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ABSTRACT The open-circuit faults of power semiconductor devices in multilevel converters are generally
diagnosed by analyzing circuit signals. For converters with five or more levels, the difficulty of fault
detection increases with increasing topological complexity, the number of switching devices and the number
of candidate signal parameters. In this paper, a complete solution for open-circuit fault detection for a
five-level nested neutral-point piloted (NNPP) converter is proposed based on improved unsupervised
feature learning algorithms. Feature engineering and machine learning algorithms are applied for feature
extraction and selection and the construction of classification models. Circuit signals are monitored, and
their time-domain characteristics are extracted for fault recognition. An unsupervised feature learning
selector, which combines a dependence-guided unsupervised feature selection (DGUFS) filter and a random
forest feature selection (RFFS) wrapper to automatically select parameters and generate the optimal feature
subset for fault detection, is proposed. The random forest (RF) algorithm is used to build a classifier. The
experimental results show that the solution framework presented has the advantages of high efficiency, high
flexibility, a superior fault recognition rate and good generalization ability.

INDEX TERMS Fault diagnosis, feature extraction and selection, filter-wrapper method, DGUFS-RFFS,
open-circuit fault, five-level NNPP converter.

I. INTRODUCTION
As the key equipment of power conversion systems, power
electronic converters are widely used in motor drives and
power systems. Power switching devices, with limited over-
load capacities, are inevitably exposed to high voltages and
currents, which will lead to a high risk of damage and affect
the safe and stable operation of the system. According to
statistics, in theACmotor control systems for industrial appli-
cations, 38% failures derive from damage to power electronic
devices [1]. The number of semiconductor devices increases
with the voltage level of the converters, which will enhance
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the risk of switch breakdown and reduce the reliability of
the system [2]. The need for fast and accurate fault diagnosis
technology continues to grow.

Open-circuit failure is one of the most common issues for
switches in converters. By monitoring the signals of the oper-
ating system, malfunctions should be identified with as accu-
rate classification and position information as possible [3].
Traditional methods of fault detection analysis depend more
on cognitive-based comparisons of fault and normal signals.
The open-circuit fault detection method for three-level T-type
converters proposed in [4] uses the grid current amplitude
and phase angle as the recognition parameters. An alterna-
tive approach presented in [5] uses irregular variations of
neutral-point current, switching states and phase current for
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fault detection. In [6], the authors proposed an open-circuit
fault diagnosis method for a four-wire T-type converter con-
sidering both unbalanced load and unbalanced input voltage
conditions. The method was performed by decomposing the
voltage into positive-, negative- and zero sequence compo-
nents, and the faults were located by the law of positive- and
negative-sequence voltage error offsets and zero sequence
voltage error offsets. In [7], an open-circuit fault detection
algorithm in single-phase 3L-NPC converters was presented.
The grid voltage, the DC side voltages and the switching
states were used to build a mixed logical dynamic model to
estimate the grid current. By subtracting the estimated value
from the measured current, the residual was calculated and
used for fault diagnosis.Most analytical diagnosis procedures
are intuitive, but the design can be overly complex [8]–[11].
However, in converters with five or more levels, the tradi-
tional methods appear incapable of fast and accurate fault
detection since the complexity considerably increases with
the number of switches. In [12], an open-switch fault-tolerant
operation was presented for a multichannel voltage-source
five-level power converter by monitoring the voltage across
flying capacitors. The variations in the rotor currents and DC
link voltage are also used for fault diagnosis in grid/machine-
connected mode. The speed of fault detection depends on the
frequency of the grid/machine-side rotor current, which tends
to be very low. In recent years, machine learning algorithms
have become effective tools for fault diagnosis in complex
environments [13]. Since the performance of an algorithm is
greatly influenced by the available data and features, feature
engineering is widely used to extract characteristics from raw
data and improve the corresponding fault recognition results.
The authors of [14] proposed a concept that exploits the
features extracted from circuit responses instead of compo-
nent parameters for circuit health estimation using a kernel
learning technique. In [15], a fault diagnosis method for a
wind turbine planetary gearbox was developed. A stacked
denoising autoencoder technique was adopted to learn robust
and distinguishable features from measured signals, and a
least squares support vector machine was employed for fault
identification.

For multilevel converters, signals such as the phase or
amplitude of currents and voltages can be used for fault
detection. However, the direct use of these signals lacks iden-
tifiability and increases the data processing burden. Feature
extraction is used to reduce the dimensions of large-scale
data and summarize new characteristics with accurate clas-
sification. Time-domain features are effective indicators that
reflect the state of operation and can be used individually or
in combination for fault detection [16]. Designing classifiers
with many unrelated features will result in considerable com-
putational complexity and poor classification performance.
Therefore, filtering redundant parameters through feature
selection to further reduce dimensionality has very important
practical significance [17]–[19].

Traditional feature selection methods are usually based on
expert experience or enumeration. If the number of candidate

parameters is large, the approach may be too time consum-
ing to find the optimal feature subset. In recent years, fault
classification based on pattern recognition has been the main
method for intelligent fault diagnosis. The validity of the
pattern features directly affects the design and performance
of the classifier. The amount of raw data obtained from
the detected signals is considerable. To effectively perform
classification and recognition tasks, the original data must be
selected or transformed to obtain the essential characteristics
that can best reflect the differences among modes. Optimiza-
tion of the raw data is mainly achieved by dimensionality
reduction, that is, conversion of a data space with a high
dimension into one with a low dimension. The filter, wrapper
and hybrid modes were introduced to reduce dimensionality
and perform effective feature selection [20]. A filter uses a
guideline of feature importance for the target attributes to
weight and rank all features in the pool; this method is effi-
cient but limited in accuracy [21]. Awrapper conducts feature
selection based on specific evaluation criteria (mostly accu-
racy) and determines the optimal feature subset accordingly
[22], [23]; this approach is high in accuracy but low in com-
putational efficiency. Although the hybridmethod inherits the
advantages of both the filter and the wrapper, it inevitably
falls to suboptimal solutions under certain conditions [24].

In this paper, a complete fault diagnosis solution for elec-
tronic power converters is proposed. A five-level nested
neutral-point piloted (NNPP) converter is used to build
the system for fault detection. A feature selection algo-
rithm combining a dependence-guided unsupervised fea-
ture selection (DGUFS) filter and a random forest feature
selection (RFFS) wrapper is also proposed. The proposed
DGUFS-RFFS is a hybrid filter-wrapper method that not
only avoids suboptimal solutions but also accelerates the
feature selection process and generally achieves better per-
formance than traditional methods. DGUFS, as presented
in [25], is used to select parameters and evaluate feature
combinations of a given dimension. The RFFS wrapper is
used to determine the optimal feature subset from different
dimensions. The currents of the flying capacitors ICfa1 and
ICfa2, the phase current Ia and the phase voltage Vao of the
five-level NNPP converter are selected as the original signals.
The time-domain features are introduced as the extracted fea-
tures, and a multidimensional feature pool is constructed. The
optimal feature combination is selected by the DGUFS-RFFS
model and input to the classifier for fault recognition.

II. BRIEF INTRODUCTION TO THE OPEN-CIRCUIT
FAULTS OF AN NNPP CONVERTER
Multilevel converters are considered the most attractive solu-
tions in high-voltage and high-power applications due to their
advantages, such as a low common-mode output voltage,
low harmonics, and the use of low-voltage semiconductor
devices. The five-level NNPP converter, which was pro-
posed by GE in [26], was developed by nesting two or more
medium-voltage 3-level neutral-point piloted (NPP) cells.
This topology is easily scalable in a reasonable voltage range
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FIGURE 1. Topology of the five-level NNPP converter.

and at output voltage levels, and this approach provides a
small filter, high power density and high efficiency, as shown
in Fig. 1.

A. MODULATION STRATEGY OF THE FIVE-LEVEL
NNPP CONVERTER
The five-level NNPP converter generates five-level phase
voltages and nine-level phase-phase voltages. The output
phase-phase voltages are supposed to be 2E , E , 0, −E and
−2E . The nested structure requires the modulation strategy
to effectively balance the DC-side capacitor voltages and the
flying capacitor voltages. The authors in [27] proposed an
optimized space vector pulse width modulation (SVPWM)
algorithm based on gh coordinates for this topology.

Taking phase A as an example, as shown in Fig. 1,
each group of (Sa11, Sa11), (Sa14, Sa14), (Sa21, Sa21) and
(Sa24, Sa24) should work under the same operating status.
Each group of (Sa11, Sa14), (Sa21, Sa24), (Sa11, Sa12, Sa13),
(Sa21, Sa22, Sa23), (Sa12, Sa13, Sa14) and (Sa22, Sa23, Sa24)
cannot work in conduction mode simultaneously, thus pre-
venting the formation of a short circuit. Each group of
(Sa11, Sa13), (Sa21, Sa23), (Sa12, Sa14) and (Sa24, Sa24) should
work in a complementary state to reduce the switching fre-
quency and to ensure that the switching sequence is unaf-
fected by dead zones or the direction of the load current.
Therefore, Sa11, Sa12, Sa21 and Sa22 are four switches that
need to be controlled independently. Sa11 and Sa13, Sa12 and
Sa14, Sa21 and Sa23, Sa22 and Sa24 should work in a comple-
mentary manner. The output voltage and the corresponding
control strategy are shown in Table 1.

B. OPEN-CIRCUIT FAULT ANALYSIS OF THE FIVE-LEVEL
NNPP CONVERTER
Fault diagnosis studies of the five-level NNPP converter are
limited. In [28], a fault-tolerant solution for the five-level

TABLE 1. The control strategy of the 5-L NNPP converter.

TABLE 2. The distorted output voltages when Sa11 fails to open.

TABLE 3. The distorted output voltages when Sa11 and Sa12 fail to open.

FIGURE 2. Change in the current path. The blue solid line represents the
current path of the fault-free circuit, and the red dotted line represents
the current path when Sa11 and Sa12 fail to open simultaneously: (a) Ia >
0. (b) Ia < 0.

TABLE 4. Classification of the open-circuit faults.

NNPP topology was proposed, and it identified both the
short- and open-circuit faults of a single IGBT. In this paper,
the open-circuit failures of a single IGBT and dual IGBTs are
analyzed. The probability of simultaneous failures of more
than two IGBTs is relatively low; therefore, this topic is not
discussed in this paper. As discussed in [28], when a single
IGBT fails to open, taking Sa11 as an example, the output
voltages marked in red are distorted, as shown in Table 2.

For the simultaneous failure of two IGBTs, taking Sa11 and
Sa12 as examples; when both of the switches fail to open,
the output voltages marked in red are distorted, as shown
in Table 3. Assuming that the breakdown of the IGBTs does
not affect the reverse diode, Fig. 2 shows the change in the
current path when the phase current Ia is positive or negative
and when 2E is the output phase voltage.

A total of 36 faulty states and one fault-free state are
included for analysis and identification. The failures with
classification labels are summarized in Table 4.
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TABLE 5. Formulas of the time-domain feature extraction parameters.

III. FEATURE EXTRACTION AND SELECTION BASED ON
THE HYBRID DGUFS-RFFS METHOD
In this paper, the time-domain signal parameters that are
more representative of the fault characteristics are selected for
feature extraction. Once the feature parameters are extracted
and a feature space is constructed, feature selection is imple-
mented to further achieve dimensionality reduction. The
importance of the features is determined, and the redundant
information is deleted. The proposed hybrid DGUFS-RFFS
method is used to optimize the feature set, ensuring that the
remaining features are reliable, relatively uncorrelated, retain
as much information as possible, and reduce the amount of
data as much as possible.

A. TIME-DOMAIN FEATURE EXTRACTION ALGORITHMS
The kurtosis (Ku), skewness (Sk), root mean square metric
(RMS), crest factor (Cf ) and form factor (Ff ) focus more on
the extremes of a data set than on the average and are indi-
cators of faulty signals. These individual feature parameters
and combinations of parameters have different recognition
effects for fault diagnosis. The formulas of the above feature
parameters are listed in Table 5.

We added all these features into a feature pool as candidate
parameters and then used certain rules to select the feature
subsets that yielded the best performance (e.g., the highest
fault recognition rate or the fastest detection speed). These
feature subsets contain different features derived from differ-
ent signals and of different dimensions; thus, different options
will affect the accuracy and efficiency of the fault diagnosis
process. Selecting the optimal feature subset has always been
a concern of scholars.

B. DGUFS-RFFS FEATURE SELECTION METHOD
1) HYBRID FILTER-WRAPPER METHODS
Feature selection is crucial for high-dimensional data classifi-
cation problems. Dash and Liu proposed the basic framework
of feature selection in 1997, which consisted of the following
four parts: the generation of feature subsets, the evaluation of
feature subsets, the stopping criteria and the verification of
the results, as shown in Fig. 3 [29].

The commonly used feature subset generation methods
include filters and wrappers. A filter is independent of the

FIGURE 3. The basic framework of feature selection.

subsequent learning algorithms, uses evaluation criteria or
evaluation functions to enhance the correlations among cer-
tain features and categories and reduces the correlations
among other features. This approach has been widely used
due to its fast processing speed and high computing effi-
ciency. Unlike filters, wrappers use the accuracy of the sub-
sequent classifiers as an evaluation index and are included
in the learning algorithm. The feature subset selected by a
wrapper is relatively small in size and high in prediction
accuracy, although the algorithm has high complexity and low
execution efficiency.

Combining the efficiency of a filter with the high accuracy
of a wrapper can yield complementary advantages. Key fea-
ture recognition effectively reduces the dimensionality of the
feature space while maintaining the accuracy of subsequent
classification algorithms. The flowchart is shown in Fig 4.

FIGURE 4. The hybrid filter-wrapper method.

2) DGUFS FILTER
Suppose that the feature pool consists of d candidate features.
The commonly used hybrid filter-wrapper methods mostly
evaluate the importance of all d features based on certain cri-
teria and then sort and select m prominent features from d to
obtain the best classification results; this approach inevitably
tends to fall to a suboptimal solution.

To solve this problem, a DGUFS method is used as a filter
to select features. The aim of the algorithm is to directly select
the most discriminative feature subset from d features for
any given m instead of evaluating the importance of all d
features. The selection based on this algorithm is targeted,
which not only reduces the required computations but also
enhances the recognition ability. The objective function is
designed by combining two weighted dependence-guided
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terms to achieve the maximum similarity among the original
data X , the cluster label matrix V and the selected feature Y .
The overall DGUFS model can be expressed as:

min
Y , L
− βTr

(
STL

)
− (1− β)Tr

(
YTYHVTVH

)
s. t. ‖X − Y‖2,0 = d − m, ‖Y‖2,0 = m,

V ∈ �, L = VTV , rank(L) = c,

L�0, L ∈ {0, 1}n×n, diag(L) = I. (1)

where X is a d × n original data matrix with n samples, V is
a c× n cluster label matrix of X , c is the cluster indicator, Y
is the selected feature, � is the candidate set of cluster label
matrices that classify data into c groups, L is the linear kernel
matrix of V , S is the similarity matrix, H = I − 1

nee
T is the

centering matrix, and e is an n-dimensional column vector
with element values equal to 1. Tr denotes the trace, and
β ∈ (0, 1) is a regularization parameter. Additionally,
L, I, H ∈ Rn×n.
In the objective function, the first dependence-guided term
−Tr

(
STL

)
is used to increase the dependence of the desired

label matrix L on the original data X and is designed based
on the geometrical structure of the data and the associated
discriminative information; the second dependence-guided
term −Tr

(
YTYHVTVH

)
is designed based on the matrix

form of the Hilbert-Schmidt independence criterion (HSIC)
to enhance the dependence of selected feature Y on the
desired label matrix V . Both of the terms are designed using
the trace norm (abbreviated as Tr), and the method is based
on the l2, 0-norm equality constraints, thereby effectively
avoiding overfitting problems.

The DGUFSmethod increases the interdependence among
selected features, raw data and cluster labels. m is consid-
ered in the process of obtaining the optimal subset. The
features are no longer evaluated separately, and the subsets
are treated as a whole considering the correlations and redun-
dancy among features. The algorithm outperforms many of
the leading methods of sparse learning-based unsupervised
feature selection.

3) RFFS WRAPPER
The heuristic search strategy is one of the main wrapper
strategies, and such methods include the individual optimal
feature search strategy, sequence forward selection method,
sequence backward selectionmethod, etc., [30], [31]. Individ-
ual optimal feature search strategies have the advantages of
low time complexity and high operational efficiency, and they
are widely used for high-dimensional data sets. The sequence
forward selection method is efficient, but the correlations
among features to be added and the selected feature set are
not considered. Once the features are added, they will not
be deleted, which will result in redundancy in the feature
subset. The sequence backward selection method involves an
elimination algorithm based on a complete feature set, which
requires many computations. However, this approach has

displayed good performance in practical applications because
it considers the redundancy among features.

In this paper, an individual optimal feature selection wrap-
per based on the random forest (RF) approach was presented
in combination with DGUFS to evaluate and compare the
optimal feature subsets and acquire the final feature subset
with the best recognition performance.

The RF, which was proposed by Leo Breiman in 2001,
is an integrated classifier composed of a set of decision tree
classifiers h(X, θk ), k = 1, 2, . . . , K , where θk is a
random vector that follows an independent distribution, and
K represents the number of decision trees in the RF [32].With
a given independent variable X , each decision tree classifier
determines the optimal classification result by voting.

Given a set of classifiers h1(x), h2(x), . . . , hk (x), the train-
ing set of each classifier is randomly sampled from the orig-
inal randomly distributed data vector Y , X , and the margin
function is defined as:

mg(X, Y ) = avk I (hk (X) = Y )−max
j6=Y

avk I (hk (X) = j) (2)

where I (·) is an indicator function.
Themargin function is used tomeasure the degree to which

the average number of correct classifications exceeds the
average number of incorrect classifications. The larger the
margin is, the more reliable the classification prediction.

The generalization error is defined as:

PE∗ = PX, Y (mg(X, Y ) < 0) (3)

where the subscripts X and Y represent the probability and
P spans the X and Y spaces.

In an RF, when there are sufficient decision tree classifiers,
hk (X) = h(X, θk ) obeys the strong law of large numbers.

As the number of decision trees in the RF increases, all
sequences θ1, θ2, . . . , θk ,PE∗ converge almost everywhere:

PX,Y (Pθ (h(X, θ) = Y )−max
j6=Y

Pθ (h(X, θ) = j) < 0) (4)

Formula (4) shows that RFs do not cause overfitting prob-
lems as the number of decision trees increases but may
increase generalization errors within a certain limit.

The base classifier in the RF method proposed in this
paper chooses the classification and regression tree (CART)
algorithm. Assuming that the selected feature dimension is
m, the complete feature set dimension is d , the number of
training samples is n, and the time complexity is represented
by O(·), the time complexity of the RF algorithm can be
approximated as O

(
mnlogn2

)
. In our experiment, the RFFS

needs to be executed d times, and the total time complexity
of the algorithm can be approximated as O

(
dmnlogn2

)
. The

time complexity of the RFFS algorithm is approximately
linearly related to m and d and related to the approximate
square of n.

4) THE DGUFS-RFFS METHOD
In this paper, the DGUFS method is used as a filter to
determine the optimal solution of the subset in each feature
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dimension, and the RFFS wrapper then is used to determine
the dimension of the feature subset that yields the optimal
solution. By combining the wrapper with the DGUFS algo-
rithm, the RFFS wrapper only needs to implement individual
optimal selection strategies for feature subsets of different
dimensions m instead of performing Cm

d traverse optimiza-
tion within the feature subset, thus considerably reducing
the computational overhead. The complexity of the algo-
rithm is effectively reduced in this approach. The feature
subset obtained by the proposed DGUFS-RFFS method can
achieve the optimal prediction effect within a given range of
feature dimensions. The accuracy, detection efficiency and
computational cost can bewell balanced and flexibly adjusted
according to the demand.

IV. FAULT DETECTION WITH THE FIVE-LEVEL
NNPP CONVERTER
A. THE FRAMEWORK OF OPEN-CIRCUIT FAULT
DIAGNOSIS USING DGUFS-RFFS
A general framework for fault identification is proposed, and
it includes five modules, namely, original signal acquisition,
signal preprocessing, feature extraction, feature selection and
fault classification. Feature preprocessing includes sampling
and abnormal sample cleaning.

The current of the flying capacitors ICfa1 and ICfa2,
the phase current Ia and the phase voltage Vao are monitored
and used for fault detection. The information contained in the
signals above can instantly reflect changes in the modulation
strategy and operating state; thus, these parameters are effec-
tive indicators for fault diagnosis. Five feature parameters,
including Ku, Sk , RMS, Cf and Ff , are extracted to form a
feature pool with 20 features.

The DGUFS-RFFS method is used for feature selection,
and another two feature selection methods are explored for
comparison. MCFS (multicluster feature selection) is a pop-
ular unsupervised learning algorithm with excellent classifi-
cation ability based on manifold and l1-norm regularization
models. The method uses the l1-norm to measure the ability
of each feature to distinguish different categories, and the
selection can maintain the various clustering structures of the
data. The manual selection method is based on enumeration.
Referring to the experience of experts and analyses of actual
situations, the feature subset with the best possible classi-
fication effect is selected through hundreds of experiments.
Although this method is time consuming and labor intensive,
it is widely used in practice and can achieve good fault recog-
nition results; thus, it is superior to many other prevailing
algorithms.

The features selected by the above methods are input into
the RF classifier for fault recognition. The DGUFS, MCFS
and manual selection methods are compared in terms of the
fault recognition rate, training time and testing time and are
further analyzed based on evaluation indexes.

The flowchart of the complete solution is shown
in Fig. 5.

FIGURE 5. Flowchart of the complete solution for fault diagnosis.

FIGURE 6. Waveforms of ICfa1, ICfa2, Ia and Vao under open-circuit faults
in the five-level NNPP converter: (a) Sa11 fails to open. (b) Sa12 fails to
open. (c) Sa11 and Sa12 fail to open. (d) Sa13 and Sa14 fail to open.

B. IMPLEMENTATION AND SIMULATION
1) SIMULATION OF AN OPEN-CIRCUIT FAULT FOR A
FIVE-LEVEL NNPP CONVERTER
The simulation is conducted using MATLAB 2018 (a), and
four failure modes are selected as representatives to simulate
the current and voltage waveform changes in four failure
states. The four modes include (a) Sa11 fails to open, (b) Sa12
fails to open, (c) Sa11 and Sa12 fail to open, and (d) Sa13 and
Sa14 fail to open. Fig. 6 displays the simulation results for the
waveforms of ICfa1, ICfa2, Ia and Vao under the four faulty
circumstances above. Failures occur at T = 0.2 s.

2) ANALYSIS OF FEATURE EXTRACTION AND SELECTION
After the faulty signals are obtained, time-domain feature
extraction and dimensionality reduction are performed. Tak-
ing Sk , Ku and Cf for instance, Fig. 7 shows the spatial
distributions of the three feature parameters extracted from
four original signals ICfa1, ICfa2, Ia and Vao, including nine
operating states of one fault-free state (represented as OK )
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FIGURE 7. Spatial distributions of Sk , Ku and Cf extracted from the
original signals: (a) Features of ICfa1. (b) Features of ICfa2. (c) Features
of Ia. (d) Features of Vao.

TABLE 6. Device parameters of the converter.

and eight faulty states when the open-circuit failure of a single
IGBT (from Sa11 to Sa24, represented as B1 to B8) occurs.
The above spatial distributions are only a few representa-

tives of many combinations of feature parameters. The spatial
distribution and concentration of different features of the
same signal exhibit differences. Different feature combina-
tions will have different effects on fault identification.

V. EXPERIMENTAL RESULTS AND DISCUSSION
A. EXPERIMENTAL SETUP
An experimental prototype of the five-level NNPP converter
was built, as shown in Fig. 8. The semiconductor power
switches adoptedwere Infineon FF100R12RT4 switches. The
system was controlled by a TI TMS320F28335 digital signal
processor (DSP) and ACTEL A3P250 field-programmable
gate array (FPGA). The device parameters of the converter
were set as follows in Table 6.

Fig. 9 shows the output waveforms of phase A when the
modulation ratio M = 0.9; the line voltage Vab, the phase
voltage Vao, the DC link voltages UC1 and UC2, the flying
capacitor voltages UCfa1 and UCfa2 and the phase current
Ia are shown. The DC link voltages and the flying capaci-
tor voltages are balanced by the control strategies proposed
in [25], [26].

B. EXPERIMENTAL DESIGN AND IMPLEMEMTATION
The signals of the open-circuit faults of the NNPP converter
are acquired, including those for 1 fault-free state, 8 single
IGBT failures and 28 double IGBT failures. The frequency
of the output voltage f = 50 Hz. The raw sampled sig-
nals obtained include 480,000 values used for training and
80,000 values used for testing. Each feature extraction was

FIGURE 8. Experimental prototype of the five-level NNPP converter.

FIGURE 9. The output waveforms of the five-level NNPP converter under
normal condition when M=0.9: (a) Vab, UC1, UC2 and Ia. (b) Vao, UCfa1,
UCfa2 and Ia.

based on 4000 sampled values, which constituted a training
feature set with a maximum dimension of 120 × m and a
test feature set with a dimension of 20 × m, where m is
the number of selected features (m = 1, 2, . . . , 20). Table 7
shows the experimental results when the training feature set
dimension is 40×m, including the fault recognition accuracy,
training time, and testing time. When the DGUFS-RFFS
method is adopted, the accuracy increases with the number
of features and reaches a peak when the feature number
is 7. Then, the fault recognition rate remains relatively stable
as the number of features continues to increase and finally
decreases when the number exceeds 10. The main reason
for the decrease in accuracy is the introduction of redundant
information and overfitting. The arithmetic means and the
root mean square error (RMSE) of the results were calcu-
lated based on 20 repeated experiments. The MCFS and the
manual feature selection method are used for comparison
with the DGUFS. The experimental results show that the
hybrid DGUFS-RFFS method is generally superior to the
other two methods, with higher fault recognition rates and,
in most cases, shorter training and testing times. Using the
three methods, the number of features required to reach the
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TABLE 7. Comparison of experimental results for three different feature selection methods.

TABLE 8. Optimum feature subsets based on different feature selection
methods.

highest accuracy is 7, 11, and 4, with accuracies of 96.02 ±
0.98, 86.02 ± 1.6, and 88.39 ± 0.47, respectively.
Fig. 10 and Fig. 11 show the relationships among the

number of selected features, the training data set size and
the fault detection accuracy using three feature selection
methods. Notably, when m is the same in each method,
the fault detection accuracy using the DGUFS-RFFS method
is significantly higher than that of MCFS and the manual
method. Figs. 12 and 13 illustrate the relationship among the
number of selected features, the training data set size and the
training time. The training speed is not sensitive to the number
of features but is greatly influenced by the training data set
size. For the same m, the training time of the DGUFS-RFFS
method is slightly shorter than that of the other two methods.

Table 8 lists the optimal feature subsets selected by the
three methods when the number of features is 7 and 8.
The raw signals and the feature parameters can be selected
according to different situations. In this paper, a feature pool
with 20 candidate features is constructed using 4 circuit
signals and 5 feature parameters. The DGUFS-RFFS method
greatly shortens the computational process and provides the
possibility for numerous attempts based on multiple features.
In the case of large numbers of candidate signals and fea-
tures, the superiority of the solution can be clearly illustrated.

FIGURE 10. Contour map of the relationship among the fault detection
accuracy, the number of selected features and the size of the training
data set: (a) DGUFS-RFFS method. (b) MCFS-RFFS method.
(c) Manual-RFFS method.

FIGURE 11. 3D mesh grid of the relationship among the fault detection
accuracy, the number of selected features and the size of the training
data set: (a) DGUFS-RFFS method. (b) MCFS-RFFS method.
(c) Manual-RFFS method.

Not only can this approach greatly reduce the computa-
tional cost, but it can also provide an improved and sta-
ble fault recognition rate compared to the rates obtained
by other state-of-the-art algorithms. The proposed solution
provides good extension and generalization ability. Although
the DGUFS-RFFS method achieves superior performance,
this result does not mean that there is no better choice.
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TABLE 9. Comparison of evaluation indicators for three different feature selection methods.

FIGURE 12. Contour map of the relationship among the training time,
the number of selected features and the size of the training data set:
(a) DGUFS-RFFS method. (b) MCFS-RFFS method. (c) Manual-RFFS
method.

FIGURE 13. 3D mesh grid of the relationship among the training time,
the number of selected features and the size of the training data set:
(a) DGUFS-RFFS method. (b) MCFS-RFFS method. (c) Manual-RFFS
method.

By selecting additional circuit signals or extracting other
features, candidate feature parameters can be added to the
feature pool to providemore alternatives for fault recognition.
This issue can be discussed in future work.

Table 9 lists two of the important evaluation indexes for
clustering: the mutual information index (NMI) and adjusted

FIGURE 14. Comparison of the NMI and ARI for three feature selection
methods: (a) NMI relative to the selected feature number. (b) ARI relative
to the selected feature number. (c) NMI relative to the training data set
size. (d) ARI relative to the training data set size.

rand index (ARI). Figure 14 shows a comparison of the NMI
and ARI for the three feature selectors. When the number
of features is small, compared with the DGUFS-RFFS-based
NMI and ARI, the indexes based on the MCFS-RFFS and
the MANUAL-RFFS methods are generally smaller, and as
the number of features increases, the convergence rate of the
indicators towards 1 is also slower. The NMI and ARI indica-
tors based on the UDUFS-RFFS method are generally stable
and close to 1, indicating a satisfactory clustering effect.

VI. CONCLUSION
In this paper, a complete fault detection solution for a
five-level NNPP converter is proposed. Through signal acqui-
sition, feature extraction, feature selection and classification,
the effective diagnosis of 36 open-circuit faults is achieved.
This method does not rely on past experience and does not
require massive amounts of data for training. Failures can be
discovered with limited data sets through signal processing
and feature selection, which greatly shortens the time for
fault diagnosis. The solution is flexible and can be easily
used by other types of converters; moreover, this approach
is not limited by topologies, the levels of converters or the
device parameters in a given system. Different circuit signals
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and feature parameters can be selected according to specific
circumstances. The remarkable advantage of the solution is
that an increase in the number of candidate features will
not result in considerable computational complexity but will
provide more choices for optimal feature subset selection.
The optimal feature subset of a certain dimension can be
directly determined by the DGUFS filter, thereby reducing
the computational overhead of the subsequent RFFS wrap-
pers. Compared with other leading feature selection algo-
rithms, the proposed DGUFS-RFFS feature selector exhibits
better recognition performance and efficiency. The effective-
ness and practicality of the solution are verified by simula-
tions and experiments.
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