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ABSTRACT Energy storage plays a significant role in improving the stability of distributed energy,
improving power quality and peak regulation in the micro-grid system, which is of great significance to
the sustainable development of energy. In grid-connected mode, energy storage is mainly used to reduce the
operating costs of micro-grid. Real-time price arbitrage is an important source of energy storage revenue. It is
feasible to design arbitrage strategies using Q-learning algorithm. Due to the overestimation of the Q learning
algorithm, this paper proposes an arbitrage strategy method based on Double-Q learning. Compared with
Q-learning algorithm, Double-Q learning can avoid overestimation and provide more stable and accurate
arbitrage strategy for energy storage systems. Since the source of arbitrage in previous studies was limited to
electricity prices alone, this paper considers joint arbitrage of electricity and carbon prices. The simulation
results show that if adding fluctuate carbon prices to arbitrage sources, the arbitrage profits will increase by
more than 110%.

INDEX TERMS Energy storage, micro-grid system, double-Q learning, carbon prices.

I. INTRODUCTION
Compared with large power systems, micro-grid refers to
a small power distribution system consisting of distributed
power sources, energy storage devices, energy conversion
devices, and loads. Since the power supply in the micro-grid
is mostly a distributed power supply with a small capacity,
the micro-grid does not have a certain anti-interference capa-
bility [1]. Energy storage devices in the micro-grid can help
quickly track fluctuations in renewable energy generation.
And it can not only reduce the need for large grid power,
but also provide the flexibility needed to integrate renewable
energy generation into the power system [2]. Energy storage
is an important part of micro-grid with functions such as
load transfer, energy management and frequency regulation.
More and more people are paying attention to its economic
viability [3]. Real-time market price arbitrage is one of the
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important ways of energy storage revenue. Energy storage
devices discharge at higher prices and charge at lower prices,
making use of the price difference in the real-time market to
make profits. As the amount of renewable energy generation
continues to increase, market prices fluctuate more. Arbitrage
income also increases and more and more research on energy
storage arbitrage [4].

In recent years, more and more researchers have focused
on the arbitrage of energy storage in the electricity market.
Analysis by Rahul et al. showed that there are strong eco-
nomic reasons for energy storage arbitrage in the New York
area, and a large number of regulatory services throughout
New York State [5]. Sioshansi et al. analyzed the arbitrage
benefits of an energy storage device in PJM during the six
years from 2002 to 2007 [6]. Considering the impact of fuel
prices, transmission constraints, energy storage capacity and
fuel structure, arbitrage gains increased significantly. There-
fore, it is necessary to design a feasible arbitrage strategy.
Connolly et al. found that the 24-optimal operation strategy
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was the most profitable practical method of dispatching a
typical PHES facility [7]. It can get very substantial profits for
an existing PHES facility. Abdulla et al. proposed a stochas-
tic dynamic programming approach [8]. This method uses
the available predictions and considers the factors of affect
system degradation to optimize the operation of the energy
storage. Krishnamurthy et al. proposed a stochastic formula-
tion of arbitrage profit maximization in the case of uncertain
electricity market prices [9]. But this method need to forecast
electricity prices and its performances has a strong correlation
with the quality of the forecast. However, due to the highly
stochastic of real-timemarket prices, it is notoriously difficult
to forecast well [10]. Jiang and Powell used an approximate
dynamic programming approach to derive the energy storage
bidding strategy for the NYISO real-time market without
need to predict price information [11]. But the main disad-
vantage of this method is that it is computationally expensive.
Qin et al. proposed an energy storage control strategy based
on online modified greedy algorithm under uncertainty [12].
Although this method does not need to predict the price, there
is a problem of storage space limitation in practice. Wang
and Zhang optimized the real-time electricity price arbitrage
strategy based on Q-learning [13].

As one of the most popular reinforcement learning
algorithms, Q-learning is a model-free learning method and
provides a learning ability for intelligent systems to select the
optimal action. It is currently applied in a variety of applica-
tions. Energy storage arbitrage strategy based on Q-learning
is learned through an action-value function, and the value
matrix is continuously updated during the learning process.
Hasselt formally articulated and proved that there is an
overestimation in using Q-learning algorithms. Therefore,
to overcome this shortcoming, they proposed a Double-Q
learning algorithm [14]. It can effectively avoid the disad-
vantages of overestimation in Q-learning. Huang et al. used
Double-Q learning algorithm to design the DVFS selection
method, and ultimately achieves the goal of reducing the
energy consumption of real-time multi-core systems [15].
The results show that it is better than the Q-learning scheme.
Liu et al. proposed a machine learning framework based
on Double-Q learning algorithm [16]. Simulation results
show that the proposed algorithm can achieve up to 19.4%
and 6.7% gains in terms of the number of satisfied users
compared to Q-learning algorithm. Therefore, we propose
a strategy based on Double-Q learning for energy storage
arbitrage which uses two estimators for approximation. This
algorithm fundamentally reduces the overestimation existing
when approaching the actual action value during the training
process. It can obtain higher profit and provide more stable
and accurate arbitrage strategy for energy storage system.

Some study results suggest that the revenue of energy
storage has dropped in most European markets. Energy stor-
age requires revenue from other markets [17]. The rapid
development of the world economy has led to huge energy
consumption, and the speed and total amount of greenhouse
gas emissions have increased year by year. According to the

analysis of relevant data byWRI (TheWorld Resources Insti-
tute), the world’s carbon dioxide emissions have increased at
an annual growth rate of 2.4% in the past ten years. For this
reason, all countries in the world are trying to find ways to
mitigate the impact of the greenhouse effect on human beings.
And reducing carbon emissions has become a major concern
of the international public [18]. With the increase of environ-
mental pollution pressure, more and more people are paying
attention to the low-carbon economy with low emissions,
low power consumption, and low pollution. Carbon trading
is currently the main method to reduce carbon emissions
and mitigate climate change. And it is an emerging prod-
uct of the international environmental protection cooperation
mechanism. As a large carbon dioxide emitter, the electricity
industry has a profound impact on carbon trading especially
in the optimization of power system scheduling. Therefore,
we can consider adding carbon market to the arbitrage source
of energy storage [19].

The comprehensive management of greenhouse gas emis-
sions represented by carbon dioxide will cause cost differ-
ences to enterprises [20]. The difference can be measured as
the general equivalent by the transaction amount per unit of
carbon emission equivalent. Therefore, carbon trading has the
function of exchange and value. With the function of value,
carbon trading is a carbon currency in nature. On the one
hand, emission reductions from different projects and com-
panies can enter the carbon market for trading. On the other
hand, the implementation of carbon currency can be devel-
oped into standard financial instruments, and even financial
derivatives such as options and futures. There are many
carbon trading markets in the world, of which the EU is
the world’s largest carbon demander, and its trading price
largely reflects the trading price trend of the global carbon
market [21]. The electricity industry accounts for 42% of
global carbon dioxide emissions [22]. Many studies have
focused on finding factors that affect carbon prices and the
relationship between carbon trading markets and electricity
markets. Many people have found that the impact of electric-
ity and fuel prices on carbon pricing is significant [23]–[26].
If energy storage can participate in the trading of the carbon
market, it will promote the investment development of the
energy storage system.

The above issues prompt us to use reinforcement learn-
ing (RL) to develop a viable arbitrage strategy. Arbitrage
strategy requires no price distribution and is superior to
existing strategies. Without a clear assumption of distri-
bution, our arbitrage strategy can arbitrage between two
prices which may be unstable and constantly change. Dur-
ing training, through repeatedly performing charging and
discharging operations at different real-time market prices,
using reinforcement learning methods to learn the best strat-
egy for maximizing cumulative rewards. Design of reward
and punishment function is the main problem. This func-
tion will guide energy storage to make the right decision.
The main contributions of this paper are as follows: We
transform energy storage operations into Markov Decision
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FIGURE 1. Structure diagram of micro-grid.

Process (MDP). An arbitrage strategy based on Double-Q
learning is designed. The proposed arbitrage strategy based
on Double-Q-earning uses two functions to decouple selec-
tion and evaluation, avoiding the overestimation caused by
using actions in one function. Compared with the Q-learning
algorithm, this method can get higher profits. After adding
carbon price to arbitrage source, arbitrage profit increased by
more than 110%.

II. ENERGY STORAGE ARBITRAGE MODEL
There are many types of structures in the micro-grid. This
article presents a more common structure, as shown in Fig. 1.
Each micro-grid contains multiple distributed power sources
and energy storage systems that collectively power the load.
The micro-grid as an external body is connected to the large
grid or the upper-level substation through a PCC switch. From
the perspective of load, micro-grid is an autonomous power
system that can meet user’s requirements for power quality
and reliability. From a large grid perspective, micro-grid is
equivalent to a generator or load in the grid [27]. The role
of energy storage in micro-grid is mainly to improve the uti-
lization of renewable energy, system stability, power quality
and bring economic benefits. In the electricity market, when
there is sufficient power in the micro-grid, the excess power
can be sold to the large grid and gain corresponding profits.
In the grid-connected mode, the energy storage device in the
micro-grid can be discharged at high electricity prices and
charged at low electricity prices to obtain profits. Price arbi-
trage is an important source of income for energy storage, but
well-designed strategies are difficult due to the high degree of
uncertainty in prices. Below we will build an energy storage
arbitrage model.

We consider energy storage to operate within a limited time
frame: T ∈ (1. . . t). The purpose of energy storage is to obtain
profits by discharged at highmarket prices and charged at low
market prices. Assuming that the operation of energy storage
will not affect market prices, we will express the problem of
arbitrage maximization as follows:

max
T∑
t=1

Pt ·At (1)

where T is the number of hours divided in the period. Pt is
the real-time market price. At is the charge and discharge
power of the energy storage system. The problem of arbitrage
maximization is tomaximize the sum of profits obtained from
the charge and discharge actions of energy storage based on
market prices.

The energy change and capacity limit of the energy storage
system can be expressed as (2).Et is the real-time energy level
of the energy storage.

Et = Et−1 + At , ∀t ∈ T
Emin ≤ Et ≤ Emax , ∀t ∈ T
Amin ≤ At ≤ Amax , ∀t ∈ T

(2)

At can be further expressed as formula (3). µ is the charge
and discharge efficiency of the energy storage system. Dt is
the discharge power of energy storage. Ct is the charge power
of energy storage.

At =
1
µ
Dt − µC t (3)

The charge and discharge power of the energy storage
system must meet the formula (4):

Ct = {0, Ic ·min(Cmax ,Emax − Et−1)}

Dt = {0, Id ·min(Dmax ,Et−1 − Emin)}

Id + Ic = 1

(4)

The charge and discharge power of the energy storage sys-
tem will follow the limits of Equation 2-4. Specifically, when
energy storage decides to charge or discharge, it will charge
and discharge at maximum charge rate or until it reaches the
maximumorminimum energy level. Id and Ic are 0-1 symbols
that the energy storage system discharge or charges during
time t. It can ensure that the energy storage cannot be charged
and discharged at the same time.

The energy storage arbitrage maximization problem has
four typical characteristics: (i) the action of energy storage
is related to the market price and the energy level of energy
storage is related to the past actions of energy storage; (ii) the
purpose of energy storage actions is to maximized cumulative
profit; (iii) energy storage does not know future prices, but
know the price data in the past; (iv) actual prices are con-
stantly changing.

Energy storage arbitrage requires maximize accumulated
profits at non-stationary and constantly changing prices mar-
ket prices. Due to the high degree of uncertainty in prices,
it is difficult to design arbitrage strategies. The energy storage
system needs to learn the historical data to get the current
action strategy. Therefore, charge and discharge decision
(Ct ,Dt ) is a function of market price information, and market
price information can be multiple prices such as electricity
and carbon prices. Energy storage participation in carbon
market trading may lead to higher profits. π (.) is an arbitrage
strategy to maximize profit (5).{

Wt = (P1,P2, . . . . . .Pt )
(Ct ,Dt ) = π (W1,W2, . . . . . .Wt)

(5)
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FIGURE 2. Base idea of reinforcement learning.

The problem of arbitrage maximization is a continuous
decision problem under the constraints of market price and
energy storage. This problem can be solved theoretically
through dynamic programming or real-time price prediction.
The high dimensionality of state space in dynamic program-
ming makes the computational cost prohibitive so it is not
suitable for real-time price arbitrage. At the same time, there
are many factors affecting market prices, and it is difficult
to predict prices [28], [29]. In order to solve the problem
of maximizing energy storage arbitrage, arbitrage strategy
is designed using reinforcement learning methods. We use
Double-Q learning algorithm to solve the problem of max-
imizing energy storage arbitrage while avoiding the overesti-
mation of Q-learning.

III. DOUBLE-Q LEARNING ALGORITHM FOR ENERGY
STORAGE ARBITRAGE
Reinforcement learning (RL) is learning by continuously
interacting with the dynamic environment so that the agent
can obtain the maximum cumulative reward value from the
environment. After the signal of reward and punishment have
obtained, the agent will modify the action strategy to obtain a
larger reward or a smaller penalty. The mechanism is shown
in Fig. 2. Reinforcement learning is a way for agents to per-
form adaptive learning [30]. The problems that reinforcement
learning can solve have the following characteristics: (i) the
state of the system will affect the actions taken; (ii) maximize
the cumulative reward through a series of actions; (iii) the
system only knows the current and historical information;
(iv) There may be factors of instability in the system. In order
to solve the problem of maximizing energy storage arbitrage,
we designed arbitrage strategy based on Double-Q learning
algorithm.

The max operation in standard Q-learning uses the same
value to select and measure an action. This is actually more
likely to choose an overestimated value and can lead to
suboptimal strategies. To avoid this situation, Hasselt pro-
posed the Double-Q learning algorithm. The main idea of
Double-Q learning is to use two estimators to decouple
selection and measurement. Therefore, the algorithm can
more accurately converge to the optimal operation value
after iteratively updating. Q-learning will not be able to

maximize profit because it will produce a sub-optimal arbi-
trage strategy. Therefore, the arbitrage strategy based on the
Double-Q learning algorithm is more effective. Similar to
standard Q-learning, Double-Q learning can interact with
the environment and produce appropriate actions. In each
process, after the agent perceives the complete state of the
environment, it performs the corresponding operations. Then
put the environment into a new state. The agent will receive
a feedback to evaluate this state transition. Based on these
previous experiences, the agent can easily determine the next
proactive action with the maximum expected reward.

Applying the Double-Q learning method to energy storage
arbitrage, we must first determine the state and action space
of the system, design appropriate reward and punishment
functions for the iterative algorithm.

A. STATE SPACE
The state space of the system includes the current market
price Pt and the system’s energy level Et . We discretize the
market price into M intervals and the energy level of the
system into N intervals. Finally, the state input space contains
a total of (M × N) states:

S = {1, . . . ,M} × {1, . . . ,N } (6)

B. ACTION SPACE
The action space of the system is mainly the charge and dis-
charge operation of energy storage. Because energy storage
cannot be charged and discharged at the same time, there are
three main states in the system’s action space:

A =


−Ďmax if Discharge
0 if Idle
Čmax if Charge

(7)

A = Čmax express charge at the maximum charge rate
Cmax or until reach the maximum energy level Emax ,
A = −Ďmax express discharge at the maximum discharge rate
Dmax or until reach the minimum energy level Emin.

C. REWARD
The setting of action rewards is especially important, which
will directly affect the overall arbitrage results. At time t, the
system will get a reward R after performing action A in state
S. R can help the energy storage system measure how well its
action is performing. We set the reward to:

R =


(
Pt − Pt

)
Čmax if Charge

0 if Idle(
Pt −S̄Pt

)
Ďmax if Discharge

(8)

Pt is the average price of the market price, which can be
specifically expressed as:

Pt = (1− η)Pt−1 + nPt (9)

η is a smoothing parameter.We use amoving average in (9)
instead of simply calculating the average. This method can
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not only use past price information, but also adapt to current
price changes. When the current market price is lower than
the average price, the action of charge will get a positive
reward, and discharge will get a negative reward. Similarly,
when the current market price is higher than the average
price, the action of discharge will receive a positive reward,
and charge will receive a negative reward. Therefore, energy
storagewill learn the ability to distinguish good or bad actions
under the guidance of reward function. Our reward function
can explore more arbitrage opportunities and get higher prof-
its. It eases price instability because it weights current prices
much more than historical prices.

D. DOUBLE-Q LEARNING ALGORITHM FOR ENERGY
STORAGE ARBITRAGE
The basic settings of Double Q-learning algorithm have been
given. The specific training process of energy storage arbi-
trage based onDouble Q-learning algorithmwill be explained
below. In order to find the best arbitrage strategy, the pro-
posed Double-Q learning algorithm needs to allow the agent
to continuously interact with the environment, and finally
obtain a table of Q values.

At time t, the energy storage determines the action of
system based on the current status information. After inter-
acting with the environment, energy storage can receive the
reward R, and then observe the next state St+1. In the stan-
dard Q-learning, the update formula of the Q value can be
expressed as:

Qt+1 (s, a)=Q (s, a)+α (R+ γQ (s’, a’)−Q (s, a)) (10)

Unlike standard Q-learning with only one update function,
there are two update functions in Double-Q learning. Double-
Q learning will use two functions QA and QB (corresponding
to two estimators). And each function will update the next
state with the value of the other function. It is important
that both functions learn from different sets of experiences.
You can use two value functions at the same time to choose
the action to perform. Hence, the proposed algorithm can
avoid the overestimation in Q-learning. To enable energy
storage to record the values of Q-tables, the Q-tables need
to update at each time slot t. QA and QB can be given as
follows:

QAt+1 (s, a) = QAt (s, a)+ α
(
R+ γQB (s’, a’)− QAt (s, a)

)
(11)

QBt+1 (s, a) = QBt (s, a)+ α
(
R+ γQA (s’, a’)− QBt (s, a)

)
(12)

where γ is the discount factor, α is the learning rate, and
s is the next state after taking action A at state S. During
training, only one function will be selected for update. In
order to update the value of Q table in (11) or (12), the energy
storage needs to select an action to be performed at time t. The
action selection strategy is ε-greed. The algorithm not only
takes advantage of the best moves, but also explores other

FIGURE 3. Flowchart for training process.

moves that might be better. Specifically, the action will be
randomly selected with a probability of ε, and the optimal
action will be selected with a probability of (1 − ε). When
the training is completed, the optimal action in the Q table
will be selected each time to maximize the cumulative profit.
As follows:

a∗ = argmaxaQ (s, a) (13)

The exact procedures of Double-Q learning algorithm
in this article are shown in Algorithm 1. Fig. 3 gives the
training process of energy storage arbitrage based on Dou-
ble Q-learning algorithm. One of the functions is randomly
selected to update. Where α is the learning rate and γ is the
discount factor. Specifically, α determines the extent to which
new information covers old information, and γ determines
the importance of future rewards. The system randomly uses
one of these two functions to determine the greedy update
strategy, and the other function is used to calculate the value
based on this selected strategy. Compared with the standard
Q-learning algorithm, this algorithm is more stable and effi-
cient because its update mechanism can actually reduce the
overestimation between actual and approximate values. This
is important to the correctness of choosing the right operation
for energy storage.
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Algorithm 1 Double-Q Learning
1: Initialization
2: Repeat
3: Observe state S;
4: Choose A (using ε-greedy method) based on QA and

QB observe R, S′.
5: Choose (in turn or randomly) either update table

QA or table QB.
6: if update table QA

7: Choose action A’ = argmaxa’Q
B(s’, a) from QB

8: Update table QA as given in (11).
9: else if update table QB

10: Choose action a’ = argmaxa’Q
A(s’, a) from QA

11: Update table QB as given in (12).
12: end if
13: end if
14: s←s’
15: until end of operation.
16: end

TABLE 1. System parameters.

IV. NUMERICAL RESULTS
A. ARBITRAGE OF ELECTRICITY PRICE
In order to show the results more intuitively, we consider
using a small energy storage system in the micro-grid system
and participating in the trading of the electricity market.
In order to verify the effectiveness of energy storage arbitrage
strategy based on the Double-Q learning algorithm, it was
first applied to arbitrage in the real-time electricity market
and compared with Q-learning algorithm. Parameters of the
energy storage system are shown in Table 1.

According to the rate of charge and discharge, the charge
and discharge capacity of energy storage per hour is 1WM.
Source of market price data for energy storage arbitrage is
very important. Therefore, the electricity price data is the
real-time hourly Location Marginal Price (LMP) of a price
node provided by PJM from 11/1/2017 to 11/1/2018 [31].
This date is very suitable for energy storage arbitrage.
As shown in Figure 4, it can be observed that the price
fluctuation is very obvious. The market price will change
with the system load, power generation costs, system conges-
tion, and renewable energy (wind, solar) conditions. Location
Marginal Price (LMP) is a pricing model for spot electric-
ity. This pricing model design is very reasonable or subtle.
It combines the market with system operations, relies on
the physical model (power flow model) of the power grid.
It follows Security Constrained Unit Combination (SCUC)
and Security Constrained Economic Dispatch (SCED).

To verify that the Double-Q Learning algorithm has
more stable performance than the traditional Q-Learning

FIGURE 4. The real-time hourly LMP.

FIGURE 5. Cumulative profits under LMP.

algorithm, we divided the experimental data into four groups
of 2190 hours each. As shown in Fig. 6(a-d). After experi-
menting with two algorithms on each set of data, compare the
experimental results. The accumulative arbitrage results for
each group are shown in the Fig. 7(a-d). The arbitrage profit
for each set of data using Double-Q learning algorithm is
higher than traditional Q-learning algorithm. Therefore, it can
be concluded that our proposed scheme is better than the ordi-
nary scheme and is more suitable for energy storage arbitrage.

These gains stem from the fact that the proposed algo-
rithm aims to find the optimal arbitrage strategy to maximize
the profits, while the Q-learning algorithm may result in
sub-optimal policies which lead to a worse result. Therefore,
we apply the two algorithms to the arbitrage experiment of
one year of data and observe the overall performance of the
algorithm. The arbitrage results are shown in Fig. 5. From the
results below, it can be concluded that the Double-Q learning
algorithm arbitrage profit is about 43% higher than the Q
learning algorithm. From these experiment results, we can
know the Double-Q learning algorithm is more stable than
the Q learning algorithm in energy storage arbitrage, and the
average profit is higher.

B. JOINT ARBITRAGE OF ELECTRICITY PRICE AND
CARBON PRICE
As global greenhouse gas emission pressures increase,
the carbon trading market continues to improve and expand.
It is increasingly feasible to add carbon prices to energy stor-
age arbitrage. Because our algorithm can reduce the losses
caused by overestimation, we use this algorithm to design a
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FIGURE 6. Electricity price for each group.

joint arbitrage strategy for energy storage. Then compare the
experimental results of single and joint arbitrage.

In joint arbitrage, add carbon price information to the state
space in the first. There are still three types of energy storage
actions. The energy storage selects the appropriate action
in the two price distributions to maximize the cumulative

FIGURE 7. Results of the arbitrage experiment.

arbitrage profit. The problem of joint energy storage arbitrage
maximization is a continuous decision under the constraints
of price and system conditions. The goal is to maximize
arbitrage in the two prices. In addition to the increase in state
space information, the setting of the reward and punishment
function is especially important. It is the key to judging which
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FIGURE 8. The real-time hourly carbon price.

TABLE 2. Cumulative profits of arbitrage.

action can maximize the arbitrage from the two prices (14):

R =


{
(
P− Pt

)
+ ρ

(
Q̄− Qt

)
}Čmax if Charge

0 if Idle
{
(
Pt − P̄

)
+ ρ

(
Qt − Q̄

)
}Ďmax if Discharge

(14)

where ρ is the discount rate of electricity and carbon price,
and Q̄ is the average price of carbon price.

The European Energy Exchange (EEX) in Leipzig,
Germany, is one of Europe’s largest carbon spot trading plat-
forms. It has a high position in the electricity market, natural
gas market and carbon emission rights market. As the EU
carbon market stabilization mechanism effectively reduced
the supply of carbon allowances in the market, the price
of the EU carbon trading market continued to rise from
2017 to 2018 and reaching a record high. Therefore, carbon
price is the European Union Allowance (EUA) price from
11/1/2017 to 11/1/2018 by EEX [32]. As shown in Fig. 8. Tak-
ing coal-fired power generation as an example, saving 1 KWh
of electricity is equivalent to reducing emissions by 0.997 kg
of carbon dioxide, so ρ takes 0.997. The discount for the
euro and the dollar takes the most recent transaction price:
1 e = 1.1205$(2019/05/16).

The parameters of the energy storage system are the
same as above. We use Double-Q learning algorithm and
Q-learning algorithm for joint arbitrage. The date of electric-
ity price and carbon price are based on the data mentioned
above for the whole year. The joint arbitrage of cumulative
profits curve is shown in Fig. 9. The profit of electricity price
arbitrage and joint arbitrage is shown in Table 2.

Through the arbitrage results, it can be found that the profit
of joint arbitrage increase by more than 110% compared
to the arbitrage of electricity price only. At the same time,
arbitrage strategies based on Double Q learning have higher

FIGURE 9. Cumulative profits of joint arbitrage.

profits than Q-learning. There are two main reasons. On the
one hand, the performance of Double-Q learning algorithm
is better than Q-learning. On the other hand, the setting of
the reward function in joint arbitrage consists of two parts.
Compared with the electricity price arbitrage only, the fluc-
tuation of the value of the reward is increased, which makes
the energy storage better to learn the action. It is equivalent to
increasing the fluctuation of the electricity price, so that the
energy storage can better distinguish the quality of the action.
Although the gains from the carbon market are not high, this
is beneficial to the overall gains. And if the carbon market
price is more volatile, profits will increase further. This will
provide new ideas for the increase of energy storage arbitrage
profits, inspiring for subsequent research.

V. CONCLUSION
In this paper, we propose a reinforcement learning-based
energy storage arbitrage strategy. One property of this scheme
is to employ Double-Q learning algorithm. This algorithm
has two estimators for actual value approximation so that it
can reduce the uncertainty in the selection of optimal arbi-
trage strategy. From the results of Electricity price arbitrage,
we can observe that the performance of our algorithm is
more stable then Q-learning algorithm and can get higher
profits. It shows that the overestimation has limited effect
on our scheme during policy election. Applying our method
to the joint arbitrage of electricity price and carbon price,
we found arbitrage profits will increase by more than 110%
compared to the arbitrage of electricity price only. This will
bring potentially huge market benefits, prompting us to apply
energy storage arbitrage to the carbon market. On the one
hand, it can promote the development of the carbon market.
On the other hand, it can increase the income of energy
storage. And when the carbon price is more volatile, it will
be more beneficial to energy storage arbitrage. Problems such
as deterioration of the battery will be considered in future
research.
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