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ABSTRACT Due to the lack of an effective overall coordinated treatment method, it is difficult to achieve
low cost and efficient removal of pollutants from coal-fired flue gas. This paper establishes a collaborative
optimization model for ultralow emission systems, including a system level model of operation cost and
three discipline level models for denitration, desulfurization, and dust removal. An improved collaborative
optimization method with a dynamic penalty function is proposed to optimize an ultralow emission system.
Simulation results show that the improvedmethod achieves better global optimization and effectively reduces
the operation cost of the system under ultralow emission constraints.

INDEX TERMS Coal-fired flue gas pollutant, collaborative removal, dynamic penalty function, collabora-
tive optimization, operation cost.

I. INTRODUCTION
Due to the continuous enhancement of environmental protec-
tion requirements, ultralow emission systems for coal-fired
power plants (ULE system) are constantly being updated and
improved. At present, there are many studies and optimiza-
tions of various equipment used in coal- burning flue gas
emission systems in the relevant literature. For denitrification
devices, Peng et al. established the exponential ARMAX
model of the denitrification process and proposed a corre-
sponding generalized predictive control strategy [1]. Subse-
quently, Peng et al. established an ARX nonlinear model of
the denitrification process based on a radial basis function and
proposed a corresponding model predictive control strategy
[2]. Regarding desulfurization devices, Perales et al. con-
trolled the outlet concentration of SO2 and absorber slurry
via the dynamic matrix control method [3]. Li constructed
an improved neural network PID control algorithm with
a prediction model based on the LM algorithm to control
the slurry value [4]. With respect to dedusting devices, Xu
adopted a k-means clustering algorithm based on the RBF
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neural network, which determined the electric dust collector
export concentration and amathematical model for secondary
voltage; a genetic algorithm was used to study the opti-
mization strategy for saving energy [5]. Grass implemented
fuzzy control of operating voltage according to the change
of load size based on expert experience rules and achieves
better economic operation, energy savings and consumption
reduction [6]. Using the k-means clustering algorithm of the
RBF neural network, Li et al. obtained a mathematical model
of the outlet concentration and secondary voltage of the elec-
trostatic precipitator [7]. However, there are few studies on
the synergistic function and operation cost optimization of
ULE system.

The problem of collaborative optimization of the dewater-
ing process for ULE system, which involves multiple profes-
sional models such as denitration, desulfurization, dedusting,
etc., belongs to the field of multimodel complex system
optimization; there are also collaborative dedusting effects
between devices. At present, the solving strategies for com-
plex multimodel systems can be divided into two categories:
centralized and decentralized decision strategies [8]. For cen-
tralized decision strategies, multiple models are combined
into a single model to solve the problem; this is effective
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only when the coupling between models is relatively simple,
and different models in the system can be integrated. When
the degree of coupling is increased or when different models
based on different methods cannot be integrated, a centralized
decision system is difficult to solve, update and maintain.
A decentralized decision system is more suitable for this sit-
uation. Decentralized decision decouples the coupled models
and solves each of the models separately. Kroo et al. proposed
a new approach, collaborative optimization (CO), which is
considered a kind of advanced decentralized solving strategy.
This approach decomposes the problem into two levels of
optimized structure, and it has high degree of autonomy
and good adaptability, suitable for optimization problems of
multimodel complex systems such as reducers. CO has been
successfully applied to many practical engineering design
problems. For example, it has been used in the conceptual
design of launch vehicles [9], high-speed civil transporta-
tion [10], space aircraft [11], aircraft wings [12], undersea
vehicles [13], and excavators [14]. Although there are many
advantages to using CO, the features of the framework cause
some difficulties [15]. For example, CO may have diffi-
culty finding a viable solution under system level constraints.
Therefore, the following techniques are introduced: (1) using
an inequality constraint instead of an equality constraint to
study the determination of a reasonable relaxation factor [16];
(2) using a penalty function method to obtain an approxi-
mate solution [17]; (3) using the response surface method to
estimate the equation constraint and solve the approximate
model [18]. However, most previous improvements to the CO
algorithm focused on system level optimization and ignored
discipline level optimization. Therefore, an improved col-
laborative optimization method based on a dynamic penalty
function is proposed in this paper.

The organization of this paper is as follows: In section 2,
the operation cost model for the ULE system is introduced.
Section 3 presents the improved collaborative optimization
with a dynamic penalty function and describes the model
of the ULE system for a collaborative optimization strategy.
Simulation tests and results are discussed in section 4, and
conclusions are drawn in section 5.

II. OPERATION COST MODEL FOR COLLABORATIVE
REMOVAL IN A ULE SYSTEM
The main components of a ULE system are a selective cat-
alytic reduction system (SCR), an electrostatic precipitator
(ESP), a wet flue gas desulfurization system (WFGD) and
a wet electrostatic precipitator (WESP). The flow chart of
the collaborative removal of pollutants from ULE system is
shown in Fig. 1.

In the figure, the SCR uses the selective reduction of
nitrogen oxideNOx by ammonia gas with a catalyst to reduce
NOx to N2, and thereby achieve the efficient removal of
NOx. The ESP mainly utilizes a high-voltage electrostatic
field. When the dust-containing gas passes through the high-
voltage electrostatic field, it is electrically separated. The
particulate matter generates a negatively charged band when

it collides and combines with the negative ions, and then due
to the force of the electric field, it discharges and deposits
the dust to the anode surface, where it is finally collected by
mechanical means. The WFGD washes the flue gas in the
absorption tower, primarily via a large flow of circulating
limestone/gypsum slurry, the sulfur oxides SOx in the absorp-
tion flue gas react with limestone to form calcium sulfite,
etc., and the gas is oxidized into byproducts such as calcium
sulfate in the slurry tank. When SO2 is effectively removed,
NOx and PM pollutants can be collaboratively removed by
slurry washing [19], [20].

The WESP and ESP operate in a similar way: PM is
charged by high-voltage corona discharge, and the charged
PM is drawn to the dust–collecting plate by the electric
field. Then, with continuous or regular flushing, the PM will
be cleared as the flushing fluid flows. Additionally, WESP
can synergistically remove SO2 at the same time [21]. The
collaborative elimination process of NOx, SO2 and PM can
be represented by the following models:
NOx is removed [19]:

CNOxSCRout = CNOxin × S
(
xSCR1 , . . . , xSCRi

)
(2-1)

where CNOx_in represents the concentration of NOx pro-
duced by burning coal. CNOx_SCR_out is the export concen-
tration of NOx after SCR, and xSCR_1, . . . , xSCR_i represent
denitrification-related variables in SCR.
NOx is collaboratively removed by WFGD after removal

by SCR:
CNOxout = CNOxSCRout × S

(
xWFGD1 , . . . , xWFGDi

)
(2-2)

whereCNOx_out represents the exit concentration ofNOx after
coordinated elimination and xWFGD_1, . . . , xWFGD_i represent
desulfurization-related variables in WFGD.
SO2 is removed [20]:
CSO2WFGDout

= CSO2in × S
(
xWFGD1 , . . . , xWFGDi

)
(2-3)

where CSO2_in is the concentration of SO2 produced by burn-
ing coal and CSO2_WFGD_out is the export concentration of
SO2 after WFGD.
SO2 is collaboratively removed byWESP after removal by

WFGD:
CSO2out = CSO2WFGDout

× S
(
xWESP1 , . . . , xWESPi

)
(2-4)

where CSO2_out represents the exit concentration of SO2 after
coordinated elimination and xWESP_1, . . . , xWESP_i represent
dust-related variables in WESP.
PM is removed [21]:

CPMinCNOxSCRout = CPMESPout
× S

(
xESP1 , . . . , xESPi

)
(2-5)

where CPM_in is the concentration of PM produced by burn-
ing coal.
CPM_ESP_out is the exit concentration of PM after ESP and

xESP_1, . . . , xESP_i represent dust-related variables in ESP.
Similarly, PM is collaboratively removed by WFGD after

removal by ESP:
CPM_WFGD_out=CPM_ESP_out×S(xWFGD_1, . . . , xWFGD_i)

(2-6)
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FIGURE 1. Flow chart of collaborative removal of pollutants from ULE system in coal-fired power plants.

where CPM_WFGD_out represents the export concentration of
PM after WFGD combined with dust removal.

Then, PM is collaboratively removed by WESP:

CPMout = CPMWFGDout
× S

(
xWESP1 , . . . , xWESPi

)
(2-7)

where CPM_out represents the exit concentration of PM after
coordinated elimination.

A calculation model for the operating cost of the pollutant
removal system was established [22]–[24] based on the main
equipment and structural components of the four pollutant
removal systems of SCR, ESP, WFGD and WESP in the
ULE system, analysis of the energy consumption andmaterial
consumption in the operation of each individual system.

A. OPERATION COST MODEL OF DENITRIFICATION
In a denitrification system, the main components of cost are
energy and material consumption. The main factors in energy
consumption include the power consumptions of the draft fan,
the ash blower and the dilution fan. The relevant formulas are
as follows:

COST idf _SCR =
1
q
×
√
3cosϕ

(∑nidf

i=1
IiUi

)
×PE × αSCR

(2-8)

COST sb =


Psteam
CV s

× CV +
∑nsb

i=1 Pi
1
6
×
∑nsb

i=1 Pi
(2-9)

COST adf =
1
q
×
√
3cosϕ

(∑nadf

i=1
IiUi

)
×PE (2-10)

nidf , nsb, nadf represent the operating numbers of the draft
fan, blower and dilution fan, respectively.
Ui, Ii represent the voltage and current, respectively of the

i-th device.

cosϕ represents the power factor, which in this study is
assumed to be 0.8.
PE represents the electricity price, which in this study is

assumed to be 0.45 yuan/kWh.
q represents the real-time load of the boiler.
Psteam represents the energy consumption of empirical

steam.
CV s represents the empirical reference catalyst dosage.
CV represents the actual amount of catalyst.
αSCR represents the ratio of the resistance of the deni-

trification reactor to the first half of the total resistance,
the calculation method is as follow:

αSCR =
pSCR
pidf

(2-11)

The main physical consumption of the denitrification sys-
tem is the cost of liquid ammonia and catalyst. According to
the material balance, the formula for liquid ammonia cost is:

COSTNH3 =
1
q
×
(
cNOxin − cNOxout

)
×V×

MNH3

MNO
×
2
3

×
1
δ2
×
ae×MNH3

Vm
×PNH3 (2-12)

δ2 represents the ammonia-to-nitrogen ratio.
PNH3 is the price of liquid nitrogen. This study assumes

3000 yuan/ton.
V represents the smoke flow.
The flue gas flow is positively correlated with the boiler

load, which can be calculated with the following formula:

V = m× q× Vtc (2-13)

m is the power consumption of raw coal.
Vtc represents the amount of smoke burned by a unit of

coal.
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The formula for catalyst loss cost is as follow:

COSTC =
CV×Pc
3Qh

(2-14)

Pc represents the price of the catalyst. And This study
assumes 30,000 yuan/ton.
Q represents the capacity of the unit. This study assumes

1000 MW. h is the number of annual operating hours of
the unit. In accordance with the utilization time of China’s
thermal power in 2016, this study assumes 4000 hours [25].

The overall operating cost of the selective catalytic reduc-
tion denitrification system can be expressed as:

COST SCR = COST idf _SCR + COST sb + COST adf
+COSTNH3 + COSTC (2-15)

B. OPERATION COST MODEL FOR DESULFURIZATION
In desulfurization systems, the main operation costs are
energy consumption and material consumption. The main
consumer of energy is the desulfurization system electri-
cal equipment, including the booster fan, the oxidized fan,
the oxidation slurry circulating pump, the slurry mixer, etc.
Their cost formulas, respectively, are as follows:

COST bf =
1
q
×
√
3cosϕ

(∑nbf

i=1
IiUi

)
×PE×αWFGD

(2-16)

COST sa =
1
q
×
√
3cosϕ

(∑nsa

i=1
IiUi

)
×PE (2-17)

COST scp =
1
q
×
√
3cosϕ

(∑nscp

i=1
IiUi

)
×PE (2-18)

COST oab =
1
q
×
√
3cosϕ

(∑noab

i=1
IiUi

)
×PE (2-19)

nbf , nsa, nscp, noab represent the number of operating plat-
forms of the booster fan, the oxidation fan, the slurry circu-
lating pump and the slurry agitator, respectively.
pWESP, pdt , pgd2 represent the pressure drop of the desul-

furization tower, the resistance pressure drops of the wet
electrostatic precipitator and the partial resistance pressure
drop of the flue, respectively.
αWFGD represents the ratio of the desulfurization tower

resistance to the latter half of the total resistance. The cal-
culation method is defined as follows:

αWFGD =
pdt

pdt + pWESP + pgd2
(2-20)

In the formula, the desulfurization absorber of the
limestone-gypsum wet desulfurization system is limestone
slurry. According to the material balance, the unit power
generation cost is:

COSTCaCO3 =
1
q
×
(
cSO2_in − cSO2_out

)
× V ×

MCaCO3

MSO2

×
δ1

λ
× PCaCO3 (2-21)

δ1 represents the calcium to sulfur ratio;
λ represents the purity of limestone. This study assumes

90%.

PCaCO3 represents limestone price. This study assumes
500 yuan/ton.

In addition to limestone consumption, material consump-
tion also includes the consumption cost of process water. The
formula is:

COSTw =
1
q
×
(
cSO2_in − cSO2_out

)
×V×

MCaCO3

MSO2

×
δ1

λ

×
2MH2O

MCaCO3

×Pw (2-22)

The limestone-gypsum wet desulfurization system pro-
duces the byproduct gypsum while removing the flue gas.
Gypsum is included in the cost calculation as a benefit in
the operation of the desulfurization system, and its earnings
formula is as follow:

RCaSO4=
1
q
×
(
cSO2_in−cSO2_out

)
×V ×

MCaSO4

MSO2

× PCaSO4

(2-23)

PCaSO4 represents the price of gypsum. This study assumes
500 yuan/ton.

The total operation cost of wet limestone-gypsum desulfu-
rization can be expressed as:

COSTWFGD = COST bf + COST sa + COST scp + COST oab
+COSTCaCO3 + COSTw − RCaSO4 (2-24)

C. OPERATION COST MODEL FOR DEDUSTING
The main operation cost of the electric precipitator is elec-
tricity consumption. The electricity consumption of the dry
electrostatic precipitator is primarily the power consumption
of the draft fan and the power consumption of the power
supply. The formulas for these costs are as follows:

COST idf _ESP =
1
q
×
√
3 cosϕ

(∑nidf

i=1
IiUi

)
×PE × αESP

(2-25)

COST e =
1
q
×
√
3cosϕ

(∑ne

i=1
IiUi

)
×PE (2-26)

ne represents the number of electric fields.
αESP represents the ratio of electrostatic precipitator resis-

tance to the first half of the total resistance. The formula for
calculating it is:

αESP =
pESP
pidf

(2-27)

The operating cost of an electrostatic precipitator is:

COST ESP = COST idf _ESP + COST e (2-28)

The electricity consumption of the induced draft fan of
the wet electrostatic precipitator is related to the ratio of its
resistance to the first half of the resistance. The method for
calculating the cost is as follow:

COST idf _WESP =
1
q
×
√
3 cosϕ

(∑nidf

i=1
IiUi

)
×PE × αWESP

(2-29)

αWESP =
pWESP
pidf

(2-30)
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Compared with the dry electrostatic precipitator, the wet
electrostatic precipitator has greater power consumption cost
and material cost, and the increased power consumption cost
is mainly due to the power consumption of the water circula-
tion system. Its formula is as follows:

COSTwc =
1
q
×
√
3cosϕ

(∑nwc

i=1
IiUi

)
×PE (2-31)

The main components of the material cost of the wet
electrostatic precipitator are the process water cost and the
alkali consumption cost. The method of calculating these is
as follows:

COSTw =
1
q
×w×Pw (2-32)

COSTNa =
1
q
×Na×PNa (2-33)

The operation cost of the wet electric dust removal system
can be expressed as:

COSTWESP = COST idf _WESP + COST e
+COSTw + COSTNa + COSTwc (2-34)

III. COLLABORATIVE OPTIMIZATION METHOD FOR A
ULE SYSTEM WITH A DYNAMIC PENALTY FUNCTION
A. IMPROVED COLLABORATIVE OPTIMIZATION WITH A
DYNAMIC PENALTY FUNCTION
The collaborative optimization algorithm decomposes a com-
plex model into a system level and a discipline level. Com-
pared with the original complex model, the discipline level
contains several relatively simple sub models, which include
only partial variables and constraints. The optimization of
each discipline does not consider variables and constraints
that are not related to the discipline, which reduces the
difficulty of solution. The objective of the system level is
to coordinate the coupled variables between disciplines and
obtain the global optimal solution under the constraints of
consistency of coupled variables.

1) THE SYSTEM LEVEL IMPROVEMENT OF COLLABORATIVE
OPTIMIZATION
The system level optimization of standard CO can be
expressed as follows:

Min f = f (z)

s.t. Ji(z) =
∑ni

j=1
(x∗ij − zij)

2
= 0, i = 1...N (3-1)

f represents the target function of the system.
z represents a system level design variable, and zij repre-

sents the j-th system level design variable, that is assigned to
the i-th discipline.
x∗ represents an optimal solution for the discipline level

optimization design variable, of which there are a total of
N . x∗ij represents the optimal solution of the j-th design
variable, which is returned from the i-th disciplinary level
optimization.

J represents a system level nonlinear constraint, of which
there are a total of N .
ni represents the number of design variables assigned at the

system level to the i-th discipline level optimization.
The purpose of the system level is to optimize the objective

function of the problem and to coordinate the inconsistencies
among disciplines. Only when the optimal solution at each
discipline level is the same as the expected solution at the
system level is consistency between the disciplines reached.
However, the difficulty of calculating CO is mainly due to the
system level optimization. Therefore, the expression of the
system level has been adjusted by a dynamic penalty function
in this paper. To ensure that the system level optimization is
feasible and has a solution, each constraint can be taken as a
penalty term and added to the system level objective function.
The disciplinary inconsistency is reflected by the penalty term
in the objective function. In addition, the penalty function
forces the optimization results toward reduced disciplinary
inconsistency at the system level, so that the expected value
passed to the discipline level can better meet the constraints
of each discipline. In this way, it is easier to find a global
optimal solution that satisfies the consistency requirements
between disciplines after multiple iterations. The system level
optimization formula is shown in equation (3-2).

Min F(z) = f (z)+ γ
∑n

i=1
Ji(z) (3-2)

f (z) represents the original system level objective function.
γ represents the penalty factor.
Ji(z) represents the interdisciplinary consistency con-

straint.
The performance of the penalty function method in dealing

with the constraint problem depends largely on the choice of
penalty factor γ . Therefore, a fixed penalty factor is not suit-
able for solving this problem, and a dynamically adjustable
penalty factor should be adopted.

When the penalty factor is too large, the rate of decline
of the objective function value decreases. When the penalty
factor is too small, the inconsistency between disciplines
increases. Therefore, the dynamically adjusted penalty factor
has better adaptability than the fixed value. In collaborative
optimization, it is expected that with the iterative process,
the amount of inconsistent information between disciplines is
gradually reduced, and the objective function value gradually
converges to the optimal value. Therefore, the expression of
the dynamic penalty function can be constructed by using
inconsistent information between disciplines. When there is
a large amount of disciplinary inconsistency, the discipline
consistency constraint is given a greater weight to main-
tain consistency between disciplines. When there is a small
amount of disciplinary inconsistency, the interdisciplinary
consistency constraint is given a smaller weight to converge to
a minimum value faster. The dynamic penalty factor expres-
sion constructed is shown in equation (3-3).

γ = b+ m ∗ kα (3-3)
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where b, m and α are constant. When the inconsistency
between disciplines is very small, the b value is used to main-
tain discipline consistency in the objective function.When the
system level assigned design vector expectation is within the
feasible domain, the system level optimization is carried out
in the feasible region via the b value, which can effectively
enhance the robustness of the algorithm. The role of m and α
is to control the weight of the consistency constraint among
disciplines, which can be selected according to the system
level objective function of the optimization problem and the
magnitude of the design variables. k represents the inconsis-
tent information among subjects.

2) THE IMPROVEMENT OF DISCIPLINE LEVEL
COLLABORATIVE OPTIMIZATION
The discipline level of collaborative optimization can be
expressed as follows:

Min Ji(x) =
∑ni

j=1
(xij − zij)2

s.t. hid (x) < 0

gie (x) = 0 (3-4)

x represents the optimization design variable at the disci-
pline level.
hid is the inequality constraint for optimization of disci-

pline i, of which there are a total of d .
gie represents the equality constraints for optimization of

discipline i, of which there are a total of e.
The objective function of discipline level optimization is

the sum of least squares, and it is expected that the discipline
level variables are close to the objective variables allocated
by the system level. Because an objective function at the
discipline level does not consider the optimal design points
of the other disciplines, it is easy to fall into a local optimal
solution. Therefore, in this paper, the part of the system’s
objective function corresponding to a discipline is added
to the discipline level to widen the optimization space and
reduce dependence on the initial point. The optimization
formula for a discipline level is given by equation (3-5).

Min Ji(x) =
∑ni

j=1
(xij − zij)2 + β ∗ f ′i (x)

s.t. hid (x) < 0, gie (x) = 0 (3-5)

f ′i (x) represents the discipline’s part of the system’s objec-
tive function.
β represents the weight factor, whose value is:

β = (zt − zt−1)2 (3-6)

zt represents the current system level design variable, and
zt−1 represents the previous system level design variable.

B. COST OPTIMIZATION OF ULE SYSTEM BASED ON
IMPROVED COLLABORATIVE OPTIMIZATION
The ULE system is optimized within the framework of col-
laborative optimization, which is shown in Fig. 2.

In the improved collaborative optimization framework,
the ULE system is composed of a system level and three
discipline levels (denitration, desulfurization and dedusting).
In addition, the discipline objective is to minimize the dif-
ference between system level design variables under the
constraints of their respective domains. The system level
objective is to minimize operation cost while maintaining
consistency between coupled variables.

1) SYSTEM LEVEL
The system level minimizes the sum of the operation costs of
denitration, desulfurization and dedusting, which is expressed
by equation (3-7).

Min F (z) = COST SCR + COSTWFGD + COST ESP

+COSTWESP + γ
∑3

i=1
Ji(z)

s.t. 50 <z1 < 150

40 ≤ z2, z3, z4, z5 ≤ 80

5.0 ≤z6 ≤ 5.6; z7 = 2, 3, 4;

30 ≤ z8 ≤ 40 (3-7)

z1 − z8 represent the system level design variables. z1
represents the amount of ammonia sprayed in the SCR. z2−z5
represent the voltage of four electric fields in the ESP. z6 and
z7, respectively, represent the pH value of gypsum slurry and
the number of circulating pumps in the WFGD. z8 represents
the electric field voltage in the WESP. The constraints on the
range of each variable in z1 − z8 are derived from its process
constraints. The penalty term γ

∑3
i=1 Ji(z) is derived from

three equality constraints (3-8), (3-9) and (3-10).

J1(z) = (x∗11 − z1)
2
+ (x∗16 − z6)

2

+ (x∗17 − z7)
2 (3-8)

J2(z) = (x∗26 − z6)
2
+ (x∗27 − z7)

2

+ (x∗28 − z8)
2

J3(z) = (x∗32−z2)
2
+(x∗33 − z3)

2
+ (x∗34 − z4)

2
+(x∗35 − z5)

2

+ (x∗36 − z6)
2
+ (x∗37 − z7)

2
+ (x∗38 − z8)

2 (3-9)

(3-10)

x∗ij(i = 1, 2, 3; j = 1, 2, . . . , 8) is the optimization value
returned to the system level from the discipline level.

2) DENITRATION DISCIPLINE
The objective function of the denitration discipline is to min-
imize the difference between its disciplinary design variables
and the expected value from the system level. Furthermore,
the part of the system objective function corresponding to the
denitration discipline is added to the objective function. The
objective function of the denitration discipline is expressed as

Min J1(x1) = (x11 − z∗1)
2
+ (x16 − z∗6)

2
+ (x17 − z∗7)

2

+β∗COSTNOx_removal
s.t. CNOx_out ≤ 50

50≤ x11 ≤ 150; 5.0≤ x16 ≤ 5.6;

x17 = 2, 3, 4 (3-11)
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FIGURE 2. Improved collaborative optimization framework for the ULE system.

x11, x16, x17 are the design variables of the denitration
discipline, and z∗1z

∗

6, z
∗

7 are the expected values of the design
variables assigned to the denitrification discipline at the sys-
tem level.

3) DESULFURIZATION DISCIPLINE
The objective function of the desulfurization discipline is to
minimize the difference between its disciplinary design vari-
ables and the expected value from the system level. Further-
more, the part of the system objective function corresponding
to the desulfurization discipline is added. The objective func-
tion of the desulfurization discipline is expressed as

Min J2(x2) = (x26 − z∗6)
2
+ (x27 − z∗7)

2
+ (x28 − z∗8)

2

+β∗COSTSO2_removal

s.t. CSO2_out ≤ 35

5.0 ≤x26 ≤ 5.6; x27 = 2, 3, 4

30 ≤ x28 ≤ 40 (3-12)

x26, x27, x28 are the design variables of the desulfurization
discipline, and z∗6, z

∗

7, z
∗

8 are the expected values of the design
variables assigned to the desulfurization discipline at the
system level.

4) DEDUSTING DISCIPLINE
The objective function of the dedusting discipline is to mini-
mize the difference between its disciplinary design variables
and the expected value from the system level. Furthermore,
the part of the system objective function corresponding to the
dedusting discipline is added. The objective function of the
dedusting discipline is expressed as

Min J3(x3) = (x32 − z∗2)
2
+ (x33 − z∗3)

2
+ (x34 − z∗4)

2

+(x35 − z∗5)
2
+ (x38 − z∗8)

2

+β∗COSTPM_removal

s.t. CPM_out ≤ 5

40≤ x32, x33, x34, x35 ≤ 80;

5.0 ≤x36 ≤ 5.6; x37 = 2, 3, 4; 30 ≤ x38≤40 (3-13)

x32, x33, x34, x35, x38 are the design variables of the dedust-
ing discipline, and z∗2, z

∗

3, z
∗

4, z
∗

5, z
∗

8 are the expected values of

the design variables assigned to the dedusting discipline at the
system level.

The flow chart of the improved collaborative optimization
of the ULE system is shown in Fig.3.

The process of improved collaborative optimization of the
ULE system is as follows:

Step 1 The parameters for collaborative optimization are
set and the system level design variables are initialized.

Step 2 The system level variables are assigned to each
discipline, and the initial values of the discipline design vari-
ables are combined so they can be solved by the respective
discipline level optimizer.

Step 3 The optimal solution for each discipline level is
transmitted back to the system level.

Step 4 If the conditions are met, the optimization is termi-
nated. Otherwise, the optimal solution of the design variable
at the current system level is assigned to each discipline for a
new round of optimization.

Step 5 Repeat Step 2 to Step 4 until the condition for
suspension of optimization is satisfied.

In the optimization process, the convergence condition of
the collaborative optimization algorithm is

∣∣zk − zk−1∣∣ ≤ θ .
This means that the system level has little space for opti-
mization, and the current result can be regarded as the global
optimal solution.

IV. CASE STUDIES
In this study, the boiler for a 1000 MW unit was taken as
the research object, and the simulation was carried out with
loads of 50%, 75% and 100%. First, improved collaborative
optimization (ICO) is compared with relaxation based collab-
orative optimization (RCO) [26]. In addition, the simulation
data of the ULE system based on ICO are presented. Finally,
a simulation of the ULE systemwas used to compare ICO and
PSO (particle swarm optimization). In this paper, different
working conditions are taken as research cases, as shown
in Table 1.

To verify the effectiveness of the algorithm, ICO and RCO
are compared in different cases. The comparison results are
shown in Table 2. It can be concluded that ICO can find a
lower operating cost than RCO under various conditions.
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FIGURE 3. Flow chart for improved collaborative optimization the ULE system.

Taking condition 5 as an example, three initial points
of z1 = [5 40 20 20 40 5 2 30], z2 = [65 80 80 80
80 5 4 45] and z3 = [40 50 50 50 50 5 2 40] are
simulated with RCO and ICO. The iterative processes are
shown in Fig. 4. The graph shows that the number of ICO
iterations is larger, but the algorithm is less affected by
the initial point and has better global optimization perfor-
mance. Therefore, ICO can find better operating costs than
RCO.

Fig. 5 shows the iterative process of ICO at the system level
and discipline level. In the figure, operation cost is optimized
at the system level and the objective function of the discipline
level gradually approaches zero through iteration. This shows
that the inconsistency between disciplines decreases as the
coordination of the system level increases, until the optimal
solution is found.

Fig. 6 shows the removal process of all pollutants in
the ULE system under condition 9. The concentration of

VOLUME 8, 2020 51015



S. Zheng et al.: Operation Cost Optimization on an Ultralow Emission System Based on ICO

TABLE 1. Comparison table of operating conditions.

TABLE 2. Comparison results between RCO and ICO.
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FIGURE 4. Comparison of operating costs between RCO and ICO.

FIGURE 5. Iterative process of ICO.

NOx decreased to 55.7 mg/m3 after passing SCR and was
decreased to 50mg/m3 via the synergistic removal ofWFGD.
The PM removal efficiency of ESP is more than 99%, and
the PM concentration at the exit is only 43.7 mg/m3. Finally,
the PM concentration in the flue gas was reduced to 5.0
mg/m3 by WFGD and WESP. SO2 was mainly removed by

WFGD.When the flue gas passed through theWFGD system,
the concentration of SO2 was 26.2 mg/m3. Subsequently,
the concentration of SO2 was reduced to 18.3 mg/m3 via the
synergistic removal of WESP.

Fig. 7 compares the overall operation costs of the ULE
system based on ICO under different conditions. The results
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FIGURE 6. The pollutant removal process of the ULE system under condition 9.

FIGURE 7. Comparison of operation costs under different conditions.

show that the operation cost of condition 3 with low
load and high pollutant concentration is the highest,
at 0.028383 yuan/kWh. The operation cost of condition
7 with high load and low pollutant concentration is the low-
est, at 0.022742 yuan/kWh. In general, the operation cost
decreases with increasing load and increases with increasing
pollutant concentration.

To prove the advantages of collaborative removal and
decentralized decision in the ULE system, the follow-
ing three strategies are compared. The first strategy is to
obtain the optimal operation cost by independent optimiza-
tion (IO) without consideration of collaborative removal
among devices. The second strategy considers the collab-
orative removal among devices and uses centralized deci-
sion, which is solved by particle swarm optimization (PSO).
The third strategy considers the collaborative removal among
devices and uses decentralized decision solved by ICO. The
results of comparing these strategies are shown in Table 3.
In addition, the annual (8000 hours) cost estimates for

the three strategies under different conditions are shown
in Table 4.

Table 4 shows that the operation cost obtained by indepen-
dent optimization is significantly higher than the other strate-
gies under all conditions. Furthermore, the optimal solution
found by ICO for each condition found by ICO is the lowest,
with an average cost savings of 500,000 yuan. Although there
is not much difference between centralized decision by PSO
and decentralized decision by ICO, centralized decision is
difficult to solve, and the possibility of finding a solution
by PSO becomes less certain as the problem complexity
increases. Repeatability simulations are carried out for cen-
tralized decision via PSO under condition 2 and are shown
in Table 5.

It can be seen fromTable 5 that PSO has a large fluctuation,
and the optimal results form PSO-2 are even worse than the
results by independent optimization in Table 3. Therefore,
compared with centralized decision, it is easier to find the
optimal solution of the system by ICO.
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TABLE 3. Comparison results of the three strategies for the ULE system.

TABLE 4. Comparison of annual operation cost of units (ten thousand yuan).

TABLE 5. Repeatability simulations for centralized decision via PSO in condition 2.

V. CONCLUSION
This article proposes a method for optimizing operation cost
for ultralow emission systems in coal-fired power plants

based on improved CO. First, a model for the operation cost
of a ULE system is introduced. Second, the function for
improved collaborative optimization with dynamic penalty
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and themodel of the ULE system based on ICO are presented.
Finally, the simulation results show that the proposed oper-
ation cost optimization method for a ULE system is com-
petitive in global optimization and in terms of practicality.
In futurework, wewill extend the proposed idea to solve other
complex problems in science and engineering.
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