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ABSTRACT Leaf area index (LAI) and biomass are important indicators that reflect the growth status of
maize. The optical vegetation indices and the synthetic-aperture radar (SAR) backscattering coefficient
are commonly used to estimate the LAI and biomass. However, previous studies have suggested that
spectral features extracted from a single pixel have a poor ability to describe the canopy structure. In this
paper, we propose a method for estimating LAI and biomass by combining spectral and texture features.
Specifically, LAI, biomass and remote-sensing data were collected from the jointing, trumpet, flowering, and
filling stages of maize. Then we formed six remote-sensing feature matrices using the spectral and texture
features extracted from the remote sensing data. Principal component analysis (PCA) was used to remove
noise and to reduce and integrate the multi-dimensional features. Multiple linear regression (MLR) and
support vector regression (SVR) methods were used to build the estimation models. Tenfold cross-validation
was adopted to verify the effectiveness of the proposed method. The experimental results show that using
the texture features of both optical and SAR data improves the estimation accuracy of LAI and biomass.
In particular, SAR texture features greatly improve the estimation accuracy of biomass. The estimation
model constructed by combining spectral and texture features of optical and SAR data achieves the
best performance (highest coefficient of determination (R2) and lowest root mean square error (RMSE)).
Specifically, we conclude that the best window sizes for extracting texture features from optical and SAR
data are 3 × 3 and 7 × 7, respectively. SVR is more suitable for estimating the LAI and biomass of maize
than MLR. In addition, after adding texture features, we observed a significant improvement in the accuracy
of estimation of LAI and biomass for the growth stages, which have a larger variation in the extent of the
canopy. Overall, this work shows the potential of combining spectral and texture features for improving the
estimation accuracy of LAI and biomass in maize.

INDEX TERMS Maize LAI and biomass, sentinel-1/2, spectral features, SVR, texture features.

I. INTRODUCTION
The leaf area index (LAI) and biomass are important indi-
cators for monitoring the growth of maize [1]–[3]. They
provide important information for monitoring temperature
stress, water stress, pest levels, early yields, etc. [4]–[12].
Traditional LAI and biomass measurements rely on destruc-
tive sampling and manual measurements, which are time-
consuming and labor-intensive [13]. The remote-sensing
inversion method reduces the amount of time and labor
needed to obtain LAI and biomass [14], [15], and it is
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widely used to measure growth metrics for crops such as
maize [14]–[16], wheat [17], [18], rice [19]–[21], and soy-
bean [22], [23]. With the rapid development of remote-
sensing technology, the inversion of LAI and biomass from
remote-sensing images has become a hot topic.

Spectral reflectance and vegetation indices extracted from
optical data and the backscattering coefficient and polariza-
tion metrics extracted from synthetic-aperture radar (SAR)
data are widely used for estimating LAI and biomass
[23]–[27]. However, when the density of canopy leaves is
high, the spectral reflectance and vegetation indices of optical
data tend to be saturated. For example, the normalized dif-
ference vegetation index (NDVI), the most commonly used
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vegetation index, is sensitive for lower LAI values (<3),
but is saturated for medium or higher LAI values (>3)
[23]–[26]. Similarly, when the biomass is at a medium to
high level (>2 kgm−2), NDVI also tends to be saturated
[23], [27]. Since SAR has good penetrability, the backscat-
tering coefficient and polarization metrics extracted from
SAR data can mitigate the saturation in estimating LAI and
biomass [18], [28]. Conversely, SAR data are easily affected
by the soil background and terrain factors. Recent studies
have demonstrated that SAR data are still unable to obtain
good estimates for LAI and biomass [13]. Obviously, it is
difficult to describe accurately the complex canopy struc-
ture based on the optical and SAR remote-sensing features
extracted from single pixels [29]. Therefore, the influence of
surrounding pixels on the target pixels should be considered
when estimating LAI and biomass [30], [31].

However, texture features can describe the spatial corre-
lation of pixels, and help to reflect the variation of vegeta-
tion structure [32]. At present, texture features are widely
used in classification research, indicating that texture fea-
tures can help to improve classification accuracy [31], [33].
Kwak and Park used texture features extracted from a
gray-level co-occurrence matrix (GLCM) along with spectral
features to classify crops, which improved the classification
accuracy by 7.72% [31]. Other researchers have suggested
that spectral information alone is often insufficient for dis-
criminating between the regeneration and successional stages
of coniferous forest but textural information can be useful to
distinguish the variation of the forest structure [33]. Some
studies have demonstrated that texture features are useful for
estimating LAI and biomass [29], [34]–[40]. Wulder et al.
used texture features with a vegetation index to improve
the inversion of LAI [29], especially when LAI > 3 [34].
Zhou et al. extracted texture features from QuickBird images
to estimate LAI for a broad-leaved forest. They found that the
accuracy of estimates of LAI are better when LAI > 3. The
maximum R2 in LAI estimation was obtained from the angle
second-order moment (ASM) and entropy (ENT) extracted
from a 3 × 3 moving window [35]. Yue et al. noted that
when biomass is at a high level, the accuracy of biomass
estimates can be improved by combining vegetation indices
and texture features compared with using a vegetation index
alone [36]. Ouma and Tateishi studied the inversion of forest
biomass using texture features. Using a combination of tex-
ture features and a vegetation index gave the best results [37].
Moreover, the best extraction window size and texture fea-
tures are related to the height, species, age, and spatial distri-
bution of the vegetation canopy [37]. Overall, while texture
features are useful for estimating LAI and biomass [37]–[40],
few studies have examined the effect of texture features in
estimating LAI and biomass in maize.

In addition, the response mechanisms of optical and SAR
images to the vegetation canopy are different. Therefore,
it is worth exploring whether a combination of optical and
radar data can improve the accuracy of estimates of LAI and
biomass. Previous studies have shown that a combination of

SAR and multi-spectral data can improve the accuracy of
estimates of LAI and biomass [18], [41]–[45]. Bach et al.
noted that using a combination of RapidEye and TerraSAR-X
images to extract LAI can mitigate the dependence on
weather conditions [42]. Hosseini et al. concluded that com-
prehensively using optical and SAR images can overcome
the loss of data caused when the details of an optical image
are obscured by cloud [43]. Naidoo et al. suggested that
integrating optical and SAR data can reduce the impact
of soil background and weather conditions on estimates of
biomass [44]. Gao et al. showed that a new vegetation index
constructed by combining optical and SAR images has a
good correlation with LAI and biomass in maize, and can
improve the accuracy of inversion for LAI and biomass of
maize [45]. However, there has been little research on the
inversion of LAI and biomass by leveraging texture features
from a combination of optical and SAR data.

Thus, in this paper, we combine texture and spectral fea-
tures from optical and SAR data to estimate LAI and biomass.
Our overall objectives are: (1) to study the effects of texture
features from optical and SAR data and their combination on
estimates of LAI and biomass in maize, (2) to investigate the
effects of changes in the window size on the extraction of
texture features when estimating LAI and biomass maize, and
(3) to study the effect of texture features on the accuracy of
estimates of LAI and biomass for maize at different growth
stages.

II. MATERIALS
A. STUDY AREA
The study area is located in Wuqing District, Tianjin, China
(Figure 1). It has a total area of 1574 km2, of which
913 km2 is arable land, accounting for 58% of the land area.
This area is in the lower part of the North China Plain and has
relatively flat terrain. There are mainly three soil types: sandy
soil, loamy soil, and clayey soil. The soil is loose and fertile,
making it suitable for the cultivation of crops. This area has
a warm temperate semi-humid continental monsoon climate
with four distinct seasons. The annual average temperature
is 11.6◦C, the average temperature in January is −5.1◦C,
the average temperature in July is 26.1◦C, and the average
annual amount of sunshine is 2705 hours. The annual average
precipitation is 606.8mm, and the annual average frost-free
period is 212 days. The main crop planted in summer in this
area is maize, accounting for 78.3% of the total, followed
by soybeans, accounting for 8.9% of the total, and rice and
grassland [46].

B. DATA
1) SATELLITE DATA COLLECTION AND PROCESSING
Data from three satellites (Sentinel-1, Sentinel-2, and
Landsat-8) were acquired at the jointing stage, trumpet
stage, flowering stage, and filling stage of maize in 2018
(Table 1). Four Sentinel-1 ground range detected (GRDH)
images, four Sentinel-1 single look complex (SLC) images,
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FIGURE 1. Location of the study area and the distribution of sample points.

TABLE 1. Satellite data sets.

and three Sentinel-2 L1C multi-spectral images (MSI) were
downloaded from ESA’s scientific data interface (https://
scihub.copernicus.eu/dhus/#/home), and one Landsat-8
OLI image was downloaded from USGS Earth Explorer
(https://earthexplorer.usgs.gov/). The spatial resolutions of
the SLC and GRDH data from Sentinel-1 were 5 × 20
(range [m] × azimuth [m]) and 20 × 22 (range [m] ×
azimuth [m]), respectively. The spatial resolution of the
Sentinel-2 L1C multi-spectral data was 10 × 10m. The spa-
tial resolution of the Landsat-8 OLI data was 30m in the
multi-spectral band and 15m in the panchromatic band. In the
jointing period, the Sentinel-2 images had thick cloud cover,
so Landsat-8 OLI data that had no clouds were used instead
for the same stage.

The preprocessing of SLC and GRDH data was based on
the SNAP software downloaded from the official ESA web-
site. It mainly included radiometric calibration, multi-look
processing, refined Lee filtering, and geocoding. The pre-
processing of Sentinel-2 L1C multi-spectral data was car-
ried out with the Sen2cor plug-in provided by ESA [47].
First, the L1C data underwent radiometric calibration and
atmospheric correction to obtain L2 data, and then the
bands 5, 6, 7, 8A, 11, and 12 were resampled to a spatial
resolution of 10 × 10m consistent with other bands. The
software ENVI was used to preprocess the Landsat-8 OLI
data. First, the spectrum and panchromatic band were fused
to obtain multi-spectral data with a resolution of 15m, then
the radiometric calibration and atmospheric correction were

performed. It should be noted that we have carried out
geometric rectification for all the above data in the end.

2) IN-SITU LAI AND BIOMASS MEASUREMENTS
In-situ LAI and biomass (Table 2) of four growth stages
(jointing, trumpet, flowering, and filling) were measured on
July 20 to 23, July 31 to August 2, August 15 to 17, and
September 3 to 5, 2018, respectively. Altogether, 40 sample
points (Figure 1) were selected in the study area. Each sample
point was selected in the center of a quadrat of 100× 100m
based on the remote sensing image, and the location of each
sample point was measured by Garmin GPS 60. For each
sample point, we measured the plant parameters of maize,
including leaf length, leaf width, biomass, and plant density.
The dry biomass of maize was obtained by multiplying the
dry weight of the plant by density, and the dry weight was
measured by cutting the sample of maize and dried it in

TABLE 2. Measured LAI and biomass of maize in Wuqing area.
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FIGURE 2. Flowchart for combining spectral and texture features in estimating maize LAI and biomass based on SAR
and optical data.

an oven. Similarly, LAI was obtained by multiplying the area
of single plant by plant density, where the area of single plant
was calculated by sum all single leaf area of plant. The single
leaf area of a plant can be calculated by multiplying leaf
length by leaf width by 0.73. To ensure the accuracy of these
parameters, in each quadrat we measured three representative
samples and averaged the three samples (Table 2). For all
in-situ samples, the range for LAI was 0.38–5.13, and the
range for biomass was 16.48 gm−2–1559.08 gm−2.

III. METHODS
In this paper, we explore a method to leverage the spectral
and texture features of optical and SAR data for estimating
LAI and biomass in maize. The motivation is that, as we
discussed in the introduction, (1) texture features can alle-
viate the saturation of spectral features in estimating LAI
and biomass and (2) SAR has strong penetration and so can
provide information that is complementary to optical data.
Thus, this combination can yield more accurate estimates of
LAI and biomass.

We propose a pipeline (Figure 2) that combines spectral
and texture features from optical and SAR data for estimating
LAI and biomass in maize. Specifically, we first extract abun-
dant texture and spectral features from optical and SAR data.
Then, PCA is leveraged to combine the extracted features and
reduce the noise. Next, inversion models for LAI and biomass
can be constructed based on MLR and SVR, respectively.

A. FEATURE EXTRACTION AND ANALYSIS
1) TEXTURE FEATURE EXTRACTION
The texture features of remote-sensing images can provide
information about changes in the structure and geometric
characteristics of ground objects [48], [49]. The most com-
monly used method to extract texture features is statistical
analysis. In this paper, it was used to extract eight texture
features from the GLCM of optical and SAR images [50]:
mean (MEA), variance (VAR), homogeneity (HOM), contrast
(CON), dissimilarity (DIS), entropy (ENT), angular second
moment (ASM), and correlation (COR). Then, we extracted
the texture features of the 40 sample points according to
the geographic coordinates recorded with a Garmin GPS 60.
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TABLE 3. Texture features.

In addition, the image texture measures the local variance
of gray level, which is largely dependent on the scale [51].
Therefore, when extracting texture features, we need to select
the appropriate window size. In this paper, we compared 3×3,
5 × 5, and 7 × 7 windows when extracting texture features
from optical and SAR data to find the best size for estimating
LAI and biomass for maize (Table 3).

2) SPECTRAL FEATURE EXTRACTION
Spectral features, such as spectral reflectance and vegetation
indices, are often used to estimate the LAI and biomass
of crops [23]–[26]. In addition, the backscattering coeffi-
cient and polarization metrics extracted from SAR images
are also often used to retrieve the LAI and biomass of
crops [52]. Many studies have shown that these features
extracted from optical and SAR images have a good correla-
tion with LAI and biomass [18], [45]. Therefore, the spectral
reflectance of six bands of optical data (blue, green, red,
near infrared, short infrared 1, and short infrared 2), five
vegetation indices [NDVI [53], enhanced vegetation index
(EVI) [54], ratio vegetation index (RVI) [55], soil-adjusted
vegetation index (SAVI) [56], and modified soil-adjusted
vegetation index (MSAVI) [57]] and the backscattering coef-
ficient and polarization metrics (H , A, and α) from SAR
data were extracted (Table 4). For simplicity, the above fea-
tures (spectral reflectance, vegetation indices, backscattering
coefficient, and polarization metrics), which are based on
single-pixel extraction, are collectively referred to as spectral
features in this paper. Similarly, we extracted spectral features
for the 40 sample points according to the geographic coordi-
nates recorded with the Garmin GPS 60.

For these features extracted from optical and SAR
remote-sensing images, six feature matrices were created:
optical spectral feature matrix (OS), optical texture feature
matrix (OT), SAR spectral feature matrix (SS), SAR texture
feature matrix (ST), optical + SAR spectral feature matrix
(OSS), and optical + SAR texture feature matrix (OST).

3) FEATURE ANALYSIS
PCA can compress multi-dimensional variables into fewer
variables in a principal component vector while retaining the
main parts of the information in the original data. PCA is
widely used in remote-sensing data decorrelation and noise
processing [58], [59]. Fei et al. noted that compared with
look-up table methods and artificial neural networks, PCA
can give better results for estimating the LAI of maize [60].

The extracted texture and spectral features contain rich
ground feature information, but there may be correlations
between the features. Therefore, PCA is used to reduce
the dimensionality and denoise the multi-dimensional fea-
ture matrix. In this paper, the PCA of the feature matrices
(OS, OS + OT, SS, SS + ST, OSS, and OSS + OST)
is implemented in Python to give the new remote-sensing
feature matrices (OSP, OSP + OTP, SSP, SSP + STP, OSSP,
and OSSP + OSTP), which are composed of the principal
components.

B. MODEL BUILDING METHODS
To express quantitatively the relation between multi-
dimensional remote-sensing features and maize LAI and
biomass, this paper takes the multi-dimensional remote-
sensing features as independent variables, the in-situ LAI
and biomass of maize as dependent variables, and establishes
an MLR model and an SVR model, respectively [39], [61].
The MLR model and the SVR model express the linear and
nonlinear relations between remote-sensing features and the
LAI and biomass of maize.

The MLR model uses the least squares method for the
regression analysis:

LAI = a0 + a1x1 + a2x2 + · · · + anxn (1)

Biomass = b0 + b1x1 + b2x2 + · · · + bnxn (2)

where x1, x2, . . . , xn are the multi-dimensional remote-
sensing features and a0, a1, a2, . . . , an and b0, b1, b2, . . . , bn
are the regression coefficients for the MLR model. n is the
number of independent variables.

The SVR model uses the Lagrange multiplier method for
the regression analysis:

LAI = ω1φ1(x)+ b1 (3)

Biomass = ω2φ2(x)+ b2 (4)

where x is the multi-dimensional remote-sensing feature,
φ1(x) and φ2(x) are the kernel functions, and ω1, b1, ω2,
and b1 are the parameters to be found. Here, for the kernel
function we use a Gauss function as the radial basis function.

In addition, to explore the influence of texture features on
the LAI and biomass estimation models, the main compo-
nents without texture features, such as OSP, SSP, and OSSP
and with texture features, such as OSP + OTP, SSP + STP,
and OSSP + OSTP are used as the inputs of the two esti-
mation models, respectively. The models for maize LAI and
biomass are then constructed using MLR and SVR.

53618 VOLUME 8, 2020



P. Luo et al.: Combining Spectral and Texture Features for Estimating Leaf Area Index and Biomass of Maize

TABLE 4. Spectral features.

TABLE 5. Accuracy of LAI and biomass estimation models for maize using only SAR or only optical data.

TABLE 6. Accuracy of LAI and biomass estimation models for maize using both SAR and optical data.

C. ACCURACY
Tenfold cross-validation was used to assess the accuracy of
the various LAI and biomass estimation models based on
different remote-sensing features and different methods [62].
First, the data set was randomly divided into 10 parts. Nine of
them were used as training data and one was used as test data
in training the model [40], [62]. The R2 and the root-mean-
square error (RMSE) were used to assess the precision of the
LAI and biomass estimation models:

R2 =

∑n
i=1 (fi − ȳ)

2∑n
i=1 (yi − ȳ)

2 (5)

and RMSE =

√∑n
i=1 (fi − yi)2

n
, (6)

where fi denotes the simulated value of LAI or the biomass
obtained from the estimation model, and yi and ȳi denote
the in-situ value and mean value, respectively. n denotes the
number of sample points (n = 1, 2, 3, . . . ). Each model was

tested 10 times, and the mean value of the 10 runs was taken
as the final result.

IV. RESULTS
A. ESTIMATION OF MAIZE LAI AND BIOMASS USING
SPECTRAL AND TEXTURE FEATURES
Figures 3 and 4 compare the predicted and measured values
for the inversion model. It can be seen from the two fig-
ures that the estimation model constructed from optical +
SAR data has the highest R2 (MLR: LAI R2 = 0.610,
biomass R2 = 0.577; SVR: LAI R2 = 0.672, biomass R2 =
0.707) and the lowest RMSE (MLR: LAI RMSE = 0.563,
biomass RMSE = 202.529 gm−2; SVR: LAI RMSE =
0.634, biomass RMSE= 202.854 gm−2). The SVR model is
better for estimating LAI and biomass than the MLR model.
However, the LAI model constructed by SAR data is not
good, while the biomass model constructed by SAR data is
good. Tables 5 and 6 show the accuracy of the estimation
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FIGURE 3. Comparison of measured values of LAI and biomass with values from estimation models based on MLR:
(a) LAI model using SAR data, (b) biomass model using SAR data, (c) LAI model using optical data, (d) biomass model
using optical data, (e) LAI model using both SAR and optical data, and (f) biomass model using both SAR and optical data.

models. As can be seen, when texture features are added,
the R2 values of LAI and biomass are higher and the RMSE
values are lower.

B. ESTIMATION OF MAIZE LAI AND BIOMASS AT
DIFFERENT GROWTH STAGES
The effect of texture features on estimates of maize LAI and
biomass at different growth stages can be seen in Figure 5.
For the MLR method, R2 decreased at the trumpet stage,
whereas it increased at this stage with the SVR method. This
shows that nonlinear models are better than linear models
in estimating this vigorous growth stage of maize. R2 is a
maximum at the peak of maize growth (heading or flowering
stage).R2 is the lowest for themodels without texture features
as OSSP, and increased by 0.1–0.3 when texture features were
added, which indicates that texture features are important in
compensating for saturation.

V. DISCUSSION
A. THE EFFECT OF USING ONLY OPTICAL OR ONLY SAR
TEXTURE INFORMATION ON LAI AND BIOMASS
ESTIMATES
To explore the effects of incorporating texture information
on maize LAI and biomass estimates, spectral and texture
features extracted from optical and SAR data were used to
build MLR and SVR models, respectively. The results show
that models built by combining spectral and texture features
performed better thanmodels based on spectral features alone
(Figure 6). These results are in agreement with the wheat
biomass estimates made by Zhou et al. [35], the wheat LAI
estimates made by Li et al. [63], and the forest biomass
estimates made by Cutler et al. [49].

Figures 6(a) and 6(b) show the R2 of LAI and biomass
models built by MLR and SVR, respectively, whereas
Figures 6(c) and 6(d) show the RMSE values. The texture
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FIGURE 4. Comparison of measured values of LAI and biomass with values from estimation models based on SVR: (a) LAI
model using SAR data, (b) biomass model using SAR data, (c) LAI model using optical data, (d) biomass model using optical
data, (e) LAI model using both SAR and optical data, and (f) biomass model using both SAR and optical data.

features extracted from SAR data have a more significant
effect than optical texture features, especially for estimating
biomass. After adding SAR texture information, the R2 of the
biomass models increased by about 0.35, and that of the LAI
models increased by about 0.15. However, with the addition
of optical texture features, the R2 of the LAI and biomass
models increased only by about 0.1. This may mean that
the SAR texture features provide more information about the
maize canopy, which is useful in estimating LAI and biomass.
Moreover, due to the side-looking imaging of SAR, its texture
information may better describe the structural characteristics
of the canopy, which is a good supplement to the spectral
characteristics. In conclusion, both optical and SAR texture
information can improve the accuracy of estimates of maize
LAI and biomass. SAR texture information, in particular,
is most beneficial to estimates of biomass.

B. COMPARISON OF LAI AND BIOMASS ESTIMATES MADE
BY COMBINING OPTICAL AND SAR DATA WITH ESTIMATES
MADE USING ONLY OPTICAL OR ONLY SAR DATA
Due to the different imaging techniques used for optical and
SAR data, the remote-sensing information they contain is
quite different. Therefore, the influence of combining optical
and SAR data on the construction of maize LAI and biomass
estimation models was analyzed. Figure 7 illustrates that
combining optical and SAR features improves the accuracy
of LAI and biomass estimates. Moreover, the models have
the highest accuracy after adding texture features. For both
MLR and SVR models, R2 is higher and RMSE is somewhat
lower after combining optical and SAR features. Therefore,
the combination of optical and SAR remote-sensing data
can provide more information for LAI and biomass esti-
mation models, which is consistent with the results of
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FIGURE 5. Comparison of LAI and biomass estimation models at different growth stages. OSSP indicates that spectral
features were extracted from a combination of optical and SAR data, whereas OSSP + OSTP indicates that spectral
features and texture features were extracted from a combination of optical and SAR data. The sizes of the windows for
extracting texture features were 3× 3, 5× 5, and 7× 7.

FIGURE 6. Contributions of texture features extracted from only optical or only SAR data to LAI and biomass estimates.
(a), (b) R2 for LAI and biomass models based on MLR or SVR, respectively. (c), (d) RMSE for LAI and biomass models
based on MLR or SVR, respectively.

Zhou et al. [35] and Yue et al. [36]. This may be due to the
different response mechanism of the optical data and SAR
data for ground objects. Optical data may have a rich amount

of spectral information in the visible band, but can not reflect
the contribution of the inner leaves of the canopy. In contrast,
SAR has good penetrability, and the side-looking imaging
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FIGURE 7. Comparisons of combining optical and SAR data with only optical or only SAR data in LAI and biomass
estimation. (a), (b) R2 of LAI and biomass models based on MLR or SVR, respectively. (c), (d) RMSE of LAI and biomass
models based on MLR or SVR, respectively.

mode is helpful for obtaining more information about the
canopy structure, which can compensate for the deficiencies
of optical data. Therefore, the combination of the two can
complement each other to get better inversion results.

C. SENSITIVITY OF FEATURE EXTRACTION WINDOW SIZE
IN LAI AND BIOMASS ESTIMATION MODELS
In this paper, the texture features of optical and SAR data
were extracted with windows of size 3× 3, 5× 5, and 7× 7,
and the estimation models for maize LAI and biomass were
constructed by combining spectral and texture features in
different windows (Table 5). The experimental results show
that the estimation models of LAI and biomass have the
highest accuracy when the optical texture feature window is
3 × 3 and the SAR texture feature window is 7 × 7. As the
feature extraction window increases in size (from 3 × 3 to
5 × 5 and 7 × 7), the accuracy of the models constructed
with optical texture features gradually decreases. This may
be because the differences between pixels are smoothed out
by the window, resulting in a reduction of detail for the
maize canopy. However, the models based on 7 × 7 texture
features have the highest accuracy. It is possible that the
SAR data include a significant amount of noise due to its
special imaging mechanism, and the noise interferes with
information extraction and analysis. With an increase of the
window size, the noise becomes smoother, so a larger window
may provide more effective information on the structure of
the maize canopy. In addition, Table 6 and Figure 5 show that

when combining optical and SAR data to estimate LAI and
biomass, the optimal extraction window for texture features
differs for the MLR and SVR models (3 × 3 and 5 × 5,
respectively). Thus, the size of the extraction window for
texture features affects the accuracy of estimates of LAI and
biomass. Moreover, the sensitivity of the extraction window
is also related to how the model is built and the type of
remote-sensing data used. Therefore, the sensitivity of the
texture feature extraction window needs to be analyzed under
different conditions.

D. INFLUENCE OF LINEAR AND NONLINEAR INVERSION
METHODS ON LAI AND BIOMASS ESTIMATION MODELS
In addition to the factors discussed above, whether a linear
method as MLR or a nonlinear method as SVR is used also
affects the accuracy of LAI and biomass estimation. As can
be seen from Tables 5 and 6, whether the inversion model is
constructed using only spectral features or using both spectral
and texture features, the R2 obtained by the SVR method is
higher than that obtained by theMLRmethod, while RMSE is
reduced by varying degrees. This indicates that the inversion
model constructed by the SVR method is more accurate than
that constructed by the MLR method, which is consistent
with the results of Fei et al. [60]. This may be because
MLR is suitable for estimating only remote-sensing features
with a linear relation with LAI and biomass, whereas the
relation between multi-dimensional remote-sensing features
and LAI (or biomass) is not a simple linear correlation.
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However, the nonlinear relation between multi-dimensional
remote-sensing features and LAI (or biomass) is fully con-
sidered in the SVR method by using a radial basis func-
tion as the kernel function. Therefore, the precision of the
LAI and biomass estimation model constructed by the SVR
method was higher than that constructed by theMLRmethod.
However, the LAI and biomass estimation models con-
structed by theMLR and SVRmethodsmay be unstable when
applied at a larger scale, since the parameters have regional
applicability.

E. EFFECTS OF TEXTURE INFORMATION ON LAI AND
BIOMASS ESTIMATION FOR DIFFERENT GROWTH
STAGES OF MAIZE
Figure 6 shows that there is a significant regularity in the
accuracy of LAI and biomass estimation models in the four
growth stages. As mentioned above, the accuracy of LAI and
biomass for models built by both the MLR and the SVR
methods is the highest in the flowering stage. Because the
growth and development of a maize canopy reaches a peak at
the flowering stage, LAI and biomass no longer continue to
grow rapidly. In addition, in the flowering stage, the bottom
leaves have not started to fall off, so the canopy structure
is relatively stable. The canopy closes over at the flowering
stage, and the influence of the soil background on the optical
and SAR features is weakened, so the accuracy of LAI and
biomass estimation will be better. However, we found that
the accuracy of estimates of LAI and biomass of maize at
the flowering stage was not improved significantly by adding
texture features, which indicates that the improvement from
adding texture features on the accuracy of canopy growth
parameters is smaller when the canopy structure is rela-
tively stable. In contrast, adding texture features significantly
enhances the accuracy of estimates of LAI and biomass in the
jointing stage, the trumpet stage, and the filling stage. This is
because when the canopy structure is changing rapidly, tex-
ture features are helpful in describing the changes in canopy
growth parameters. The accuracy of biomass inversion in
the trumpet stage is the highest with texture features, which
is when the largest change occurs in the canopy structure.
In conclusion, texture features are very sensitive to changes
in the canopy structure and have great potential for estimating
maize LAI and biomass, especially in the rapid growth stage.

VI. CONCLUSION
In this study, the method for estimating maize LAI and
biomass by combining spectral and texture features was
proposed through exploring various effects on estimation of
maize LAI and biomass, including different satellite data,
window sizes of feature extraction, modeling methods and
growth stages. We used the optical and SAR data to extract
the spectral and texture features. The spectral features include
reflectance and vegetation indices extracted from optical data,
and the backscattering coefficient and polarization metrics
extracted from SAR data. The texture features include eight
kinds of GLCM-based variables extracted from multiple

optical and SAR data. In order to reduce the dimensional-
ity and noise from these multi-dimensional features, PCA
method was used to filter the unnecessary information and
select the effective features, andMLR and SVRmethodswere
used to build estimation models of maize LAI and biomass.

Based on this study, a combination of optical and SAR
data can obtain better results than only using optical or SAR
data, and SVR method is more suitable for estimating maize
LAI and biomass than MLR method. The texture features
extracted from the optical and SAR data can improve the
estimation accuracy of maize LAI and biomass, and SAR tex-
ture features significantly improved the accuracy of biomass
estimation. The window size of texture feature extraction has
obvious influence on the accuracy of maize LAI and biomass
estimates, and the optimal window size depends on the type
of remote sensing data and the estimation method. Moreover,
the texture features have different effects on maize LAI and
biomass estimates at different growth stages, in particular,
when the canopy structure of maize grows rapidly, such as the
trumpet stage, the texture features have significant influence
on maize LAI and biomass estimates, otherwise they have
less influence when the growth is relatively stable, such as
the flowering stage.

This study provides insights into combining spectral and
texture features for estimating maize LAI and biomass using
optical and SAR data. But this method is empirical, so its
application is limited by in-situ data. Further evaluation of
combining spectral and texture features for estimating the
parameters of different crops need to be carried out in future
research.
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