
Received February 27, 2020, accepted March 12, 2020, date of publication March 17, 2020, date of current version March 26, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2981400

Kalman Filter Finite Element Method for
Real-Time Soft Tissue Modeling
HUJIN XIE 1, JIALU SONG1, YONGMIN ZHONG 1, AND CHENGFAN GU 2
1School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
2Independent Researcher, Rowville, VIC 3178, Australia

Corresponding author: Hujin Xie (hujin.xie@rmit.edu.au)

ABSTRACT Soft tissue modelling plays a significant role in surgery simulation as well as surgical procedure
planning and training. However, it is a challenging research task to satisfy both physical realism and real-
time simulation for soft tissue deformation. The finite element method (FEM) is a representative strategy
for modelling of soft tissue deformation with highly physical realism. However, it suffers from expensive
computations, unable to meet the requirement of real-time simulation. This paper proposes a novel method
by combining FEM with the Kalman filter for real-time and accurate modelling of soft tissue deformation.
The novelty of this method is that soft tissue deformation is formulated as a filtering identification process
to online estimate soft tissue deformation from local measurement of displacement. To construct the discrete
system state equation for filtering estimation, soft tissue deformation is discretised based on elastic theory
in the space domain by FEM and is further discretised in the time domain by using the Wilson-θ implicit
integration to solve the dynamic equilibrium equation of FEM deformation modelling. Subsequently, a
Kalman filter is developed for online estimation and analysis of soft tissue deformation according to local
measurement of displacement. Interactive tool-tissue interaction with haptic feedback is also achieved for
surgery simulation. The presented method significantly improves the computational performance of the
traditional FEM, but still maintains a similar level of accuracy. It not only achieves the real-time performance,
but also exhibits the similar deformation behaviours as the traditional FEM and enables the use of large time
steps to improve the simulation efficiency.

INDEX TERMS Finite element method, Kalman filter, local measurement and soft tissue deformation.

I. INTRODUCTION
Soft tissue modelling is a key issue in surgery simulation as
well as surgical procedure planning and training. It requires
soft tissues to respond to the external force in physical realism
and real time. However, it is difficult to satisfy these two con-
flicting requirements [1], [2]. Currently, the existing methods
for modelling of soft tissue deformation can be divided into
two general classes [3], [4]. One focuses on real-time compu-
tational performance. The typical examples include the mass-
spring [5] and chainmail [6], [7]. These methods are easy to
implement and less time-consuming in calculation. However,
they do not allow accurate modelling of material properties
and the increase of the number of springs or chains also
leads to a stiffer system. Recently, the traditional mass-spring

The associate editor coordinating the review of this manuscript and

approving it for publication was Pietro Savazzi .

model was improved using flexion springs for real-time shape
restoration [8]. However, this improved mass-spring model is
based on surface representationwithout the interior geometry,
unsuitable for complex surgical operations such as tearing
and cutting. The other class focuses on accurate deforma-
tion modelling based on continuum mechanics. The typical
example is the finite element method (FEM) [9], in which the
mechanical behaviours of the soft tissue are accurately char-
acterized based on rigorous strain-stress relationships by dis-
cretizing the soft tissue model into finite volumetric elements
[10], [11]. However, FEM is computationally expensive, even
for linear elasticity [12], [13].

Considerable research efforts have focused on improving
the FEM computing performance. The technique of matrix
condensation decreases the FEM computing time by limiting
the entire calculation of volumetric elements to boundary
surface nodes, but at the cost of sacrificing the accuracy [14].
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The pre-computation method pre-calculates the equilibrium
solutions to reduce the FEM computing time [15], which
leads to a complex and time-consuming pre-computation pro-
cess. The explicit FEM disentangles the sophisticated com-
puting process of FEM by lumpingmasses and internal forces
to individual nodes [14]. However, its solution is stable sub-
ject to small steps only. The GPU (Graphics Processing Unit)
acceleration is a technique to facilitate the FEM computing
performance via GPU [16], [17]. Nevertheless, this technique
requires the hardware component of GPU for implementa-
tion. The total Lagrangian formulation combines the precom-
putation of spatial derivatives with the explicit integration to
reduce the FEM computing time [18], [19]. However, it does
not accept topological alternations in the model and its solu-
tion is stable subject to small steps only. Themeshlessmethod
simplifies the FEM model discretization by discarding the
mesh topology information [20], [21]. However, this method
still requires the computation of node-to-node adjacency at
each time step, causing an extra computational load. Further,
it has difficulty in handling sparsely sampled regions and
lacks theoretical error bounds on numerical integration [12].
The model order reduction techniques such as POD (Proper
Orthogonal Decomposition) [22] and PGD (Proper Gener-
alized Decomposition) [23] reduce the FEM computational
load by approximating the complete displacement domain
using a set of variables of much lower dimensions. However,
this improvement is attained at the cost of reduced accuracy.
FEM-based machine learning is also a method to achieve the
real-time performance [24]. Although the increase of the sam-
ple size can increase the accuracy, it also increases the compu-
tational load for the learning process. Generally, most of the
existing methods enhance the FEM computing performance
at the cost of losing the modelling accuracy [20], [25]. The
state-of-art survey on the existing modelling techniques of
soft tissue deformation including various FEM improvements
can be found in [12], [25], [26].

The Kalman filter (KF) is a popular method to online esti-
mate unknown system state variables. This method conducts
the state estimation in the form of feedback control, where
system state variables are estimated using their measurements
as feedback [27]. It can achieve the accuracy of minimum
mean-square error with a small computational load. Compar-
ing to other optimal filters such as the classical Wiener filter,
KF works well for non-stationary signals and its estimation
solution will not be distorted if the system state equation is
constructed correctly [28]. However, KF can only estimate
state variables in the time domain. On the other hand, FEM
can solve state variables by decomposing the space domain
into a finite number of elements. Therefore, the combination
of KF and FEM provides a solution to estimate state variables
not only in time but also in space. So far, there has been
very limited research focusing on using Kalman filter for
soft tissue deformation, and the combination of KF and FEM
for modelling of soft tissue deformation is still a challenge
task. Just recently, Yarahmadian et al studied a Kalman filter
based on FEM for modelling of soft tissue deformation [29].

However, this work is in the preliminary stage, providing only
simple simulation results on a cubic-shape model without any
quantitative analysis. Further, since the system state equation
is constructed from FEMmodelling without considering sys-
tem process noise, the resultant KF is not suitable for real-
world situations where system process noise is inevitable.
In addition, the use of the Newmark integration for time
domain discretization cannot guarantee the stability for all
circumstances.

It should also be noted that there has been very limited
research on using the Kalman filter for soft tissue deforma-
tion, although the Kalman filter has been extensively studied
in other areas such as signal processing, tracking and control,
and vehicle navigation.

This paper presents a novel Kalman filter finite element
method (KF-FEM) to predict soft tissue deformation in real
time by combining KF with FEM. Rather than direct calcu-
lation of soft tissue deformation from FEM, which causes an
expensive computational load, this method formulates FEM
deformation of soft tissues as a filtering identification process
to real-time estimate soft tissue behaviours based on local
measurement data of displacement. It discretizes soft tissue
deformation based on elastic theory in the space domain
using FEM. Subsequently, the dynamic FEM model of soft
tissue deformation is discretized in the time domain by the
Wilson-θ implicit integration, and further transformed into a
state space representation for filtering estimation. Based on
above, a Kalman filter is developed to online estimate the
dynamic deformation of soft tissues from local measurement
of displacement. Interactive tool-tissue interaction with force
feedback is also attained for surgery simulation. Simulations
and experiments as well as comparison analysis with the
traditional FEM have been conducted to comprehensively
evaluate the performance of the proposed method. Differ-
ent from the other methods improving the computational
performance of FEM at the cost of losing the modelling
accuracy, the proposed method significantly improves the
computational performance but without sacrificing the mod-
elling accuracy of FEM.

This paper significantly improves and extends the authors’
previous work reported in [29] with substantial further
studies and development. It uses the Wilson-θ integra-
tion, which is unconditionally stable, to address the issue
of conditional stability involved in the Newmark integra-
tion for time domain discretization. Further, the system
state equation is constructed from FEM modelling by con-
sideration of system process noise, making the resultant
Kalman filter suitable for real-world situations. Conse-
quently, additional and novel approaches are established
for formulation of the proposed KF-FEM. In addition, this
paper also provides comprehensive performance evalua-
tion, including detailed quantitative analysis, in-depth sim-
ulation results and analysis on virtual human organs for
surgery simulation, experimental verification and analysis,
and haptic interaction with virtual human organs for surgical
simulation.

53472 VOLUME 8, 2020



H. Xie et al.: KF FEM for Real-Time Soft Tissue Modeling

II. LINEAR ELASTICITY
Due to the complexity in structures and constituents, soft tis-
sues exhibit complicated mechanical characteristics. Despite
the complex material composition, the deformation of soft
tissues can be accurately characterised by linear elasticity in a
short time interval. The basic strain energy equation of linear
elasticity can be defined as

Estrain =
1
2

∫
�

εTσdX (1)

where X = [x, y, z]T represents the nodal position in the
solution domain �.
The relationship between the stress tensor σ and strain

tensor ε is represented by Hooke’s law of continuum media

σ = Dε (2)

where the matrix D is represented as

D = λ
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2


(3)

and

λ =
E

(1+ v)(1− 2v)
(4)

where E and v represent the Young’s modulus and Poisson’s
ratio, respectively.

Then the relationship between the strain and displacement
can be written as

ε = Bu (5)

where the matrix B is represented as
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(6)

and N1,N2,N3, and N4 represent the shape functions.

III. FINITE ELEMENT METHOD
Suppose that the soft tissuemodel is divided into a finite num-
ber of 4-node tetrahedral elements. The nodal displacement
u = [ux , uy, uz]T can be calculated as by interpolation

u =
4∑
i=1

N e
i (X)u

e
i (7)

Thus, the displacement gradient can be defined as

∂u
∂x
=

4∑
i=1

∂N e
i (X)
∂x

uei

∂u
∂y
=

∑4

i=1

∂N e
i (X)
∂y

uei

∂u
∂z
=

∑4

i=1

∂N e
i (X)
∂z

uei (8)

From (1), the strain energy of an element can be written as

Eestrain =
1
2

∫
�e
ueTB

eT
DBeuedX (9)

The equilibrium equation of the element is given by

f e =
1
2

∫
�e
BeTDBeuedX (10)

where f e is the element force.
Substituting (10) into (9) yields the following linear form

f e = Keue (11)

where the stiffness matrix (Ke) for each finite element is

Ke
= BeTDBeV e (12)

in which V e represents the element volume.
Then, the global stiffness matrix and global force can be

represented as

K =
∑

Ke

f =
∑

f e (13)

A. DYNAMIC EQUILIBRIUM SYSTEM
Assembling the equations of each finite element together
and applying the mass and damping lead to the dynamic
equilibrium system equation to represent the deformation
behaviours of the soft tissue

MÜ + CU̇ + KU = f (14)

where the mass matrix M is a known function of material
density; the stiffness matrix K is also a constant function of
material constitutive law related to the material properties,
i.e., Young’s modulus E and Poisson’s ratio v; and the stiff-
ness and mass matrices are defined as

K =
∫
V
BTDBdV

M =
∫
V
ρNTNdV (15)
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The damping matrix C is frequency-dependent and deter-
mined by C = αM + βK with small weighting values of
damping coefficient α and β [30]; f is the external force;
and U represents the displacement, U̇ the velocity and Ü the
acceleration.

B. TEMPORAL DISCRETIZATION
The solution of the dynamic equilibrium system (15) in the
time domain can be solved by the explicit or implicit inte-
gration. Despite its simplicity in implementation, the explicit
integration is stable under small time steps only [3]. The
implicit integration is superior to the explicit one for stiff
equations. It can achieve the stability of dynamic simulation
under large time steps, leading to the improved simulation
efficiency [4]. The Wilson − θ is a popular implicit time
integration scheme. Under the assumption that the accel-
eration varies linearly with time increment, this scheme
uses an updated Lagrangian formulation to achieve a high
numerical stability with a rapid convergence speed [31].
Given its advantages in both stability and convergence speed,
the Wilson − θ scheme is adopted in this paper to solve the
unknown displacement, velocity and acceleration in (14).

Using theWilson− θ implicit time integration scheme, the
acceleration and velocity at time t + θ1t can be represented
as

Ü t+1t =
6

θ31t2
(U t+θ1t − U t)−

6
θ21t

U̇ t + (1−
3
θ
)Ü t

(16)

U̇ t+1t = U̇ t + Ü t1t +
1t
2
(Ü t+1t − Ü t ) (17)

U t+1t = U t+1tU̇ t +
1
2
Ü t1t2 +

1t2

6
(Ü t+1t − Ü t ) (18)

As shown in (16)-(18), to calculate Ü t+1t , U̇ t+1t and
U t+1t , we need to know U t+θ1t .

Applying the Wilson− θ implicit time integration scheme
to (14) yields(

6

θ21t2
M +

3
θ1t

C + K
)
U t+θ1t

= f t +
(
2M +

θ1t
2

C
)
Ü t + (

6
θ1t

M + 2C)U̇ t

+ (
6

θ21t2
M +

3
θ1t

C)U t (19)

Thus, we can readily have U t+θ1t from (19). Since the
Wilson − θ scheme is unconditionally stable when θ ≥1.37,
in this paper the integration constant is set as θ = 1.4 [31].

IV. KALMAN FILTER FINITE ELEMENT METHOD
A. STATE SPACE REPRESENTATION
In order to represent the state space model, the displacement,
velocity and acceleration are considered as the unknown
variables for soft tissue deformation. Rewrite (19) as

U t+θ1t = J−1AU t + J−1YÜ t + J−1BU̇ t + J−1If t (20)

where I is the identity matrix, and A, B, Y and J are defined
as

J =
6

θ21t2
M +

3
θ1t

C + K

Y = 2M +
θ1t
2

C

B =
6
θ1t

M + 2C

A =
6

θ21t2
M +

3
θ1t

C (21)

It should be noted that the displacement calculated by (20)
is for the time step θ1t , rather than the actual time step 1t
required in KF. To derive U t+1t for formulation of the state
space equation, substituting (20) into (16) yields

Ü t+1t = AaaÜ t + AvaU̇ t + AxaU t + Afaf t (22)

where Aaa, Ava, Axa and Afa are defined as

Aaa =
1t2θ3I − 31t2θ2I + 6J−1Y

1t2θ3

Ava =
6J−1B− 61tθ I

1t2θ3

Axa =
6J−1 A− 6I

1t2θ3

Afa =
6J−1

1t2θ3
(23)

Substituting (22) into (18) yields

U t+1t = AaÜ t + AvU̇ t + AxU t + Af f t (24)

where Aa, Av, Ax and Af are defined as

Aa =
1t2θ3I −1t2θ2I + 2J−1Y

2θ3

Av =
1tθ3I −1tθI + J−1B

θ3

Ax =
θ3I + J−1A− I

θ3

Af =
J−1

θ3
(25)

From (24) U t+1t can be calculated directly from Ü t ,
U̇ t ,U t and f t .

Re-arranging (24) into state space representation gives

U t+1t = FU t + Gzt (26)

where

F = Ax

G =
[
AaAvAf

]
(27)

and

zt =

 Ü t

U̇ t
f t

 (28)
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FIGURE 1. KF-FEM algorithm, where U0 and P0 denote the initial nodal displacement and its associated error covariance.

B. KALMAN FILTER
Based on the above state space representation by FEM mod-
elling, the KF system state equation for dynamic soft tissue
deformation is described as

U t+1t = FU t + Gzt + wt (29)

where the nodal displacement U t is the system state vector at
time t , zt is the vector of control input at time t , F is the state
transition matrix, G is the control input matrix, and wt is the
process noise.

The measurement equation of the dynamic soft tissue
deformation system is defined as

yt = HU t + nt (30)

where yt is the measurement vector at time t , H is the mea-
surement matrix, which is an identity matrix, and nt is the
measurement noise.

The process noise wt and measurement noise nt can be
defined as

wt ∼ N (0,Q)

nt ∼ N (0,R) (31)

where Q is the process noise covariance which is assumed
to be a zero-mean with Gaussian distribution, and R is the
measurement noise covariance which is assumed to be a zero-
mean with Gaussian distribution. It is also assumed that wt
and nt are uncorrelated.

FIGURE 2. The undeformed cube model where the bottom face (indicated
by the black and gray nodes) was fixed and a linear tensile force varied
from 0 N to 0.001 N was applied in the z direction to the top face
(indicated by the red nodes). Two nodes were selected in the cube model
(except for the bottom face) to observe the deformation displacements
by both FEM and KF-FEM, where the measurement data of displacement
were acquired at the center point of the top face (observation node A),
and observation node B (in yellow) was randomly selected from the
nodes without the applied tensile force.

The KF process involves two stages, which are the pre-
diction and measurement update. The prediction stage is
represented by

Ū t+1t = FU t + Gzt (32)

P̄ t+1t = FP tFT + Q (33)

VOLUME 8, 2020 53475



H. Xie et al.: KF FEM for Real-Time Soft Tissue Modeling

FIGURE 3. Measurement data of displacement acquired at observation
node A for the tensile test of the cube model.

FIGURE 4. Deformations by both FEM and KF-FEM for the tensile test of
the cube model.

where Ū t+1t and P̄ t+1t represent the priori estimated dis-
placement and its associated error covariance.

The measurement update stage is described as

K t+1t = P̄ t+1tHT (HP̄ t+1tHT
+ R)

−1
(34)

U t+1t = Ū t+1t + K t+1t (yt −H Ū t+1t ) (35)

P t+1t = P̄ t+1t−K t+1tHP̄ t+1t (36)

where K t+1t represents the Kalman gain.

FIGURE 5. Displacements at the two observation nodes by both FEM and
KF-FEM for the tensile test of the cube model.

Since (33), (34) and (36) are independent of measurement,
they can be calculated offline before the filtering algorithm
starts. Fig. 1 shows the KF-FEM algorithm, which is made
up of both offline (preprocessing) process and online (real-
time computing) process.

V. PERFORMANCE ANALYSIS
A prototype system was implemented by the proposed KF-
FEM for modelling of soft tissue deformation. This system
was implemented on a PC platform with Intel R©CoreTM

i7-8750 CPU @ 2.20 GHz, RAM 16.00 GB and 64-bit Win-
dows 10. Simulations and experiments, together with com-
parison analysis with the traditional FEM, were conducted to
comprehensively evaluate the performance of the proposed
KF-FEM for soft tissue deformation. The displacements gen-
erated by the traditional FEMwere taken as the true values for
the comparison purpose. The estimation error was calculated
by comparing the deformations estimated by the proposed
KF-FEM with those by the traditional FEM. Interactive tool-
tissue interaction with haptic feedback was also examined for
the proposed KF-FEM.
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FIGURE 6. The undeformed human liver model where a linear
compression force was applied in the z direction to the nodes (in red) on
the anterior surface and all the nodes (in black) on the posterior surface
are assumed fixed. Two random nodes were selected.

A. CUBE MODEL
Simulation analysis was carried out on a cube model in the
size of 6 × 6×6 mm3 (see Fig. 2) by both FEM and KF-
FEM. This cubemodel was uniformlymeshedwith 413 nodes
and 1723 tetrahedral elements. The mechanical properties of
the human liver [5], [32], i.e., mass density = 1060kg/m3,
Young’s modular= 3500Pa and Poisson’s ratio= 0.49, were
assigned to this model. A mechanical test was conducted on
the cube model, where the bottom face was fixed, and a linear
tensile force varied from 0 N to 0.001 N in the z direction
was applied to the top face. The damping coefficients α and
β were set as 0.05 and 0.0. The initial state value was set to
0. The process and measurement noise covariances were set
to 0.01 and 0.001. The total simulation time was 5 s, and the
time step (1t) was 0.02 s.

FIGURE 7. Measurement data of displacements acquired at observation
node A for the compression test of the human liver model.

To conduct an in-depth analysis on the performance of
KF-FEM, two nodes in the cube model (except for the bot-
tom face) were selected to observe the deformation displace-
ments. One is the center point of the top face (observation
node A in Fig. 2), where the measurement data of displace-
ment, as shown in Fig. 3, were acquired by adding a random
Gaussian white noise in the true values (i.e., the displace-
ments by the traditional FEM). The other is a random node
without the applied force (i.e., observation node B in Fig. 2).

Fig. 4 shows the deformation results by both FEM and KF-
FEM for the tensile test of the cube model. Both results are
almost identical without any visually identified difference.
To further investigate the difference between the KF-FEM
and FEM results, Fig. 5 shows the displacements at the two
observation nodes. It can be seen that the displacements at
both observation nodes by the proposed KF-FEM are very
close to those by FEM. As shown in Table 1, the mean
error, RMSE (root mean square error) and standard devia-
tion of KF-FEM are 5.90 × 10−5 mm, 0.0015756 mm and
0.0015776 mm for observation node A, and 1.55×10−5 mm,
0.0015709 and 0.0015739 mm for observation node B. Fur-
ther, as shown in Table 2, the computational performance of
KF-FEM is about 16 times faster than that of FEM, where
the total computational time at each iteration is 0.05676 s for
FEM, while 0.00348 s for KF-FEM.

It is evident from the above results that the proposed
KF-FEM clearly filters the measurement noises shown
in Fig. 3, leading to the similar accuracy as the traditional
FEM. Further, the proposed KF-FEM also overcomes the
FEM limitation of expensive computations. The FEM refresh
rate for both tensile and compression tests of the cube model

TABLE 1. Statistical errors of the proposed KF-FEM for the tensile test of
the cube model.
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FIGURE 8. Different views of the deformations by both FEM and KF-FEM for the compression test of the virtual human liver model.

TABLE 2. Computational performances of both FEM and KF-FEM for the
tensile test of the cube model.

is about 17 Hz. This means that FEM is unable to satisfy
the minimum requirement of real-time visual feedback, i.e.,
30 Hz refresh rate. In comparison, the KF-FEM refresh rate
is about 280 Hz, which is much higher than the minimum
requirement for real-time visual feedback. Thus, the pro-
posed KF-FEM achieves the real-time performance but with-
out decreasing the physical realism of FEM for soft tissue
deformation.

B. HUMAN LIVER MODEL
Simulation analysis was also carried out on a virtual human
liver model (see Fig. 6) by both FEM and KF-FEM. This liver
model was uniformly meshed with elements with 1083 nodes
and 4941 tetrahedral elements. The material properties of the
human liver as above were also assigned to the virtual liver
model. A mechanical test was conducted on the liver model,
where the bottom surface of the liver model (indicated by the

black nodes) was assumed fixed (see Fig. 6(a)), and a linear
compression force varied from 0 N to 0.003 N was applied in
the z direction to a local area (indicated by the red nodes) on
the top surface of the liver model (see Fig. 6(b)). The other
simulation parameters were the same as the case of the cube
model.

Similar to the case of the cube model, two observation
nodes were selected in the liver model (except for the bottom
surface) to evaluate the deformation accuracy. As shown
in Fig. 6(b), observation node A was the node where the mea-
surement data of displacement were acquired, and observa-
tion node B was selected from the nodes without the applied
compression force. Fig. 7 shows the noisy measurement data
acquired at observation node A by adding a random Gaussian
white noise in the true values for the compression test.

Fig. 8 illustrates the deformations of the liver model by
both FEM and KF-FEM for the compression test. It is evident
that the deformation results of both FEM and KF-FEM are
almost identical without any visually identified difference.
To look into the difference between the FEM and KF-FEM
deformation results, Fig. 9 shows the displacements of both
FEM and KF-FEM at the two observation nodes for the
compression test of the liver model. It can be seen that
the proposed KF-FEM clearly filters the measurement noise
shown in Fig. 7 and its displacements at both observation
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FIGURE 9. Displacements at the two observation nodes by both FEM and
KF-FEM for the tensile test of the cube model.

nodes are also very close to those of the traditional FEM.
As shown in Table 3, the mean error, RMSE and standard
deviation by the proposed KF-FEM are 7.85 × 10−5 mm,
0.0017267 mm and 0.0017284 mm for observation node A,
and 7.52× 10−5 mm, 0.0017251 mm and 0.0017269 mm for
observation node B.

The computational performance of KF-FEM for the com-
pression test of the liver model is about 25 times faster than
that of FEM. As shown in Table 4, the computational time
at each iteration is 0.48 s for FEM, while 0.01937 s for
KF-FEM. The visual refresh rate of FEM is about 2.08 Hz,
which is far to meet the minimum requirement (30Hz refresh
rate) for real-time visual feedback. In contrast, the visual
refresh rate of KF-FEM is about 52 Hz, which is about
26 times larger than that of FEM and is sufficient to achieve
real-time visual feedback. Thus, it is evident that the proposed
KF-FEMovercomes the FEM limitation of expensive compu-
tations and satisfies the requirement of real-time performance
for soft tissue simulation.

The above simulation results demonstrate that the pro-
posed KF-FEM not only overcomes the FEM limitation of

TABLE 3. Statistical errors of the proposed KF-FEM for the compression
test of the human liver model.

TABLE 4. Computational performances of both FEM and KF-FEM for the
compression test of the human liver model.

FIGURE 10. Experimental setup for the compression test.

expensive computations, but also inherits the FEM advantage
of high modelling accuracy for soft tissue deformation.

C. EXPERIMENTAL VERIFICATION
Experimental trials were also conducted to evaluate the per-
formance of the proposed KF-FEM for dynamic modelling
of soft tissue deformation based on real measurement data
of displacement. As shown in Fig. 10, a compression test
was conducted on a phantom soft tissue sample using the
robotic indentation system [33] to acquire the measurement
data of displacement. The phantom tissue was made up of
silicone rubbers (Young’s modular = 50 kPa and Poisson’s
ratio = 0.49) with the similar characteristics of human
soft tissues [34]. It was in cubic shape with the size of
10× 10 × 5 mm. Its density was 1072 kg

/
m3. Its bottom

face was fixed on the blue solid platform. A frictionless
rigid conic-tip probe with the flat end of 1 mm diameter was

VOLUME 8, 2020 53479



H. Xie et al.: KF FEM for Real-Time Soft Tissue Modeling

FIGURE 11. The cube model is the same as the phantom tissue sample in
terms of geometry, material properties and loading conditions with the
fixed boundary condition on the bottom face (indicated by the black and
gray nodes). The force was applied on the top face (indicated by the red
points), where the measurement data of displacement were acquired at
observation node A and one random node without measurement
acquired from (observation node B) was also selected to observe the
deformation displacements by both FEM and KF-FEM.

TABLE 5. Statistical errors of the proposed KF-FEM for the experimental
compression test.

used to compress the phantom tissue in the vertical direction.
A linear compression force from 0 N to 0.14 N was applied
to the center of the phantom tissue’s top face in the time
period of 3.5 s.

For comparison analysis, both FEM and KF-FEM mod-
elling under the same circumstances as the experimental com-
pression test were performed, where the virtual tissue model
(see Fig.11), which was uniformly discretized with 826 nodes
and 3629 tetrahedral elements, was the same as the phantom
tissue sample in terms of geometry, material properties and
loading conditions. The measurement data of displacement
at the contact node where the compression force was applied
were collected from the experimental compression test on the
phantom tissue sample. Based on the acquired measurement
data, the deformations of the phantom tissue were estimated
by the proposed KF-FEM, and further compared with the
deformations by the traditional FEM.

Fig. 12 shows the deformation results of both FEM and
KF-FEM are in an excellent agreement. To further investigate
the deformation difference between FEM and KF-FEM for
the experimental test, in addition to the contact node (obser-
vation node A) where the measurement data of displace-
ment were acquired, one more random node (observation
node B) in the phantom tissue model (except for the bottom
face) was selected to observe the deformations by both FEM
and KF-FEM. As shown in Fig. 13, the proposed KF-FEM

FIGURE 12. Deformation modelling by both FEM and KF-FEM for the
experimental test case.

clearly filters the noisy measurement data, and its estimated
displacements are well in line with those by the traditional
FEM. As shown in Table 5, the mean error, RMSE and stan-
dard deviation of the proposed KF-FEM are 0.0011318 mm,
0.033626 mm and 0.033987 mm, for observation node A,
and 0.0001455 mm, 0.001158 mm and 0.001161 mm for
observation node B.

Fig. 14 shows the computational performances of both
FEM and KF-FEM for the experimental compression test.
It can be seen that the traditional FEM achieves the refresh
rate of 30 Hz at about 1200 elements, while the proposed
KF-FEM at about 5300 elements. This proves the presented
KF-FEM is much superior to the traditional FEM in terms
of computational time. It should also be noted from the
above simulation and experimental analyses that the pro-
posed KF-FEM estimates the deformation on the entire
model from the only measurement data of displacement
at the contact node where the external force is applied.
In other words, the proposed KF-FEM estimates the global
deformation of the entire model from local measurement of
displacement at the contact node where the external force
is applied.
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FIGURE 13. Displacements at the two observation nodes by both FEM
and KF-FEM for the experimental test case.

FIGURE 14. Computational performances of both FEM and KF-FEM for
the experimental test.

D. FORCE FEEDBACK
Tool-tissue interaction with force feedback was also attained
by integration of the presented KF-FEM with a PHANToM

FIGURE 15. Interactive deformation of the virtual human liver model in
Section V-B with haptic feedback.

FIGURE 16. Haptic performances of both FEM and KF-FEM.

haptic instrument from Geomagic. The measurement data
of displacement were acquired from the penetration depth
of PHANToM’s stylus tip which is in contact with the vir-
tual tissue model. The elastic force was calculated by the
proposed KF-FEM and transferred to the haptic instrument
for force feedback. Fig. 15 shows the deformations of the
virtual human livermodel in SectionV-B via the virtual haptic
needle.

To achieve realistic force feedback by the PHANToM
haptic device, the force refresh rate must be at least
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1,000 Hz. As shown in Fig. 16, the proposed KF-FEM
achieves the force refresh rate of 1,000 Hz at around
1100 tetrahedron elements, while the traditional FEM at
around 100 tetrahedron elements. This demonstrates that the
proposed KF-FEM is much superior to the traditional FEM
in terms of haptic performance. In the case that the required
haptic refresh rate cannot be met, the force information at
current iteration is extrapolated from the previous iteration
for realistic force feedback [4], [35].

VI. CONCLUSION
This paper proposes a new KF-FEM for dynamic modelling
and analysis of soft tissue deformation. It carries out soft
tissue deformation with a filtering identification process to
online estimate mechanical behaviours of soft tissues based
on local measurement of displacement. The contribution of
this paper is that a Kalman filter and its associated system
equations are established for online estimation of soft tissue
deformation. Soft tissue deformation is discretized in space
by FEM and in time by the Wilson − θ implicit integration
to formulate the system state equation for filtering estima-
tion. Based on the system state equation, a Kalman filter is
developed to provide the statistical estimation of soft tissue
deformation from local measurement of displacement. Tool-
tissue interaction with force feedback is also attained for
surgery simulation. Simulations and experiments as well as
comparison analysis demonstrate that the proposed KF-FEM
significantly improves the FEM computing performance but
without sacrificing the FEM modelling accuracy for soft
tissue deformation. The proposed KF-FEM also improves the
simulation efficiency by taking a large time step for dynamic
modelling of soft tissue deformation.

Future research work will focus on improvement of the
proposed method. Currently, the proposed method considers
linear elastic behaviours only. In the future, based on nonlin-
ear elasticity, the linear system state equationwill be extended
to formulate a nonlinear state equation to characterize non-
linear mechanical behaviours of soft tissues. Consequently,
a nonlinear filtering algorithm such as the extended Kalman
filter [36] or unscented Kalman filter [37] will be developed
based on the nonlinear system state equation to real-time
estimate nonlinear deformation behaviours of soft tissues.
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