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ABSTRACT Colocation mining is useful for understanding the interactions or dependencies that occur
among geographic phenomena. Most colocation mining methods are based on planar space. However,
in urban spaces, many human-related activities are constrained by a road network. Planar colocation mining
methods are not suitable for studying the concerning geographic phenomena in an urban space. In this
paper, we propose a visualization method to discover colocation patterns constrained by a road network.
The method consists of two major components: network kernel density estimation and network colocation
rule map construction. In the colocation rule map construction component, spatial interactions among spatial
network geographic phenomena are modeled based on the idea of color mixing. We use simulated datasets
with different spatial patterns, different sample sizes, and differentmaximumdistances between road network
events to test our method. The results show that our method is effective for mining colocation patterns in
different situations. We also change the resolution of the network colocation rule maps, and the results show
that the resolution has little influence on the results. In the case study, we apply our method to explore
the spatial association between crimes and city facilities in the Loop and the Near North Side districts of
Chicago.

INDEX TERMS Geographic information systems, visualization, geography, colocation, road network.

I. INTRODUCTION
Colocation mining is used to find subsets of geographic fea-
tures whose instances are often close to each other [1], [2].
Colocation mining can be used to reveal interactions or
dependencies that occur between geographic phenomena, for
instance, to detect the association of land use facilities with
crime patterns [3], to understand the correlation between
the built environment and crashes [4], and to analyze the
relationships among different urban facilities [5]. Moreover,
the applications of colocation mining can be expanded to
cases with different data formats, such as extract trajectory
frequent pattern in outdoor environment and indoor environ-
ment [6], [7]

In urban spaces, human-related geographical phenomena,
such as the locations of urban facilities, traffic jams, and street
crimes, are usually constrained by a road network [8], [9].
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These human-related geographical phenomena are also con-
sidered network spatial phenomena. Analyzing network spa-
tial phenomena is suitable for applications associated with
urban study [10]–[12], such as expanding the knowledge and
understanding of street crime [13], [14] and optimizing the
location of urban facilities [6], [8]. When analyzing network
spatial phenomena, traditional studies regard the real world as
a continuous and homogeneous space and use the Euclidean
distance to measure the distance. However, a road network
space is discrete and inhomogeneous, using network distance
[15], [16]. Thus, conclusions that are drawn by traditional
methods using the Euclidean distance are often flawed [17].
For mining the colocation patterns of network spatial phe-
nomena, it is necessary to propose methods that can charac-
terize the network space.

Spatial colocation mining approaches are divided into
two classes: spatial statistics and spatial data mining
approaches [2], [8]. Spatial statistics approach refers to use
metrics of spatial correlation to characterize the relationship
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between different types of spatial features, such as cross-K
function [18], cross nearest distance [19], and Q test [20].
Spatial data mining approaches mainly refers to associa-
tion rule-based approaches that adopt an approach similar to
the Apriori algorithm [21]. Directly adopting planar coloca-
tion mining methods cannot be used to discover colocation
patterns that are constrained by a road network [7], [22].
Therefore, some effort has been made to discover colocation
patterns constrained by a road network through extended
planar colocationminingmethods. Based on the existing clas-
sification of spatial colocation mining approaches, we clas-
sify network colocation mining methods into two categories:
extended spatial statistics methods and extended spatial data
mining methods. In the extended spatial statistics methods,
some spatial statistics methods for mining the planar colo-
cation methods are extended to a network space. The cross-
K function [18], cross nearest distance [19], and Q test [20]
are extended to the network cross-K function [23], the net-
work nearest distance [10], and the Q Statistic in the net-
work space [6] by using the network distance. Statistical
diagnostics [24] are extended to the network space based on
the skeleton partitioning of a road network [25]; however,
the partitioning may cause the loss of neighbor relationships
among objects across the partitioning borders. In the exten-
sion, some characteristics of spatial statistics methods for
mining planar colocation methods are also inherited, such as
the cross-K function, which is suitable for two independent
distributions and not suitable for categories in one population.
In extended spatial data mining, Yu [26] extended the colo-
cation mining study of Huang et al. [2] to a network space by
defining neighborhoods that use the network distance rather
than the Euclidean distance. Furthermore, Yu et al. [8] took
the ‘distance decay effect’ of spatial interactions into account
to improve the accuracy of modeling spatial dependency
relationships between geographic features. Cai et al. [22]
proposed a network-constrained spatial colocation pattern
method with a nonparametric significance test that could
detect colocation patterns with less priori knowledge.

In recent years, visualization has played an important role
in spatial data mining [27], [28] and acts as representation
tools or tools that facilitate spatial data mining. In coloca-
tion mining, some researchers apply visualization methods to
improve colocation mining methods. Okabe and Yamada [23]
used network graphs as visualization tools to represent the
mining results, allowing users to find and explore colocated
features. However, the network graphs cannot provide any
information on the spatial configuration of the colocation.
Flouvat et al. [29] proposed a method to represent coloca-
tion mining results on maps that are based on the clustering
method. However, the locations of the colocation patterns are
only approximately represented on the maps.

In the field of visualization, color mapping is an important
and widely used technique [30]. Color mixing can be used
for multivariate visualization. There are several techniques:
multivariate color scale, color blending and color weaving
[31], [32]. On a multivariate color scale, two or more data

variables can be mapped to a single color. For example, three
multispectral scanner bands are represented by red, green and
blue using the RGB color model in Landsat ‘‘false color’’
images [33]. The color blending technique uses different
colors to represent each variable and then blends the results
[34], [35]. The color weaving technique weaves individual
colors that represent multiple variables to form a fine-grained
texture pattern [36], [37]. Some researchers have conducted
studies to help users select the proper colors for multivari-
ate representation to improve the perception of the original
components that generate particular colors and identification
of individual values [29], [38]. Inspired by these studies,
we hypothesize that color-mixing strategies that are used
for multivariate visualization may be applied to colocation
mining. Before color mixing, a method should be used to
visualize the spatial distribution patterns of spatial phenom-
ena constrained by a road network. As an efficient spatial
statistics tool in exploring and modelling spatial point pat-
terns, kernel density estimation considers the distance decay
impact of spatial point and generates a density surface from
the input spatial points [39], [40]. To analyze network spatial
phenomena, kernel density estimation is extended to network
kernel density estimation [12], [41], [42]. We will use net-
work kernel density estimation to visualize the distribution
patterns of network spatial phenomena.

This paper focuses on the mining colocation pattern that is
constrained by a road network through visualization. Much
different than existing colocation mining methods that are
based on abstract thinking and use spatial statistics or spatial
data mining approaches to generate a textual form result,
the visualization method presented herein is based on visual
thinking and uses colors to represent the colocation rule and
mining colocation patterns in a visual form. Our method can
provide an intuitive approach to obtain cognition of coloca-
tion rules in a road network space. In the colocation mining
process, visualization acts as a tool to mine geo-data and
discovery knowledge rather than representation tools or tools
that facilitate spatial data mining. This paper is a variation and
extension of the visualization approach for colocation mining
proposed by Zhou et al. [43]. Since the approach proposed
by Zhou et al. [43] is a planar colocation mining method and
is not suitable for mining colocation patterns constrained by
a road network, we extend the approach to a road network
space. In Section 2, we propose a visualization method for
colocation mining in a network space. In Section 3, we use
simulated data to test the performance of our method in
different situations and analyze the influence of resolution on
the results. Section 4 presents a case study that applies our
method to analyze the association between crimes and city
facilities, and Section 5 concludes this paper.

II. PROPOSED METHOD
This method can be used to visually explore whether two
types of road network events are colocated. The basic method
consists of two major components.
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FIGURE 1. Illustration of the visualization method for network colocation
mining: (a) a road network and road network events X and Y, (b) network
kernel density estimation, (c) density surfaces of road network events X
and Y, and (d) network colocation visualization based on color mixing.

(1) Network kernel density estimation. Network kernel
density estimation is used to calculate the distribution density
of two types of road network events, as shown in Fig. 1(b).

(2) Network colocation rule map construction. The spa-
tial interaction of the two types of road network events are
modeled. Two density network surfaces of the two types
of road network events are produced. One type of event is
represented in red, and the other is represented in green,
as shown in Fig. 1(c). Based on the law of additive color mix-
ing, the colors of the two density network surfaces are mixed
to produce a network colocation rule map(a visualization
result that uses colors to represent colocation rules at each
network location), as shown in Fig. 1(d).

A. NETWORK KERNEL DENSITY ESTIMATION
Planar kernel density estimation considers the distance decay
impact of a point event and can generate a smooth density
surface that is easy to understand. This method is commonly
used to analyze the spatial distribution of a point event
[39], [40]. The kernel density estimator is defined as follows:

f (s)=
∑n

i=1

1
τ 2 k(

s−si
τ

) (1)

where s represents a location, f (s) represents the density
value at s, k() represents the kernel weighting function that
is centered on s and spreads according to the bandwidth τ ,
s1,. . . , sn are the locations of the n event points, and s−si is the
distance between s and si. Kernel density estimation requires
two parameters: the bandwidth τ and the kernel weighting
function k(). It has been reported that k() has little influence
on the results and the τ is a critical parameter [39], [40], [44].
When the value of τ increases, the spatial variation in density
is smoother. When the value of τ reduces, the estimation
become increasingly ‘spiky’. Different values of τ can be
used to explore variation in density value at different scales.

In analyzing the distribution of road network events, using
planar kernel density estimation may produce a bias [41].
Thus, based on the characteristics of road networks and road
network events, some researchers have extended planar ker-
nel density estimation and have proposed network kernel den-
sity estimation algorithms [12], [41], [42]. Network kernel
density estimation uses the same form of a kernel density

estimator (Eq. (1)), although the distance is measured by the
network distance. Due to the complexity of a road network,
compared with planar kernel density estimation, network
kernel density estimation could be relatively time consuming,
especially at the stage of distance calculations. To reduce
the computational complexity, we chose the network kernel
density estimation algorithm proposed by Yu et al. [12]. The
idea of the algorithm is inspired by water flow extension. The
algorithm is briefly described here. Readers are encouraged to
refer to a more complete description (see the reference [12]).

(1) Divide the road network into a set of linear units (Lix-
els) with a defined road network length l. The intersection
point of Lixels is called an lxnode. Construct the network
topological relationship between Lixels and between Lixels
and lxnodes.

(2) Project the road network events to the nearest Lixels.
(3) Calculate the density value at each Lixel based on

an operator of the 1-D sequential expansion operator that is
extended from the dilation operator inmathematicalmorphol-
ogy [45]. Then, the bandwidth τ is measured with the steps
of expansion. Because it has been reported that the kernel
weighting function k() has little influence on the results,
the commonly used quartic kernel function (Eq. (2)) is
selected.

k(
s− si
τ

) =
3
4
(1−

(s− si)2

τ 2
) (2)

For road network events X and Y , network kernel density
estimation [12] is used to analyze their spatial distribution.
Step (1) mentioned above is executed, where the i th Lixel
is labeled as Li(i = 1 . . . n, n is the total number of Lixels).
Then, steps (2) and (3) mentioned above are executed, and the
density value of spatial events X and Y at Li are labeled KLXi
and KLYi , respectively.

B. CONSTRUCTION OF A COLOCATION RULE MAP BASED
ON COLOR MIXING
To construct a colocation rule map, we set the color of the Li
from two local network density values KLXi and KLYi of the
road network events X and Y based on additive color mixing.
Here, the RGB color is used to represent the color. The RGB
color model is an additive color model that has three color
components, R, G, and B, representing red, green, and blue,
respectively. The values of the three color components range
from 0 to 255.

The network colocation rule map is constructed based on
additive color mixing. Additive color mixing conforms to the
following basic rules:

• Zero intensity for each component produces black, and
the full intensity for each component produces white.

• The sum of two components of equal intensity forms a
secondary color: C(cyan) = G+ B, Y(yellow) = R+ G,
M(magenta) = R+ B.

• When one of the components has the strongest intensity,
the color hue is close to the primary color.
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We use red and green to represent the network density of
X and Y , and the colored Li is represented by CX

i (R, 0, 0)
and CY

i (0,G, 0) in the network density surfaces of X and
Y , respectively, as shown in Fig. 1(c). Based on the law
of additive color mixing, the colors of the network density
surface of X and Y are mixed. CX&Y

i (R,G, 0) represents
the color of the ith linear unit after color mixing, as shown
in Fig. 1(d). The function to determine the color components
is as follows:

KLX
′

i = KLXi
/
max(KLXi ), KLY

′

i =KL
Y
i

/
max(KLYi ) (3)

R = g(KLX
′

i ), G = g(KLY
′

i ) (4)

Here, g is a monotonically increasing function. Indeed, g
can be regarded as a many-to-one operator that assigns the
kernel density values (the ‘many’) to an interval.

Small number of intervals produces classed map.Whereas,
big number of intervals, such as 256, produces a continuous
map. Classed map and continuous map have their own advan-
tages and disadvantages. Choosing number of classes should
also depends on different users and applications. Classed map
may be easy to interpret, as people can detect and discrimi-
nate different classes in it. On the other hand, classification
method can affect the results, and larger numbers of classes
are much less affected than smaller numbers of classes.

C. INTERPRETATION OF THE RESULT
To interpret the results of our method, a rotation function
is used to transform two local network density variables to
variables that represent the network colocation and pseudo
intensity of the joint distribution in a road network space:

Co = arctan(
KLY

′

i

KLX
′

i

)−
π

4
(5)

I =
√
KLX

′

i
2
+ KLY

′

i
2

(6)

where Co represents the network colocation and I represents
the pseudo intensity of the joint distribution of the road
network events X and Y in a network space. The value of
Co ranges from−π

/
4 to

π
/
4, and the value of 0 indicates the

strongest colocation. The value of I ranges from 0 to
√
2, and

the larger the value is, the larger the pseudo intensity [43].
How can the color of road segments be associated with

the measurements of colocation? We take an unclassed net-
work colocation rule map as an example to illustrate the
association, as shown in Fig. 2. The first row represents
CX
i (R, 0, 0), and the first column represents CY

i (0,G, 0). The
color components R and G are calculated as follows: R =
255KLX

′

i and G = 255KLY
′

i . The remaining part repre-
sent the corresponding color mixing result CX&Y

i (R,G, 0).
At the main diagonal (top left to bottom right), the color is
yellow and the value of Co reaches 0, which indicates the
strongest network colocation. The larger the angle from the
main diagonal, the weaker the network colocation pattern.
The color above the main diagonal is reddish, which indicates
that the road network event X is ‘dominant’ (the value of Co

FIGURE 2. Interpretation of the results (using an unclassed map as an
example).

is negative). The color below the main diagonal is greenish,
which indicates that the road network event Y is ‘dominant’
(the value of Co is positive). From the top left to bottom
right in Fig. 2, the pseudo intensity of the joint distribution in
a network space increases. The stronger intensity of yellow
indicates a stronger network colocation. The global coloca-
tion is estimated based on the proportion of yellow in the
entire network colocation rule map.

III. SIMULATED DATA EXPERIMENTS
We use simulated data to test whether our method can effec-
tively discover network colocation patterns in different sit-
uations. The different situations are as follows: (1) datasets
with different patterns (section 3.1), (2) datasets with dif-
ferent sample sizes (section 3.2), and (3) datasets with the
same sample size but different maximum distances between
the road network events X and Y (section 3.3). In sections
3.1-3.3, we divide the road network into a set of Lixels with
a network distance of 10. We also conduct experiments to
analyze how the method is affected by the length of the
Lixels (the resolution) (section 3.4). The idea for generating
the simulated data is similar to that in the work in [46].
The interaction distance is set to 100 (network distance) in
datasets 1-6. In this section, color components R andG are set
as follows: R = 255KLX

′

i andG = 255KLY
′

i ; thus, the legend
of network colocation maps refers to Fig. 2.

A. DATASETS WITH DIFFERENT PATTERNS
We use simulated data to test the method in the situation
of spatial autocorrelation or abundance of feature instances.
Road network events in datasets 1 and 2 are colocated,
whereas road network events in datasets 3 and 4 are not
colocated. Random road network events in the experiment are
generated using Sanet (http://sanet.csis.u-tokyo.ac.jp/).
Dataset 1: Road network events X and Y are colocated.

Road network event X has 50 instances and is distributed
randomly in the network space. Road network event Y also
has 50 instances, and each instance of Y can be found within
a network distance of 100 of an instance of X, as shown
in Fig. 3(a).
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FIGURE 3. Simulated dataset with different patterns. In datasets 1 and 2,
road network events X and Y are colocated. In datasets 3 and 4, road
network events X and Y are not colocated. (a) Dataset 1, (b) dataset 2,
(c) dataset 3, and (d) dataset 4.

Dataset 2: Road network event X and Y are colocated.
Road network event X has 50 instances and is distributed
randomly in the network space, as shown in Fig. 3(b). Road
network event Y has 160 instances and is spatially autocorre-
lated. Each instance of Y can be found close to an instance of
X within a network distance of 100.
Dataset 3:Road network events X and Y are not colocated.

As shown in Fig. 3(c), road network events X and Y have 50
instances each and are distributed randomly in the network
space, and road network events X and Y are independent of
each other.
Dataset 4:Road network events X and Y are not colocated.

As shown in Fig. 3(d), the road network event X is dis-
tributed randomly in the network space and has 50 instances.
Road network event Y is spatially autocorrelated and has
90 instances. No two instances of road network instances X
and Y are seen within a network distance of 100.
Result 1: The bandwidth range is set from 100 to 400;

Fig. 4 shows the results. At a bandwidth of 100, we observe
some yellow segments on the network colocation rule map.
When the bandwidth increases, more road segments turn yel-
low on the network colocation rule map, and yellow accounts
for all proportions of the colored road, which indicates that
road network event Y is colocated with road network event X.
Result 2: The bandwidth range is set from 100 to 400;

Fig. 5 shows the results. When the bandwidth is 100,
we observe yellow or orange segments on the colocation
rule map. When the bandwidth increases, the proportion of
yellow increases. At a bandwidth of 200-400, the yellow area
accounts for most of the colored area, which indicates that
road network event Y is colocated with road network event X.
Result 3: The bandwidth range is set from 100 to 400, and

Fig. 6 shows the results. When the bandwidth is 100, we only
observe red or green segments on the colocation rule map.
When the bandwidth increases, the red, green and yellow
regions expand in the network space, although the proportion

FIGURE 4. Visualization results of dataset 1.

FIGURE 5. Visualization results of dataset 2.

of yellow is still very small, which indicates that road network
event X is not colocated with road network event Y.
Result 4: The bandwidth range is set from 100 to 400;

Fig. 7 shows the results.When the bandwidth is 100, the colo-
cation rule map contains red and green line segments. When
the bandwidth increases, the red and green line segments
expand, and the colocation rule maps are full of red or green
lines, which indicates that road network event X is not colo-
cated with road network event Y.

We compare our method with network cross-K func-
tion. The network cross-K results of datasets 1-4 are shown
in Fig 8. The blue curve indicates the observed curve; the red
curve indicates the mean value under the CRS hypothesis;
the green and pink curves are, respectively, the upper and
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FIGURE 6. Visualization results of dataset 3.

FIGURE 7. Visualization results of dataset 4.

lower envelop curves under the CSR hypothesis. For datasets
1 and 2, the observed network cross-K value is above the
upper envelop curve, which indicates a significant pairwise
aggregation tendency. For datasets 3, the observed network
cross-K value is in the simulation envelope, indicates the
mean value under the CRS hypothesis and road network
event Y is not colocated with road network event X. For
dataset 4, the observed network cross-K value is under the
lower envelop curve, indicating that road network event Y is
tend to be dispersed from road network event X. The network
cross-K results of datasets 1-4 are consistent with our results.

B. DATASETS WITH DIFFERENT SAMPLE SIZES
The datasets in Section 3.1 are not large. People may doubt
that if the sample sizes increase, especially for two large
randomly distributed road network events, the density of each

FIGURE 8. Network cross-k results of datasets 1-4. (a) Dataset 1,
(b) dataset 2, (c) dataset 3, and (d) dataset 4.

FIGURE 9. Simulated dataset with different sample sizes. (a) Dataset 5,
road network events X and Y have 100 instances each. (b) Dataset 6, road
network events X and Y have 200 instances each.

location might be similar, and then the correlation will be
incorrect. We use larger datasets to test the method in the
situation that road network events are randomly distributed
and not colocated. We change the sample size of dataset 3.
In datasets 5 and 6, road network events X and Y have
100 instances each and 200 instances each, respectively. Road
network events X and Y are distributed randomly in the
network space and are independent of each other, as shown
in Fig. 9.
Results 5 and 6: The bandwidth range is set from

100 to 400, and Fig. 10 shows the results. For the initial
bandwidth, red and green occupy nearly all the colocation
rule maps of datasets 5 and 6. With increasing bandwidth,
although the proportion of yellow increases, it remains sub-
stantially smaller than that of red or green. The colocation
rule maps indicate that road network event X is not colocated
with road network event Y in datasets 5 and 6. At the same
bandwidth in datasets 3, 5 and 6, the density surfaces and
network colocation rule maps are smoother in the larger
dataset. We also compared our method to the network cross-
K function. The results of the network cross-K function are
shown in Fig. 11. The observed network cross-K value is in
the simulation envelope, which is consistent with our results.

C. DATASETS WITH DIFFERENT INTERACTION DISTANCES
In datasets 7-9, the interaction distance is set to 50, 100, and
150. Road network events X and Y are colocated and have
50 instances each. The maximum network distances between
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FIGURE 10. Visualization results of dataset 5 (road network events X and
Y have 100 instances each).

FIGURE 11. Visualization results of dataset 6 (road network events X and
Y have 200 instances each).

FIGURE 12. Network cross-k results of datasets 5 and 6. (a) Dataset 5 and
(b) dataset 6.

road network events X and Y are 50, 100, and 150. Road
network event X is randomly distributed in the network space,
as shown in Fig. 12.

FIGURE 13. Simulated dataset with different maximum distances
between road network events. (a) Dataset 7, maximum distance: 50,
(b) dataset 8,maximum distance: 100, and (c) dataset 9, maximum
distance: 150.

FIGURE 14. Visualization results of dataset 7 (maximum distance: 50).

For datasets 7-9, the bandwidth range is set from
100 to 400; Fig. 13 shows the results. When the bandwidth
increases, more road segments turn yellow on the network
colocation rule map. Yellow occupies a large proportion in
the colocation rule maps for datasets 7-9. From a bandwidth
of approximately 100 in dataset 7, 200 in dataset 8, and 300 in
dataset 9, yellow accounts for nearly all of the colored area.
The colocation rule maps indicate that road network event Y
is colocated with road network event X in datasets 7-9. The
differences in the datasets with different maximum distances
can also be detected from the colocation rule map. We also
compared our method to the network cross-K function. The
results of the network cross-K function are shown in Fig. 14.
The observed network cross-K value is always greater than
the upper bound of the simulation envelope, which indi-
cates a significant pairwise aggregation tendency. However,
the results for the different datasets are very similar and do
not reflect the different patterns of datasets 7-9.
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FIGURE 15. Visualization results of dataset 8 (maximum distance: 100).

FIGURE 16. Visualization results of dataset 9 (maximum distance: 150).

D. ANALYSIS ON THE INFLUENCE OF THE LENGTH OF THE
LIXELS (THE RESOLUTION) ON THE RESULTS
For datasets 1 and 3, we changed the length of the Lixels (the
resolution) and reperformed the experiments to analyze how
the length of the Lixels affects the results. Fig. 18 shows the
results of dataset 1, and Fig. 19 shows the results of dataset 3.
Results using Lixels with a network distance of 5 (1/4 of the
original Lixel length) are shown in the left column, and results
using Lixels with a network distance of 20 (two times the
original Lixel length) are shown in the left column. Compar-
ing the results of different lengths of Lixels, the results are
extremely similar. However, the color transition in the results
with a high resolution is smoother than that of the results with
a low resolution. The length of the Lixels (the resolution) has
little influence on the results.

FIGURE 17. Network cross-k results of datasets 7-9. (a) Dataset 7,
(b) dataset 8, and (c) dataset 9.

FIGURE 18. Visualization results of dataset 1 using different lengths of
Lixels (resolution).

IV. CASE STUDY-EXPLORING THE SPATIAL
ASSOCIATION BETWEEN CRIME AND FACILITIES
A. STUDY AREA AND DATA
Understanding the spatial association between crime and
facilities may help us know why crime incidents tend to
happen in some areas and thus allocate police resources and
help reduce crime [47]–[49]. In this section, our method is
applied to analyze the colocation of two types of crimes
and two types of city facilities in the Loop and the Near
North Side districts of Chicago. These two districts belong
to central Chicago. The Loop is the central business district
and downtown area of Chicago. The Magnificent Mile is a
stretch of shops in the Near North Side. The crime and street
centerline data were provided by the Chicago Data Portal,
and the city facilities data were obtained from Open Street
Map. Two types crimes studied from 2017 include theft (a
total of 11754 records) and robbery (a total of 804 records).
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FIGURE 19. Visualization results of dataset 3 using different lengths of
Lixels (resolution).

FIGURE 20. Study area.

The two types of city facilities studied include shops (a total
of 245 instances) and alcohol outlets (alcohol consumption
place) (a total of 113 instances), as shown in Fig. 20.

B. RESULTS
We divide the road network into a set of Lixelswith a network
length of 20 m. Our method comprises a network kernel den-
sity estimation step, and the bandwidth is a critical parameter
in kernel density estimation [44]. In the experiment, we ana-
lyze the colocation patterns of crime and facilities at different
bandwidths from 300 to 600 m. The network density of theft
and robbery crimes is represented by red, and the shops and
alcohol outlets are represented by green. Then, the color net-
work density surfaces of the crimes and facilities are mixed
to produce network colocation rule maps. Fig. 21 shows the
generated network colocation rule maps of thefts and the
two facilities (shops and alcohol outlets). In the network
colocation rule map of thefts and shops (Fig. 21, first col-
umn), at a bandwidth of 300 m, we can observe green, green-
ish, yellow, and reddish colors in the colocation rule map.

FIGURE 21. Network colocation rule maps of thefts and shops as well as
thefts and alcohol outlets at different bandwidths.

With increasing bandwidth, some areas become yellow or
yellowish at a bandwidth of 400 m. At bandwidths of 500 and
600 m, yellow and yellowish areas account for a large propor-
tion of the colored area, whereas the area around the northern
area of the Magnificent Mile is greenish. Network coloca-
tion maps detect that theft incidents co-locate with shops.
Shops act as ‘‘crime generators’’ that have higher associated
volumes of crime where people go to perform legal daily
activities [50]. Shops create opportunities for theft to those
who intend to commit a crime. People gather at shopping
precincts, providing interactions between potential offenders
and potential targets. When shopping, people mainly focus
on commodities, and this may weaken some people’s sense
of prevention and give some potential offenders chances to
commit theft crimes. In the network colocation rule map of
thefts and alcohol outlets (Fig. 21, second column), the red
and green areas take up almost all of the colored area on the
map. With increasing bandwidth, the colored area expands,
and a small part of area turns greenish or reddish. However,
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FIGURE 22. Network colocation rule maps of robberies and shops as well
as robberies and alcohol outlets at different bandwidths.

yellow or yellowish areas can barely be observed at the
different bandwidths, which indicates that theft incidents do
not colocate with alcohol outlets.

Fig. 22 shows the generated network colocation rule maps
of robberies and the two facilities (shops and alcohol outlets).
In the network colocation rule map of robberies and shops
(Fig. 22, first column), red, reddish, green, and greenish areas
are present in almost all the colored area in the colocation
rulemaps at all bandwidths, which indicates that robbery inci-
dents do not colocate with shops. On the network colocation
rule map of robberies and alcohol outlets (Fig. 22, second
column), green, greenish, red, and reddish regions comprise
nearly all of the colored area at a bandwidth of 300 m. With
increasing bandwidth, the yellowish area occurs and expands
in the southern area of the Near North Side district. However,
red and green regions still comprise most of the colored area,
which indicates that robbery incidents do not colocate with
alcohol outlets. The result is consisting with the findings [51]
that alcohol stores and bars are not associated with higher
street robbery counts.

V. CONCLUSION
In this study, we proposed a visualization method to discover
colocation patterns that are constrained by a road network.
The method consists of two major components: network
kernel density estimation and network colocation rule map
construction. Users can discover global colocation through
the perception of the color of the network colocation rule
map. We use simulated data with different patterns and sam-
ple sizes to test our method, and the results show that our
method can effectively discover network colocation patterns.
We use datasets with different maximum distances between
road network events to test our method, and the results show
that the network colocation rule maps with different band-
widths can reflect the differences in the maximum distance.
We use simulated data to analyze how the method is affected
by the length of the Lixels, and the results show that the
length of the Lixels has little influence. We also provide a
case study to illustrate how to use our method to analyze
the spatial association between crimes and city facilities. Our
method can be applied to analyze human activities, such as
urban facilities, street crimes, traffic jams and crashes, that
are constrained by a road network.

This work has several perspectives. (1) We use simulated
datasets with given patterns to test the method. However,
Users detect colocation patterns and their distribution based
on the color perception of a network colocation map. Thus,
the work needs to be evaluated in the future for end-user
assessment. (2) Themethod is suitable for people with normal
color vision. However, color blindness affects approximately
8% of men and 0.5% of women around the world, most often
in the red-green form. In the future, the visualization method
can be improved for those who are color blind. (3) This
method is suitable for measure pairwise network colocation
pattern. How to mine colocation patterns of more than two
road network events is still a remaining problem for us.
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