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ABSTRACT Wireless communications and networking are playing an important role in coordination and
cooperation of multi-robot systems (MRS). However, it is challenging to keep a reliable and stable wireless
connection in practical applications. Especially, robots acting in electromagnetic adversarial (EA) environ-
ments may encounter more serious situations including scarce spectrum, active interference, adversarial
competition, etc. In this survey, we firstly analyze the challenges faced by MRS in EA environments, and
provide a categorization according to the ‘‘sense-decide-act’’ robot control procedure. Secondly, enabling
techniques for each challenge are introduced. Finally, typical robotics software architectures are introduced,
as frameworks for efficient arrangement of the above mentioned enabling techniques.

INDEX TERMS Electromagnetic adversarial environment, multi-robot coordination, communication con-
nectivity, survey.

I. INTRODUCTION
Bill Gates published an article in Scientific American in 2007,
named a robot in every home. He envisions a future where
robots will become a nearly ubiquitous part of our daily
lives [1]. More than 10 years have past, we indeed see that
millions of robots have stepped into our houses and help
us to do many things. Nowadays, various kinds of robots
are also playing important roles in our social lives, e.g.,
surveillance [2], data collection [3], field exploration [4], etc.
Compared with single-robot systems, a system consisting of
multiple robots can largely improve the task performance by
coordination, which ismore suitable for challenging tasks and
complex environment. In recent years, considerable research
contributions have been made to the evolution of multi-robot
system (MRS), and this trend will continue in the coming
decades [5].

In most multi-robot application scenarios, coordination
among robots largely relies on the success of information
exchange [6], such as situational awareness information,
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control commands, state data, etc. As mobile robots are less
likely to be connected via wires, thus maintaining a reliable
and stable wireless communication connectivity becomes
vital for multi-robot coordination. However, in realistic com-
munication environment, the wireless channel often experi-
ences path loss, shadowing and multipath fading [7], which
largely decreases the channel reliability and makes the com-
munication link unstable. Especially, in complex electromag-
netic environment, there will be more influencing factors
affecting the wireless channel. A typical example is the
unknown jammers [8], [9], which actively disrupt the com-
munication connectivity of other entities that rely on wireless
communications.

In the era of robotics, the jammers will become more
autonomous and intelligent. With the development of soft-
ware defined radio (SDR) [10] and artificial intelligence tech-
nologies, the robots equipped with the programmable radio
frequency (RF) devices can quickly change waveforms and
create constant new signals based on the perception of the
electromagnetic environment. In order to distinguish from
the traditional jammers, we call the jammers that incorpo-
rate robotic technologies the jamming robots. The higher the
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FIGURE 1. A representative EA environment where task robots (e.g., ground mobile robots and aerial robots) aim at finishing
specific tasks, e.g., exploration, surveillance, target tracking, etc. Meanwhile, a team of intelligent jamming robots seamlessly
change their positions to disrupt the communication connectivity among task robots.

intelligence of the jamming robots, the more difficult it is
to be located and identified. As a result, while the robots
are performing tasks, they also need to compete with the
jamming robots for available communication resources. As a
result, in this environment, the task robots may face more
adversarial hindrances from the jamming robots. This survey
may define such kind of environment as an electromagnetic
adversarial (EA) environment and explore the effective ways
to solve the multi-robot coordination problem in EA environ-
ment, as shown in Fig. 1.
Cynefin framework classifies the environment into five

categories: simple, complicated, complex, chaotic and
disorder [11]. The EA environment can be seen as a kind of
complex environment. The framework proposes to solve the
problem in complex environment with the loop of ‘‘sense-
analyse-respond’’, which emphasizes the continuous interac-
tionwith the environment to obtain the solutions. TheCynefin
framework is similar to the classic robotic ‘‘sense-plan-act’’
operating paradigm [12]. In order to highlight the intelligent
characteristics of robots, ‘‘analyse’’ and ‘‘plan’’ can be col-
lectively marked as ‘‘decide’’, and ‘‘act’’ can incorporate the
meaning of ‘‘response’’. Therefore, the above models can
be uniformly represented as the ‘‘sense-decide-act’’ behavior
chain, and the multi-robot coordination in EA environment
can also be carried out according to this model.

Following the ‘‘sense-decide-act’’ behavior chain, we may
firstly summarize the challenges of multi-robot coordination
in EA environment in Section II. Then, for each challenge,
we will try to put forward the relevant techniques and analyze
their applicable conditions in Section III. Finally, Section IV
concludes this survey. We hope the research results of this
survey may provide a theoretical reference for the research of
multi-robot coordination in EA environment.

II. MAIN CHALLENGES
In this section, we will summarize the main challenges of
multi-robot coordination in EA environment according to the

‘‘sense-decide-act’’ behavior chain. The first three challenges
introduce the corresponding challenges from sense, decide
and act, respectively. The final challenge pushes out the
simulation environment requirements for trainingmulti-robot
coordination in EA environment.

A. COMMUNICATION CONNECTIVITY MAINTENANCE
In multi-robot applications, the performance of task
execution largely relies on the information sharing (e.g. sens-
ing data) between robots. Therefore, keeping a wireless
communication connectivity in the sense stage is one of
the fundamental requirements for multi-robot coordination.
However, in EA environment, the wireless channel is highly
dynamic and the active interference from the intelligent jam-
ming robots will further decrease the average received signal-
to-noise ratio (SNR) on the receiver robot, which makes the
communication connectivity even more serious. Therefore,
keeping a reliable and stable wireless communication link
among robots in EA environment is particularly impor-
tant and challenging, and designing appropriate solutions is
urgently needed.

B. COOPERATIVE-COMPETITIVE DECISION-MAKING
Multi-robot coordination in EA environment is essentially
a mixed cooperative-competitive problem. The relationship
between task robots is cooperative, and they have consistent
mission objectives. However, there is a competitive rela-
tionship between the task robots and the jamming robots.
They are both competing for the spectrum resources, which
makes the objective of task robots and the jamming robots
coupled. For example, when the jamming robots occupy a
certain frequency band, it will result in the scarcity of the
spectrum resources of the task robots in this band. Therefore,
in the decide stage, the relationship and objectives of the
task robots and the jamming robots need to be considered at
the same time. Based on the above considerations, construct-
ing a ‘‘cooperative-competitive’’ unified solving framework
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is necessary to achieve the multi-robot coordination in EA
environment.

C. AUTONOMOUS ACTION CONTROL
In the act stage, the control command of a robot is usually
calculated according to the outputs of the decide stage. How-
ever, the higher-level decision cannot guarantee stability and
robustness for the lower-level control commands. Especially,
in EA environment, the surroundings around robots are highly
dynamic and accident-prone. For solving this problem, it is
necessary to allow each robot to play their own ‘‘person-
ality’’ and fully exploit its autonomy. In order to achieve
this goal, a hierarchical control engine is needed. When the
communication link continues to be poor or the objective
function can not be further optimized, the engine will take
over the right of control, and select actions according to
predefined rules.Wemay see that autonomy and coordination
are never opposites, but a unified whole. Therefore, how to
adopt autonomy to compensate for coordination is one of the
main challenges to improve the swarm intelligence in the EA
environment.

D. ENVIRONMENT ADAPTATION
Training the ‘‘sense-decide-act’’ behavior chain needs to
continuously interact with the environment. Considering the
intelligence of the jamming robots is continuously evolv-
ing, the task robots will face an unknown and constant new
environment. Training algorithms in real electromagnetic
environment may encounter problems such as high deploying
cost, inflexible scene update, and low training efficiency.
In order to quickly obtain a adaptive algorithm for unknown
environment, it is necessary to build a multi-domain simu-
lation environment which should have the ability to rapidly
generate vivid electromagnetic-geographical environment.

III. ENABLING TECHNIQUES
In order to meet the challenges proposed in Section II, this
section will review the existing enabling techniques which
may give useful suggestions for multi-robot coordination
in EA environment. Fig. 2 demonstrates the relationship
between the challenges above and the enabling techniques

FIGURE 2. The relationship between the challenges and the enabling
techniques.

reviewed in this section. For maintaining the communication
connectivity, we have summarized four kinds of associated
techniques: sensing information compression and prediction,
intelligent communication, connectivity-preserving plan-
ning and control, and robotic relays. In the challenge of
cooperative-competitive decision-making, we recommend
using reinforcement learning, especially the multi-agent
deep reinforcement learning to solve the problem. For the
autonomous action control, we may relax the requirements
for maintaining all-time communication connectivity and
give the robot greater autonomy, which involves two kinds of
techniques: intermittent communication strategy and hierar-
chical control. The technique of realistic virtual environment
construction supports the evolving of the whole ‘‘sense-
decide-act’’ behavior chain in a large number of different
scenarios, which may help to strengthen the environment
adaptation of the robots. Finally, in order to enable the above
enabling techniques to be adapted to specific robots, the task
should be flexibly adjusted by awell-designed software archi-
tecture according to the environment.

A. SENSING INFORMATION COMPRESSION AND
PREDICTION
As discussed in Subsection II-A, multi-robot coordination
relies on information sharing, e.g. cooperative localization
and mapping [13]. However, in EA environment, the commu-
nication bandwidth is limited which makes high-dimensional
data sharing between task robots challenging. In order to
solve this problem, wemay consider the techniques from both
the source and sink sides.

In the source side, for saving bandwidth, we may reduce
the dimensions of the shared data by extracting features
whose dimensions are much lower than the raw data. The
main dimension reduction methods can be divided into two
categories: manual and non-manual methods. In the manual
methods, each feature of the data is carefully designed by
hand. The kind of methods have a long operating cycle, low
flexibility, and highly depends on domain experts’ knowledge
[14], [15]. A typical example is incremental feature depen-
dency discovery (iFDD), which has been successfully used
to denote the state features of an air combat scenario [16].
In the scenario, the pilot’s preference is fully consideredwhen
designing the base features, e.g., aspect angle, antenna train
angle, aspect angle rate, etc. For the non-manual method,
it may refer to the approaches that generate features with-
out explicitly specifying their attributes, e.g., principal com-
ponent analysis (PCA) [17], multiple dimensional scaling
(MDS) [18], isometric mapping (Isomap) [18], locally linear
embedding (LLE) [19], etc. When combined with artificial
neural network and deep learning, the feature extraction will
own the ability to learn nonlinear features [20]. autoencoder
(AE), as a typical deep learning method, plays an important
role in unsupervised learning and nonlinear feature extrac-
tion, which has been widely used in the field of image and
speech [21], [22]. Fig. 3 demonstrates an example of varia-
tional autoencoder (VAE) used in image feature extraction,
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FIGURE 3. An example of variational autoencoder (VAE) used in image
encoding and decoding.

where z denotes the encoded vector (latent variables) whose
dimension is smaller than that of the raw image x.

As soon as the shared data is compressed, it will be trans-
mitted through the wireless communication link, and sent
to the sink robot. In EA environment, the transmitted data
is easy to be interrupted. Therefore, on the sink side, it is
also necessary to consider how to recover the shared data
when it is incomplete or lost. For the high-dimension data,
an alternative way is to predict the lost data by correlating
historical memory. Typical methods are recurrent neural net-
work (RNN) [23], long short-term memory (LSTM) [24],
etc. On the other hand, in addition to high-dimensional data,
there are some low-dimensional data need to be shared for
multi-robot collaborative control, e.g. positions. For exam-
ple, collision avoidance requires the current robot to know
the positions of the neighboring robots. When the data is
not received, the robot needs to predict the other robots’
behaviors. The usual methods for predicting the other robots’
behaviors are based on prior models. For example, a sim-
ple model is assuming others robots move at a constant
speed [25]. However, this assumption may not be accurate
in many scenarios. In order to improve the accuracy of pre-
diction, effective methods may embed the dynamics models
into the behavior predictions of the robots, a typical method
is model predictive control (MPC) and its extensions [26].

B. INTELLIGENT COMMUNICATION
In above subsection, we have summarized the techniques of
compression and prediction, trying to make the shared data
can be successfully received by the sink side. These tech-
niques are analyzed from the application level of the network
protocol. However, the transmission efficiency is largely
determined by the physical layer. Therefore, we may use the

FIGURE 4. A TurtleBot robot equipped with USRP N210 and GNU Radio.

anti-jamming communication techniques to make the data
transmission more reliable [27]. Traditional methods include
frequency-hopping spread spectrum (FHSS), direct-sequence
spread spectrum (DSSS), hybrid spread spectrum [28], smart
antenna [29], diversity scheme [30], etc.

When entering the era of artificial intelligence, in order
to overcome the challenge of the intelligent jamming robots,
the task robots need to have the ability to exploit the spectrum
intelligently. Cognitive radio (CR) is the key enabling tech-
nique that supports dynamic spectrum access networks which
are seen as the next generation communication networks [31].
Moreover, many researchers regard CR as the key technology
for 5G deployment [32], [33]. In CR, the users (e.g. the
task robots) should be equipped with two main capabilities:
cognitive capability and reconfigurability [34]. Cognitive
capability denotes the ability to sense the electromagnetic
environment, including spectrum sensing, autonomous learn-
ing, modeling, and reasoning. Reconfigurability refers to
the ability to dynamically change the waveform configu-
rations and parameters according to the sensed data for
achieving a better communication performance [31]. In order
to achieve reconfigurability, there are some software archi-
tectures have given the paradigms, e.g., GNU Radio [35],
Software Communication Architecture (SCA) [36], Iris [37],
etc. For each software architecture, it just provides the signal
processing blocks. In realistic communication applications,
the software architecture also needs to use external radio
frequency (RF) hardware to create software-defined radios
(SDR). The most popular hardware platform is the Universal
Software Radio Peripheral (USRP) which is designed by
Ettus Research [38]. Currently, designing and prototyping
radio communication systems with GNU Radio and USRP
has been the paradigm in CR and SDR [39]. Fig. 4 gives an
example that a radio-mapping robot mounting a USRP device
with GNU Radio on a TurtleBot robot [40].

Moreover, in addition to using electromagnetic signals
for communication, other communication media can also be
used. For example, line-of-sight (LOS) based communica-
tion (by infrared or visible light) is a typical representative
which is difficult to be interfered by the jammers [41]. This
kind of new communication paradigm is very suitable for
the communication between military units in the battlefield,
e.g. establishing communication links [41], collaborative
patrol [42], [43], etc.
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C. CONNECTIVITY-PRESERVING PLANNING AND
CONTROL
Considering the above techniques are all implemented on
the onboard computer carried on the robot, they can be seen
as a kind of passive methods which may not change the
channel conditions. In order to actively improve the channel
condition, besides the onboard computer, a good choice is
adopting the mobility of the robots, which has been analyzed
in our previous work [44]. By utilizing the knowledge of con-
nectivity quality, we may plan and control the motion of the
robots to improve specified task-oriented performance, while
satisfying certain communication constraints. This kind of
technique is often called communication-aware motion plan-
ning [44], [45], connectivity preserving [46], [47], or con-
nectivity maintaining [48], [49]. In this subsection, we may
use connectivity-preserving planning and control (CPPC) to
represent the above concepts.

In fact, connectivity is not a new topic in recent
years. As early as the beginning of this century, with
the rapid development of wireless sensor network (WSN),
how to maintain the sensing coverage and communica-
tion connectivity between sensors has become the focus of
researchers [50], [51]. In WSN, the communication range of
each sensor is modeled as a sphere, where the sensor can
only communicate with the sensors in the sphere. The aim
of deploying sensors in WSN is achieving the desired cov-
erage with the least number of sensors [52]. Later, in order
to meet the requirements of different tasks and cope with
rapid topology changes [53], mobile wireless sensor net-
work (MWSN) has been proposed, and the researches on
connectivity MWSN have attracted a lot of research atten-
tions [54]–[56]. The mobile sensors can be seen as the sim-
plest robots, which are only used to implement the sensing
function.

Compared with the mobile sensors, the robots have more
powerful capabilities and longer battery life, which makes
CPPC attract more and more attentions. Based on different
ways to model the connectivity, the current works about
CPPC can be divided into two categories: one is the graph
theory based (GT-based) method and the other is realistic
channel based (RC-based) method.

In GT-basedmethod, the robots are abstracted into nodes in
the graph, while the edges represent the communication links
between nodes [57]. The communication range of a robot
is modeled as a spherical region with a radius r . When the
distance between two robots is smaller than r , we think the
robots can communicate with each other with little bit error.
On the contrary, if the distance exceeds r , the connectivity
is regarded broken [58]. Within this framework, numerous
research contributions about CPPC for multi-robot systems
have been proposed [48], [49], [59]–[61]. For a compre-
hensive overview and tutorial of adopting graph-theoretic
definition of connectivity, the readers are referred to [57],
[62], in which the authors also provided various approaches
about CPPC ranging from convex optimization to potential
fields based control methods.

However, the spherical model can not reflect the real com-
munication environments, which motivates the research on
RC-based method fully considering the effects of path loss,
shadowing andmultipath fading. The RC-basedmethod often
assesses the communication connectivity with a probabilistic
channel model based on realistic channel measurements. For
a more detailed discussion of the realistic channel modeling,
you may refer to [7]. The RC-based method is to continu-
ously evaluate the wireless channel of the multi-robot system
during the execution of the task, and schedule the mobility of
the robot to improve the communication connectivity. In [45],
the authors proposed to exploit the mobility of the robots for
improving the performance of wireless channel assessment
and target tracking, as well as minimizing the probability
of target detection error for surveillance, while guaranteeing
connectivity constraints in [63]. In [2], the authors consider
a multi-robot surveillance scenario and try to exploit the
mobility of the robots to improve the channel capacity. How-
ever, considering the the complex interactions between the
environments and the electro-magnetic waves in EA envi-
ronment, it is hard to predict the exact channel quality of
a given location. Therefore, in our previous work of [40],
we assume the wireless fading channel is quasi-static and
directly exploiting the realistic channel measurements as the
basis to solve the CPPC problem.

Based on the above discussion, CPPC focuses on exploit-
ing the mobility of the robots to ensure the communication
connectivity between robots. In CPPC, the communication
schemes are fixed or having a limited adaptive capability
so that the communication quality has to be guaranteed by
the motion planning or controlling. Against this problem,
an inevitable way is to combine the intelligent communi-
cation techniques in Subsection III-B with the methods in
this subsection, then form a joint communication-motion
planning and controlling framework.

D. ROBOTIC RELAYS
Subsection III-C has reviewed the works about keeping a per-
manent communication connectivity in multi-robot systems.
In these works, each robot is of the same type and is capable
of performing tasks. However, when communication quality
gets worse, in order to enhance the channel quality, some
robots may act as relays specializing in establishing com-
munication links for other robots [64]. In EA environment,
wemay deployed several task robots acting as relays to ensure
the communication connectivity between the source and sink,
as shown in Fig. 5.

In recent years, many research works focus on combining
relay technologies and robotics to strengthen the communica-
tion performance in multi-robot systems [64], [82]. Accord-
ing to the main topic of this survey, we extract seven key
words to summarize the existing works, including scenario,
channel model, metric, mobility of RX/TX, components, and
method. The term of scenario refers to the specific tasks, e.g.
link building [67], task allocation [71], exploration [72], etc.
Secondly, the channel model depicts how many influencing
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TABLE 1. The related works of robotic relays are classified according to the key words: scenario, channel model, metric, mobility of RX/TX, components,
and method.

FIGURE 5. A scenario where a relay robot helps the task robots to keep a
communication connectivity with the base station.

factors considered in wireless channel modeling. According
to the theory of wireless communication, the channel is often
modeled as a system affected by three factors: path loss,

shadowing and multipath fading [7]. As the main influencing
factor, path loss is considered in most of the existing works.
In most cases, the effect of path loss is modeled as a decreas-
ing function proportional to distance between the source and
the sink. While in some works, the communication range of a
task robot is reduced to a disk model, and the area beyond the
disk is regarded disconnected. Shadowing is the effect that the
signal is blocked by the obstacles between the transmitter and
the receiver. It is oftenmodeled by a non-smooth step function
of the number of obstacles between two task robots [70].
For the multipath fading, it is due to the reflections and
refractions, which is often modeled as a zero-mean random
variable [7]. The third term, metric, denotes the quantita-
tive standard to evaluate the communication connectivity.
The candidate metrics can be the channel capacity [75], bit
error rate (BER) [67], packet error rate (PER) [65], packet
reception ratio (PRR) [73], etc. Some more direct metrics are
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also adopted in existing works, such as signal-to-noise ratio
(SNR) [68], received signal strength indication (RSSI) [72],
etc. Moreover, according to whether the data source/sink can
be movable, we may use the metric of mobility of RX/TX
to classify the existing works. The next term, component,
is used to denote whether the robot team is homogenous or
heterogeneous. Most of existing works focus on the research
of homogenous robot teams. However, compared with the
homogenous team, heterogeneous robots may be more suit
to handle certain tasks which will involve different roles
and responsibilities [71], [78]. For example, in a disaster
rescue task, the aerial robots may be equipped with cameras
to perform search mission, and the ground robots can be
deployed to perform rescue operations [71]. The last term,
method, is used to select the specific solving methods, e.g.,
probabilistic search [69], [70], potential field [72], etc.

E. REINFORCEMENT LEARNING
The multi-robot coordination in EA environment is a form of
complex problem, which is hard to model every conditions
of circumstances. Moreover, the actions of robots will make
the environment constantly changing, which results in highly
dynamic problem space. Therefore, we may not adopt the
supervised learning and unsupervised learning which highly
rely on data. Another popular learning type, reinforcement
learning (RL) [83], not requiring pre-existing knowledge or
data, is an effective technique for solving large-scale complex
problems. Furthermore, in EA environment, the intelligence
level of jamming robots is continuously improving along
with the task robots, which makes the task robots always
face a new circumstance. RL trains models by receiving
rewards or punishments on the actions taken by robots, so it
is able to learn policies to respond to unforeseen environ-
ments. In recent years, the researches on RL related algo-
rithms have been very active. Fig. 6 lists some of the main
algorithms for current reinforcement learning. According
to whether the transition model of each robot is known,
RL methods can be divied into model-free and model-based
methods. In model-free methods, robots need to keep inter-
acting with environment by trial and error to learn about
the consequences of actions. Moreover, model-free methods
can be further divided into value-based and policy-based

FIGURE 6. Typical algorithms for reinforcement learning and multi-agent
reinforcement learning.

methods, where value-based methods emphasize using a
value function to evaluate the action taking in a given state,
while policy-based methods may focus on directly search-
ing for the optimal policy [84]. Model-based methods also
play an important role in RL, especially in the scenario
where the cost of trial-and-error experiments is unafford-
able. However, classical RL, including both model-free and
model-based methods, may lack scalability and just fit for
fairly low-dimensional problems. Nowadays, with the con-
tinuous improvement of computer performance and data pro-
cessing capability, RL combined with deep learning is able to
be used to solve large-scale problems.

The cooperative-competitive decision-making in EA envi-
ronment may involve multi-agent reinforcement learning
(MARL). At present, many researchers have done a lot of
work in multi-robot decision-making based on deep RL the-
ory, and applied to a number of scenarios, e.g., multi-scenario
ranking [85], multi-target capturing [86], battle games [87],
switch riddle [88], etc. In MARL, the core issue is how to
solve the ‘‘curse of dimensionality’’ problem caused by the
growth of the number of robots [89]. A simple way is to
adopt the centralized method of classical RL. Although the
algorithm framework is simple, the state space and action
space of the problem will increase exponentially with the
number of robots [90]. On the other hand, adopting decen-
tralized method will affect the convergence of RL algorithms.
Therefore, in order to solve this problem, the alternative
solution is based on the framework of centralized training
with decentralized execution [85], [89]. That is, although the
decentralized mode is adopted in the training stage, the global
signal is introduced to guide the training process. In the exe-
cution stage, the decentralized strategy is completely adopted.
Fig. 7 demonstrates a typical decentralized MARL learning
framework based on actor-critic setup [89]. In this learning
framework, each robot obtains the sensed data from the sense
stage and selects an action based on the action policy which
will be evaluated by a global evaluation function.

FIGURE 7. A typical decentralized framework for multi-agent
reinforcement learning.

F. INTERMITTENT COMMUNICATION STRATEGY
From Subsection III-A to Subsection III-D, we have summa-
rized the techniques trying to make the multi-robot system
connected. However, considering the uncertainty of the real-
istic wireless channel, keeping an all-time communication
connectivity is not possible in practice [91]. Moreover, in EA
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environment, the active interference from the jamming robots
may make the communication links more fragile. In this
condition, insisting on maintaining connectivity may restrict
the motion of the robots, which will affect the performance
of task execution. Therefore, for the multi-robot system,
an alternative way is making full use of the autonomy of the
robots and allowing the temporary connectivity disconnec-
tion. However, the robots need to be able to communicate
at least once within a limited time, which is known in the
existing literatures as intermittent communication [91], [92].
In order to achieve the intermittent communication, a com-

mon strategy is to adopt the rendezvous-based communi-
cation method [93]. In this method, the task robots will
communicate in a rendezvous fashion. The rendezvous can
occur either in the spatial dimension or in the time dimension,
or both.

In the spatial dimension, the robot will communicate at
the specified locations [91]–[93]. In [91] and [92], the robots
are used for performing data gathering tasks and periodi-
cally communicate at common locations. In these works,
the possible communication locations are predefined and the
robots can only communicate at the same location. In [93],
the authors considered a exploration scenario where a team
of robots survey an unknown environment independently
and exchange map information in a scheduled rendezvous
location. In this scenario, the rendezvous locations are not
predefined but are determined based on the information of
the previous rendezvous. In EA environment, if the commu-
nication link is seriously interfered, this kind of data sharing
method can be adopted, which can be regarded as a hand-off
communication method. In addition to the spatial dimension,
the robots can communicate at specified time intervals, which
is known as periodic connectivity. For example, in [94],
a multi-robot search problem is considered where the robots
search for a target and regain connectivity in a prearranged
time interval and location. This method does not require com-
munication at the same location, but needs the line-of-sight
communication condition, which is suitable for the scenario
where the communication environment is relatively simple
and the obstacles are not dense.

The above methods can be regarded as a kind of active
communication, i.e., each robot follows predefined rules to
reach a rendezvous. However, if there are no predefined rules,
or if the communication is only temporarily decided to be
established, then the robot is required to search for the robot
to be communicated. Multi-agent target searching is a hot
research topic and receives a lot of attentions [95]. For the
multi-agent searching problem, its computational complex-
ity is exponential in the number of searchers, but can be
optimized with coordination [96], [97]. In [97], the authors
propose a reconnection method that combines with target
tracking. Each robot may maintain beliefs of other robots’
positions which can be used to plan the optimal path to the
targets. By using the beliefs, the other robots can quickly
find the disconnected target robot with a low computational
complexity.

G. HIERARCHICAL CONTROL
According to the ‘‘sense-decide-act’’ behavior chain,
the action policy of each task robot comes from the output
of the decide stage. However, in adversarial environment,
the intelligence of both task robots and jamming robots
continue increasing. When the intelligence level of the task
robots is lower than the jamming robots, the task robots may
not obtain good action policies, or even worse. In such cases,
the task robots should make full use of their autonomy, and
adjust the action policy according to how ‘‘bad’’ the condition
is. Therefore, in the act stage, when the task robots are not
clever than the jamming robots, they may select suboptimal
action policies to get rid of the jamming robots. In order to
support this function, it needs to build a hierarchical control
engine which can select the appropriate action according to
environmental metrics, such as the quality of communication
links. Currently, the implementation for robotic hierarchical
control mainly includes finite state machine, decision tree
[98], subsumption architecture [99], behavior tree [100].

The finite state machine is a basic method for implement-
ing action switching. However, when adding a new action
state, the finite state machine may require a lot of changes
and have poor scalability [100]. The decision tree realizes
the action selection through the nesting of if-then clauses,
which has the advantages of modularization and hierarchy.
However, since the information flow is one-way, no feedback
information flows out from the node, which makes the fault
handling very difficult [98], [100]. The subsumption archi-
tecture is based on hierarchical control theory, which decom-
poses complex tasks into specific actions. High-priority
actions can accommodate (or suppress) low-priority actions,
but the method also faces the difficulties in adding or remov-
ing actions [99]. The behavior tree (BT)model has a universal
representation ability and can accommodate the above three
models, which are currently widely used in robot motion
control [100].

Following the BT model, we may firstly classify the action
policies into several action levels. Each level is assigned
a priority value and a capacity value. The higher the capability
value, the lower the corresponding priority value. Assume
there are L levels H = {H1,H2, · · · ,HL}, each level Hi
may contain one or more actions Hi =

{
hi,1, hi,2, · · · , hi,B

}
.

If the priority of the priority is i, the corresponding capacity is
L− i. Each level may correspond to a triggering condition Ci
which is used to select action policies. A BT model contains
five kinds of nodes: selector, sequence, parallel, action, and
condition. The leaf nodes of the BT can be action or condition
nodes. Condition nodes are used to judge if some triggering
condition is satisfied, e.g., battery level, etc. An action node
usually corresponds to a specific action, e.g., trajectory trac-
ing. In general, selector, sequence and parallel nodes do not
act as the leaf nodes. The selector node is used to judge if the
condition node is satisfied. Selector node may firstly try its
leftmost children, i.e. the condition node, and return success if
it is satisfied or try its right node if not satisfied. The sequence
node is used to execute an action when its corresponding
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condition is satisfied. For the parallel node, it corresponds to
the condition that more than one action should be taken. Fig. 8
demonstrates a BT model example where we may see that an
action level at least contains a selector node, a condition node,
a sequence node, and a action node.

FIGURE 8. A BT model example.

H. REALISTIC VIRTUAL ENVIRONMENT CONSTRUCTION
According to the above discussion, the EA environment is
highly dynamic and hard to precisely predict. Therefore,
in order to make the task robots adapt to a constant new envi-
ronment, an effective way is training the ‘‘sense-decide-act’’
behavior chain of each task robot in a variety of scenarios.
However, the cost of buildingmany realistic scenarios is unaf-
fordable and the training process is inefficient. Therefore,
it may be a good alternative to make robots trained in a virtual
environment.

For each robot, the optimality of its trained results
largely relies on the fidelity of the virtual environment.
For example, in the decide stage, RL needs to adjust the
robot’s action policy by gaining feedback through inter-
action with the environment. However, building a realis-
tic electromagnetic-geographical scenario may pose a major
challenge. In battle games, the research on geographical sce-
nario generation is relatively mature. In recent years, some
artificial intelligence companies cooperated with game com-
panies to develop the RL simulation platforms, e.g., Universe
[101], SC2LE [102], etc. Therefore, the game geographical
scenario generation can provide an important reference for
the construction of the virtual geographical environment. Fur-
thermore, computer graphics combined with deep learning
has done a lot of work on realistic geographical scenario
generation, including large-scale outdoor scenarios [103] and
small-scale indoor scenarios [104].

Based on [103], we try to propose a large-scale geograph-
ical scenario generation example with conditional generative
adversarial network (cGAN), as shown in Fig. 9. Firstly,
based on the public digital elevation model (DEM) dataset,
we need to label the main geographical elements, e.g., rivers,
crests, etc, which may build a terrain feature map (a kind
of point-line-surface mesh maps). In addition, in order to
enhance the generalized representation ability of the terrain
feature map, it is necessary to be blurred and down-sampled.
Then, the labeled feature terrain map and the original terrain

environment are put into cGAN for training. The generator
is implemented with a convolutional autoencoder (CAE),
while the discriminator is using a convolutional neural net-
work (CNN). Then, according to a specific task, we may
construct random terrain feature maps and put them into the
generator to obtain a generated terrain environment. Finally,
ground objects (such as buildings) can be randomly generated
according to the available ground areas provided by the ter-
rain feature map, and merged with the terrain environment in
the form of layers to construct a virtual geographical scenario.

The geographical scenario is static in each training process
of RL, but the electromagnetic environment may constantly
change with the movements of robots. Therefore, for the
electromagnetic environment simulation, on one hand it is
necessary to keep the simulation accuracy, on the other it
needs to meet the real-time requirement of the training pro-
cess. Current researches about electromagnetic environment
construction mainly focus on two kinds of models: stochastic
model and deterministic model. The stochastic model simu-
lates the wireless channel based on the statistical character-
istics of signals. This type of method has a small amount of
computation, but cannot accurately predict the channel qual-
ity at a given location [7]. The deterministic models mainly
include finite-difference time-domain (FDTD) method [105],
ray tracing method [106], etc. This type of method can accu-
rately describe the characteristics of the channel, but requires
complete environmental information and is computationally
intensive. Considering compromising on the accuracy and the
real-time requirement, an alternative method is ray tracing.
However, when the number of robots increases, the computa-
tion time of ray tracingwill directly affect the efficiency of the
evolution of the whole system. Therefore, it is necessary to
adopt parallel programming technology to accelerate the con-
struction of electromagnetic environment based onmulti-core
and many-core technologies, e.g., [107]–[110].

I. SOFTWARE ARCHITECTURE
In above subsections, we have summarized the enabling
techniques for solving multi-robot coordination in EA envi-
ronment. While in practical robotic applications, each tech-
nique above is implemented by specific algorithms which
are embedded in software. Robotic software architecture
design can be seen as software engineering, which has
the characteristics of needing to interact with an uncer-
tain and dynamic environment [111]. In order to adapt to
such situations, the architecture design should follow the
principles of modularity and hierarchy, which motivates the
robot system to be designed as distributed component-based
systems [111]–[113]. In the component-based architecture,
each component has the independent functionality which
corresponds to a class of algorithms. The typical implemen-
tations include Yet Another Robot Platform (YARP) [114],
Open Robot Control Software (OROCOS) [115], Robot
Operating System (ROS) [116], etc. A detailed discussion
about traditional robotic software architecture can be seen
in [111].
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FIGURE 9. A large-scale geographical scenario generation example implemented with cGAN and its training process.

Nowadays, the robot system tends to be more complex,
whichmakes the system needmore components to complete a
specific task [117]. For a certain scenario in EA environment,
there are two main issues that need to be addressed. The first
is how to modularize various kinds of components accord-
ing to their functions. An alternative way is to classify the
components according to the ‘‘sense-decide-act’’ behavior
chain. In terms of technical implementation, plugin is an
effective way to realize components and can be developed
independently from specific applications [118]. Currently,
plugin techniques are widely used in the development of
robot functions [119], [120], and some plugin-based architec-
tures are produced, e.g. OpenRAVE [121], OpenMRH [122],
micROS [118], etc.

The second issue is how to design efficient component
management and schedulingmechanisms to cope with the sit-
uation changes in EA environment. The hierarchical decom-
position of robotic systems can be decomposed from the
dimensions of time, space, task, etc., but which dimension
is better does not form a consistent view [111]. In [117],
the authors point out that the maintenance burdens and
resource limitations are two main restrictions for the com-
puting platforms on robots. In order to solve this problem,
they propose Rorg, a tool to manage the components and
resource by adopting Linux containers. Moreover, the works
of [123] fully consider the performance of the low-power
CPU equipped on robots, and propose MPT, a template-
based framework that can generate robot-specific motion
planning code. Compared with the well-known OMPL [124],
MPT may need less wall-clock time and memory for specific
robots, e.g. Nao. In [125], a hierarchical robotics framework
MaestROS is proposed where different components can be
orchestrated to perform complex behaviors. MaestROS can

support high-level instruction inputs, such as natural language
and demonstrations, and can train the robots to perform a
task with these instructions. As the latest version of ROS,
ROS2 has integrated the behavior tree model into its navi-
gation system [126], [127].

IV. CONCLUSION
In this survey, we first proposed the definition of the EA
environment, and then suggested adopting the model of
‘‘sense-decide-act’’ behavior chain to solve the multi-robot
coordination problem in EA environment. Following this
model, we summarized four challenges from each stage of
the behavior chain and environment adaptation, respectively.
Afterwards, for each challenge, we detailedly reviewed the
related enabling techniques and their application conditions.
Finally, the typical software architecture designs were intro-
duced to promote the integration of the enabling techniques.
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