NFV-aware environment were introduced
in [63], [64]. The work in [63] showed that the number
of memory copies and the number of accesses to remote
processors in non-uniform memory access (NUMA) envi-
ronments significantly affect the packet processing perfor-
mance. The work in [63] also demonstrated that larger table
data size degrades the packet processing performance due
to an increasing number of cache misses as the table data
size increases, which is compatible with the motivation of
the introduction of the 3D-stacked DRAM. It also presented
the assignment of resources such as packet queues in NIC
hardware and CPU cores to VNFs should be optimized. The
work in [64] introduced smart NICs to COTS hardware for
NFV. A smart NIC is the NIC that has a processor or an FPGA
so that some part of packet processing in NFV applications
can be offloaded to the NIC. In this study, the Distributed
Denial of Service (DDoS) mitigation function is offloaded
to a smart NIC in order to improve the packet processing
performance at the CPU by releasing the CPU from DDoS
mitigation processing. These approaches are compatible with
the proposed architecture, where the proposed architecture
improves the overall memory access performance.

VII. DISCUSSION

We assume that, for the initial understanding of the perfor-
mance dependency on a part of the system parameters before
we determine the detailed design of the system architecture,
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there is an approach to observe the system performance based
on the simplified model in terms of the focused parameters
and features of the system, instead of the detailed, full-system
model and its simulator with lots of system parameters, com-
plicated parameter tuning for the simulations, and the various
hardware/software features. Then, based on the initial under-
standing, we further incorporate the other system parameters
and the hardware/software features toward the understanding
of a more realistic system.

We firstly focus on the hardware aspect of the memory
parallelism based on the motivation of this work, which is
presented in Section I. We modeled the proposed architecture
in terms of the memory parallelism of the LLC slices and the
3D-stacked DRAM. Although the system models in this work
do not incorporate the details of the actual hardware/software
techniques such as out-of-order CPUs and memory address
translation in the Operating System (OS), the simplified
system model allows us to observe the initial performance
dependency on the number of assigned resources such as LLC
slices.

We plan to use PIM-related features of the 3D-stacked
DRAM in our future work, which is not used in the current
proposed architecture, to increase the performance and the
power efficiency of the system by reducing the number of
data/request transfers between the CPU and the 3D-stacked
DRAMs. In such a further discussion on the packet process-
ing architecture that uses the PIM technique, for instance,
the details of the actual hardware/software and their corre-
sponding parameters, including the capacity of each cache,
will be worth incorporated in our future study.

VIil. CONCLUSION

This paper proposed a packet processing architecture that
uses both on-chip LLC slices and off-chip interleaved
3D-stacked DRAM devices for parallel packet processing.
Table entries are stored in the off-chip 3D-stacked DRAM so
that memory requests are processed in parallel by using bank
interleaving and channel parallelism. Also, cache entries are
distributed according to a memory address-based hash func-
tion so that each CPU core accesses on-chip LLC in parallel.
We evaluated the memory access performance of the pro-
posed architecture in terms of average effective waiting times,
throughputs, and blocking probabilities with considering sev-
eral system parameters. The evaluation results showed that
the proposed architecture reduces the memory access latency
by 62 % and 12 % and increases the throughput by 108 %
and 2 % with reducing blocking probability 96 % and 50 %,
compared to the architecture with on-chip shared LLC and
that without on-chip LLC, respectively. Also, with a larger
number of assigned LLC slices, the performance of proposed
architecture increases, while the number of assigned LLC
slices does not significantly affect the system performance if
more than half of the total number of LLC slices are assigned.
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