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ABSTRACT Tree comparison is an important method in various areas. In order to compare class hierarchy in
object-oriented languages, there is a need to compare trees in the context of the hierarchy changes. This paper
addresses tree dissimilarity based on two measures. First, changes in edges between nodes and parents are
measured by introducing Edge Edit Distance (EED). Second, changes in inheritance relationships between
nodes are measured by introducing Tree Inheritance Distance (TID). It is shown that EED and TID increase
with the dissimilarity in the class hierarchies of the compared program versions.

INDEX TERMS Edit distance, inheritance tree, program analysis, tree dissimilarity measures.

I. INTRODUCTION
As trees represent hierarchy organized data, they are widely
used in various areas, such as computer vision [1], structured
documents [2], natural language processing [3], phylogenetic
studies [4], and molecular biology [5], [6]. The main goal
in representing data patterns as trees or generally as graphs
is to identify the changes in the data. Our motivation is
to compare class hierarchy between program versions in
object-oriented programming languages. In related literature
[4], [7], [8] trees such as Abstract Syntax Trees (AST) are
used to determine the difference between program versions
on the syntax level, which can be used for program analysis
on the intraprocedural level. However, AST can be used with
other tree representations to compare classes as in [9]. In this
paper, we are considering the relationship between classes in
the hierarchy of object-oriented languages. The dissimilarity
between hierarchies can be used for program analysis in
various software engineering tasks such as detection of code
clones [10], regression testing [11], and dynamic software
updating [8]. To compare the class hierarchy between two
program versions, we found an unordered labeled tree as the
most suitable hierarchy structure. The unordered tree corre-
sponds to the class hierarchy in object-oriented languages,
where the root node corresponds to the elementary class, e.g.,
Object class in the Java programming language, as illustrated
in Figure 1.

To compare trees, or generally graphs, it is necessary to
use a dissimilarity measure. In related literature [12], [13],
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dissimilarity measures usually fall into two elementary
categories: isomorphism [14] and edit distance [15]–[17].
Isomorphism represents an exact matching between two
trees or subtrees. Edit distance, on the contrary, provides inex-
act, i.e., error-tolerant matching [13]. Isomorphism attempts
to find a bijective function or mapping from one tree to
another tree, or subtree, answering whether the tree is equal
to another tree or subtree. On the other hand, Tree Edit Dis-
tance (TED) [18], [20] can compare entirely different trees,
measuring the dissimilarity between them by the amount of
modification of nodes and edges required to transform one
tree into another.

Tree edit distance is more suitable to detect differences
in the trees representing the class hierarchy because various
program versions can have an entirely different class hier-
archy. However, to the best of our knowledge, existing tree
edit distance measures are not appropriate to detect hierarchy
changes in trees such as inheritance changes, because their
goal is to find similar parts of trees. On the other hand, in this
paper, we consider the problem of tree dissimilarity with an
emphasis on the relationship between nodes. Unordered tree
transformation is considered from the edge aspect, to observe
changes in the relationship between nodes. As a contribu-
tion, Edge Edit Distance (EED) is introduced, a dissimilarity
measure between unordered trees based on changes in the
edge between node and parent. Furthermore, the major con-
tribution is Tree Inheritance Distance (TID), a dissimilarity
measure between unordered trees based on changes in the
inheritance relationship between nodes. For both dissimilar-
ity measures, efficient algorithms are presented and evaluated
by experiments.
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FIGURE 1. a) Class declaration b) Class hierarchy represented by a tree.

FIGURE 2. Tree edit distance operations (listed in the box) and node mapping (by arrows).

The rest of the paper is organized as follows. In section II,
as preliminaries, the problem in detecting changes in the rela-
tionship between nodes is presented by considering tree oper-
ations defined in related literature from the aspect of edges.
Furthermore, to find a solution, in section III, we define edge
operations by using the fundamental tree property that nodes
in a tree have only one parent node. Moreover, to enable
edge operations on the entire tree, including the root node,
we introduce Edge Extended Tree (EET). By edge oper-
ations applied on EET, we define a dissimilarity measure
between unordered trees; EED, which reflects a direct rela-
tionship modification between nodes in the trees. In section
IV, change in predecessor nodes is observed as a conse-
quence of edge edit operations. Such changes are described
by introduced inheritance edit operations. Furthermore, TID
is defined as a dissimilarity measure between unordered
trees that represent the inheritance difference between trees.
In section V, dissimilarity algorithms defined in sections
III and IV, are evaluated by detecting changes in the class
hierarchy for subsequent and minor versions of two publicly
available object-oriented programs. Moreover, to prove effi-
ciency, results of EED are compared to the results of the TED
algorithm based on the edit graph given in [12]. Furthermore,
sectionVI, provides a brief overview of the existing literature.
Finally, the last section is the conclusion.

II. PRELIMINARIES
Tree edit distance evolved from the string comparison
[18]–[20]. In general, it is based on finding the lowest
transformation cost from one tree to another. Tree transfor-
mation is a sequence of elementary edit operations on nodes
and edges such as add, delete and substitute. The cost is

assigned to each edit operation. Consequently, the total cost
of transformation from one tree to another is the sum of the
costs of all edit operations in the sequence. As there may
exist several ways to transform a tree into another, resulting
in different total costs, edit distance is defined as the lowest
transformation cost [1], [12], [13], [16]–[18], [18], [20], [21].
Tree edit distance algorithms correspond to the process of
mapping, i.e., fitting similar parts of two trees, according
to the assigned cost. An example of the mapping of the
unordered trees is shown in Figure 2.

Edges define the relationship between nodes, therefore to
detect changes in a tree, both edge edit operations and node
edit operations could be used. Although edge operations in
the Graph Edit Distance (GED) [13] are represented as the
result of node operations, the presented idea to detect changes
can be introduced more intuitively by using edge operations
and will be used later to explain the indirect effect of edge
edit operations on trees.

A. EDGE EDIT OPERATIONS
We consider three elementary edge operations: add, delete,
and substitute edge. Following the notation in related liter-
ature for edit distance [12], [13], let T1 = (V1,E1) and
T2 = (V2,E2) be trees, where V1 and V2 are sets of nodes,
and E1 and E2 are sets of edges. Let e1 be an edge in E1, e2 in
E2, and λ represent empty edge not contained in E1 and E2.
Add edge operation is denoted by λ→ e2, delete by e1→ λ,
and substitution by e1→ e2.

Let u, v ∈ V , edge e ∈ E is then defined by a pair of
nodes u and v such that e = (u, v). In the next three cases,
edge operations and their relation to node operations can be
recognized:
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FIGURE 3. Edge edit operations: a) substitute b) add c) delete.

1) Edge is substituted: e1→ e2
e1 = (u1, v1) ∈ E1, e2 = (u2, v2) ∈ E2 implies u1 →
u2 and v1→ v2
meaning node u1 is substituted by u2 and node v1 is
substituted by v2

2) Edge is added: λ→ e2
e2 = (u2, v2) ∈ E2 implies @(u1, v1) ∈ E1 where u1→
u2 and v1→ v2
meaning nodes u2 and/or v2 are added

3) Edge is deleted: e1→ λ

e1 = (u1, v1) ∈ E1 implies @(u2, v2) ∈ E2 where u1→
u2 and v1→ v2
meaning nodes u1 and/or v1 are deleted

These three cases are illustrated by Figure 3 in which the
original tree could be transformed into one of three other
trees, depending on if one edge is substituted (a), added (b),
or deleted (c). Edge involved in the operation is marked
with the bolded connecting line. It should be noted that,
as the operation in Figure 3 a) is performed on non-leaf
nodes, and both nodes are substituted, it implies additional
substitute operations (a, b) → (c, b), (c, e) → (a, e), and
(c, d)→ (a, d).

B. RELATIONSHIP BETWEEN NODES
Our main motivation is to detect modification in the relation-
ship between nodes from the aspect of inheritance change.
As aforementioned, edge operations are the result of nodes
operations. In Figure 2, node b is substituted by node d ,
and node c by node b, consequently, edge (a, b) is substi-
tuted by (a, d), and edge (a, c) by (a, b). However, the edge
between nodes a and b exists in both trees. The relation-
ship between nodes a and b is preserved, making node
b and edge (a, b) substitution unnecessary. As TED per-
forms operations on preserved edges between the trees, it is
not suitable for observing direct relationship modification
and, therefore, inheritance changes. In order to detect edge

modifications and, based on this, changes in inheritance,
the edge operations, and the new dissimilarity measure are
presented in Section III.

III. EDGE EDIT DISTANCE
Instead of finding similar parts of a tree, in the case of
the inheritance tree [3], [22], the relevant information is the
change in the relationship between nodes. As every child node
in a tree has only one parent, we can observe a child node and
the corresponding edge to the parent as a single operation
unit. Therefore, we define tree with additional empty node
and operations, which reflects modification on the relation-
ship between nodes.

A. EDGE EXTENDED TREE
By considering the node and its edge to its parent as a single
unit, edge edit operations could be divided into three cases.
Add operation consist of adding a new node that by a new
edge connects to an existing or in a previous operation added
parent node. Delete operation removes the node and its edge
that connects it to its parent. Instead of substitute operation,
the termmovewould be used, and the operation is the change
of only one incident node, the parent node.

In this way, if the parent function is defined, then every
edge in a tree could be denoted as pair (parent(u), u) where
parent(u) and u are nodes in the tree. However, because the
root node does not contain any edge to the parent, in order
to define the parent function for the complete node-set,
dummy or empty node ε /∈ V is introduced in such way that
edge e = (ε, r) exists, where r is the root node.
Definition 1: Edge Extended Tree (EET) is an unordered

tree X = (V ∪ {ε},E) where ε /∈ V is an empty node
connected only to the root node r with an edge e = (ε, r) ∈ E .
Remark 1: Let n be a number of nodes in V , then the

tree X contains n edges. This claim is a direct consequence
of the fact that unordered labeled tree T = (V ,E) with n
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FIGURE 4. Edge edit operations on EET.

nodes contains n− 1 edges, and adding an empty node ε and
corresponding edge (ε, r), leads to the tree X = (V ∪ {ε},E)
containing n edges.

Formally, the parent function for the edge extended tree
X = (V ∪ {ε},E) could be described as:

p : V → V ∪ {ε} such that p(v) = u iff
∃u ∈ V ∪ {ε} | (u, v) ∈ E

By using the parent function, we can define edge edit
operations on the edge extended tree:
Definition 2: Let X1 = (V1 ∪ {ε},E1) and X2 = (V2 ∪
{ε},E2) are EET’s with parent functions p1 in X1 and p2 in
X2, edit edge operations are:
1) Edge is moved: e1→ e2

Only one of the nodes incident to edges e1 = (p1(v), v)
and e2 = (p2(v), v) is changed, i.e. the parent node.
This operation can be reduced to the following situa-
tion: v ∈ V1 ∩ V2 and p1(v) 6= p2(v)

2) Edge is added: λ→ e2
As e2 could be defined as (p2(v), v) ∈ E2, this implies
@(p1(v), v) ∈ E1
Therefore, this operation is reduced to v /∈ V1∧v ∈ V2,
i.e., v ∈ V2 \ V1

3) Edge is deleted: e1→ λ

Similar to the previous operation, it is reduced to
v /∈ V2 ∧ v ∈ V1, i.e., v ∈ V1 \ V2

Edge operations are shown in Figure 4, where edges
involved in operations are bolded. Furthermore, child nodes
included in the edge operation are marked with the dashed
surrounding ellipse, together with the edge to the parent

node - (parent(u), u). Edge move operation from the edge
(a, c) to edge (b, c) is shown in Figure 4 a). Move operation
performs the move of the entire subtree rooted at the node
c, from the position where the previous parent node is a to
the position where node b is the new parent. Add edge (b, f )
operation is shown in Figure 4 b). Adding edge is the result of
adding node f to the tree, such that the parent of the new node
is node a.Delete edge (c, d) operation is shown in Figure 4 c).
Delete edge is the result of the node delete operation from
the tree. Add and delete edge operations are shown only on
leaf nodes, as non-leaf add and delete edge operations are
followed by at least one more edge edit operation.

When a non-leaf node is added, then at least one child of
a node, which becomes a parent to a new node, becomes a
child of a newly added node. In Figure 5 a), node f is added
as a non-leaf node to parent node a, with edge operation
λ → (a, f ). Node b as the previous child of the node a
is consequently moved to be the child of the added node f ,
with edge operation (a, b)→ (f , b). However, edge (a, c) to
another child c of node a is preserved, therefore only one child
node is moved. On the other hand, the deletion of the non-
leaf node requires that all children of the deleted node change
their parent to the parent of the deleted node. Figure 5 b)
shows the deletion of non-leaf node c, with edge operation
(a, c) → λ, followed by changing the parent of node d
to node a, with edge operation (c, d) → (a, d). Identical
operation is performed on the node e, with edge operation
(c, e) → (a, e). There is a specific case when the root node
is deleted. In this case, by an arbitrary procedure, one of the
child nodes of the previous root node is promoted to be the
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FIGURE 5. Non-leaf node add (a) and delete (b) edge operations.

new root node, and other siblings of this node are moved
to be the children of the new root. It is mandatory because
only one edge can exist from the empty node ε to the root
node. Otherwise, there are a smaller number of edges than
nodes, resulting in the fact that a tree is not EET. Furthermore,
the root resolving procedure is arbitrary depending on the
application, e.g., it could be based on specific node properties.

B. SET OF EDIT OPERATIONS
Generally, the transformation of tree T1 to another tree T2 can
be observed by a sequence s1, s2, . . . , sn of edit operations
on nodes or edges [1], [12], [16]–[18], [20]. For example,
sequence of edge edit operations to transform a source tree
in Figure 2 on the left side to the target tree on the right
side is: (a, b) → (a, d), (a, c) → (a, b), (b, d) → (d, f ),
(b, e) → (d, e), λ → (e, c), λ → (e, g). Similar is for
edge extended trees X1 and X2, where edge edit operations
defined by Definition 2 are add, delete and move. Sequence
of EET edge edit operations to transform tree in Figure 2 is:
(b, d)→ (a, d), (b, e)→ (d, e), λ→ (d, f ), (a, c)→ (e, c),
λ → (e, g). There is a smaller number of EED than TED
operations, since EED consider edge modifications based on
unchanged node labels, whereas TED maps similar tree parts
by nodes label transformation, i.e. nodes substitution.

The sequence of edit operations influences the interme-
diate results. If we apply edge edit operations where add
edge operation is followed by a move and then by the delete
operation, while consecutive add and delete operations are
executed from leaf nodes upwards, each step in the sequence
produces a tree. Otherwise, the intermediate result depending
on the involved edge operations can be tree forest. TED
fulfills these conditions in [7], [12], [20] since edit operations
are performed only on leaf nodes. On the other hand, such
conditions do not produce valid EET in each possible step,
e.g., adding the new root node before moving or deleting
the old root node results in two edges from the empty node.
Similar to the [12] the sequence of edge edit operations
that transforms a tree can be written as an ordered relation
R ⊆ (E1 ∪ {λ}) × (E2 ∪ {λ}), where an edge edit operation
is represented as a pair of edges (e1, e2), such that e1 ∈
E1 ∪ {λ}, e2 ∈ E2 ∪ {λ}. However, in the rest of the paper,
we are considering only the final result, i.e., we are observing

operations between two trees, source, and target tree, without
intermediate results. Therefore, instead of the edit sequence,
where operations order is essential, we are using a set of edge
edit operations Se.
Considering that theremay be several possible edit sets that

perform the same transformation, let W (X1,X2) denotes the
set {Se1, . . . , Sen} of all sets of edit operations to transform
X1 to X2, possibly containing superfluous operations, e.g.,
additional subsequent delete and add edge operations ormove
edge operation. Furthermore, move edge operation e1 → e2
can be described as a delete edge operation e1→ λ, followed
by an add edge operation λ → e2. These additional opera-
tions for TED [12] and GED [13] generally increase the addi-
tional cost to the tree transformation. However, we are asking
the question of how relationships, i.e., edges between nodes
in the source and target tree are changed. Accordingly, we are
calculating the cost for theminimum number of required edge
edit operations to transform a tree, which implicitly excludes
such operations.

C. EDIT SET COST
To determine the cost for the set of edit operations Se, for each
edge edit operation, a cost by function γ : E1 ∪ E2 ∪ {λ} ×
E1 ∪ E2 ∪ {λ} → R is assigned. The total cost to transform
from tree X1 to X2 by applying edge edit operations from the
set of edit operations Se is equal to:

c(Se) =
∑
si∈Se

γ (si) (1)

Edge dissimilarity measure between two trees is edge edit
distance, formally defined as:
Definition 3: Edge Edit Distance between trees X1 and X2

is the total cost of the set of edit operations Se that contains
the minimum number of edge edit operations to transform
X1 to X2:

de(X1,X2) = c(Se) | Se ∈ W (X1,X2) and

|Se| ≤ |S ′e| ∀S
′
e ∈ W (X1,X2)

If the cost for all edge edit operations is a constant number
equal to 1, the above formulation is equal to finding the edit
set with the minimum cost, although generally, the cost of
the minimum number of operations could be greater than
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the minimum cost. Note that even with the same cost of
operations, this formulation is not equal to the definition of
TED [12] or GED [13] because of the different formulation
of edit operations, primarily because themove edge operation
is different from substitution. Furthermore, e.g., if the cost
of a move operation is greater than the sum of the cost of
add and delete operations, the set of the minimum number
of edit operations is not changed compared to the equal cost
of operations.

Since, for move operation, a node is changing the parent,
the cost is equal to the cost of the parent change. For add and
delete operations, the cost is equal to the cost of node adding
to a tree or deleting from a tree, respectively. Furthermore,
due to Definition 2 of edit operations, as we consider only
the source and the target tree, finding minimal transformation
edit set could be determined by nodes, and cost function could
be defined as γ : V1 ∪ V2→ R.

γ (v) =


0, v ∈ V1 ∩ V2 ∧ p1(v) = p2(v)
m, v ∈ V1 ∩ V2 ∧ p1(v) 6= p2(v)
a, v ∈ V2 \ V1
d v ∈ V1 \ V2

(2)

Here m, a and d are the cost of the move, add and delete
edge operations. The costs of these operations could be a
constant number, e.g., equal to 1, but it can be generalized
to situations in which m, a, and d could be cost functions
(m(v), a(v), d(v)) of a node v, e.g., based on the number of
node properties or the distance from the root node.

By using cost function defined over a node, the edge edit
distance between trees X1 and X2 is equal to:

de(X1,X2) =
∑

v∈V1∪V2

γ (v) (3)

Proof: Let the set of edge operations Se consists of the
following sets of operations: Sa, Sd , and Sm, where (λ, e2) ∈
Sa, (e1, λ) ∈ Sd , and (e1, e2) ∈ Sm. Without loss of generality,
let the costs for add, delete, and move edge operations are
equal to the constants a, d , and m. According to Definition 2,
edge operations are reduced to nodes, and according to
Definition 3, the following applies:

de(X1,X2) = c(Se) =
∑
si∈Se

γ (si)

=

∑
s∈Sa

a+
∑
s∈Sd

d +
∑
s∈Sm

m

=

∑
v∈V1∩V2∧p1(v) 6=p2(v)

m+
∑

v∈V2\V1

a+
∑

v∈V1\V2

d

=

∑
v∈V1∪V2

γ (v)

The number of operations is minimal since the number of
edge operations is limited by the number of nodes, and the
following applies |V1∪V2| = |V1\V2|+|V2\V1|+|V1∩V2|.

Furthermore, edge edit distance by using constants for m,
a, and d can be formulated as:

de(X1,X2) =
∑

v∈V1∩V2∧p1(v)6=p2(v)

m+ a |V2 \ V1| + d |V1 \ V2|

Considering Definition 2 and Definition 3, we give
Algorithm 1 to calculate edge edit distance. Note that con-
stants for the cost of the edge edit operations could be
replaced with functions a(v), d(v), and m(v) or γ (v).

Algorithm 1 Edge Edit Distance Algorithm
input : trees X1(V1 ∪ {ε},E1) and X2(V2 ∪ {ε},E2),

parent functions p1 : V1→ V1 ∪ {ε}, and
p2 : V2→ V2 ∪ {ε}, and cost of the edit
operations a, d , and m

output: an edit set Se with the minimum number of
operations and an edge edit distance di

1 Se← ∅, di← ∅;
2 foreach node v in V1 do
3 if contains(V2, v) then
4 if p1(v) 6= p2(v) then
5 Se← Se ∪ {(p1(v), v)→ (p2(v), v)};
6 di← di + m;
7 end
8 else
9 Se← Se ∪ {(p1(v), v)→ λ};
10 di← di + d ;
11 end
12 end
13 foreach node v in V2 do
14 if not contains(V1, v) then
15 Se← Se ∪ {λ→ (p2(v), v)};
16 di← di + a;
17 end
18 end

In order to determine the time complexity of the algo-
rithm, let the n1 be the number of edges in X1, and n2 be
the number of edges in X2. Algorithm time complexity is
O(n1+n2)∗O(contains), since algorithm iterates through
a set of nodes V1 and V2, and the size of node sets corresponds
to the size of E1 and E2, equal to n1 and n2. The cost of the
contains function could be O(1) if an appropriate hashing
is used.

Regarding the number of operations, the upper bound for
edge edit operations is in the case when all edges from E1 are
deleted, and all edges from E2 are added. On the other hand,
when all edges from E1 are moved in E2, as a consequence
that nodes between X1 and X2 are matched (V1 = V2), and
all nodes from X1 change parents in X2, the number of edge
operations is equal to |V1 ∩ V2|. Since there are an equal
number of edges and nodes, the maximum number of edge
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FIGURE 6. The impact of the move edge edit operation on the inheritance relationship induced by: a) deleted edge and
b) added edge.

edit operations, i.e., the upper bound for edge edit operations
nmax can be stated as:

nmax = |E1| + |E2| = |V1| + |V2| > |V1 ∩ V2|

IV. TREE INHERITANCE DISTANCE
Edge edit operations are suitable to describe changes in the
direct relationship between nodes. However, if we observe
a tree as an inheritance tree [22], where the node is in the
inheritance relationship to predecessor nodes, the node is
affected by any changes in its predecessor nodes. Edge edit
distance defined by appropriate cost function can describe
changes in predecessor nodes only for nodes directly involved
in edge edit operations, such as added, deleted, and moved
nodes. On the other hand, indirect effects of edge edit oper-
ations on descendant nodes cannot be described by edge edit
distance. Those changes are the consequence of edge edit
operations. In the following subsections, we will describe
the direct and indirect effects of editing operations on the
inheritance relationship between nodes, and then define the
indirect edit operation. Afterward, we introduce the inheri-
tance operations, the cost function for inheritance operations,
and tree inheritance distance.

A. TREE EDITING IMPACT ON THE INHERITANCE
A suitable example to explain the effects of edge edit
operations on the inheritance relationship between nodes
should include add, delete, and move edge edit operations.
In Figure 6, for example, delete (Figure 6 a) and add
(Figure 6 b) edge edit operations, performed on non-leaf
nodes, are tagged with number 1 and induce move edge
operation, tagged with number 2. From the inheritance aspect
for the added node, all nodes on the path to the empty node
are added to the inheritance relationship, i.e., the newly added

node can inherit ancestors’ nodes properties. On the other
side, when a node is deleted, inheritance relationship to nodes
on the path to the empty node is deleted, i.e., the deleted node
does not any longer inherit prospective ancestors’ properties.
Furthermore, the inheritance relationship to ancestor nodes
is also changed for the moved node, involving at least the
parent node changed by an edge edit operation. In Figure 6 a),
node c is deleted, and as a consequence, the edge (a, c) is
also deleted, inducing move edge operation (c, e) → (a, e).
Path (ε, a, c) is removed from the tree, meaning that node c
loses inheritance relationship to the node a. Moreover, path
(ε, a, c, e) is deleted, and path (ε, a, e) is added to the tree,
meaning that node e loses inheritance relationship to the
node c. Figure 6 b) shows a similar case where the edge
(c, i) and the node i are added, inducing move edge operation
(c, e) → (i, e). Node i obtain inheritance relationship to the
nodes a and c, and node e obtains inheritance relationship to
the added node i.

However, if the inheritance relationship is changed for
nodes directly involved in edit operations, it is indirectly
changed for their descendants, as paths from descendants to
the empty node are changed. In Figure 6, descendant nodes of
a moved node are affected bymove operations. These indirect
effects of edge edit operations are tagged with number 3.
Aswe already observed in Figure 6 a), node c is removed from
the path to the empty node, i.e., removed from the inheritance
relationship for node e. Moreover, node c is also removed
from the inheritance relationship for node e descendants f ,
g and h. Similar can be observed in Figure 6 b), where node i
is added to the inheritance relationship for moved node e but
also for its descendants f , g, and h.
Similar would happen if the move edge operation is not

induced by other edge edit operations. If the tree in Figure 6 a)
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would be modified only by the move edge operation (c, e)→
(d, e), node e would lose inheritance to node c and would
obtain inheritance to nodes b and d . Furthermore, the same
change in the inheritance relationship would be applied to the
descendants of node e.

B. DETECTING INHERITANCE CHANGES
The previous section describes the change of the inheri-
tance relationship as the consequence of edge edit operations.
In order to determine changes in the inheritance relationship,
it is necessary to compare nodes on the paths to the empty
node from node involved in edge edit operations and its
descendants.
Definition 4: Let path(u, v) be the path from the node u

to node v in the tree X (V ∪ {ε},E), where u ∈ V ∪ {ε} and
v ∈ V . Let P(u, v), shortly Pu(v) represents the set of nodes
on the path(u, v) without node v. Pε(v) then contains at least
empty node ε for all nodes in V . Furthermore, if v /∈ V then
Pε(v) is an empty set (∅). Formally:

Pε(v) =

{
{u ∈ V ∪ {ε} | u ∈ path(ε, v) ∧ u 6= v} , v ∈ V
∅, v /∈ V

Node set Pε(v) contains a set of predecessor nodes for
node v, therefore condition u 6= v is required, as node v
cannot precede itself. Note that in the rest of the paper for the
set of nodes to the empty node Pε(v), the term predecessor
node set will be used. If node sets Pε1(v) and Pε2(v) in
edge extended trees X1 and X2 are different for node v from
V1 ∪V2, then there is a change in inheritance relationship for
node v. However, if the node sets Pε1(v) and Pε2(v) are equal,
it does not indicate that the inheritance relationship is not
changed for node v. In Figure 6, move edge operation implies
a change of the parent node, and consequently different sets
Pε1 and Pε2. On the other hand, in Figure 7, as the result of
move edge edit operations, nodes a and b switched positions,
which for node c and consequently node d caused different
paths in two trees, although the node sets Pε1(v) and Pε2(v)
are equal. There is a change in the inheritance relationship
for node c and d in a form of change in the position between
nodes on the path to the empty node. Change in position
between nodes on the path to the empty node can result in a
change of inherited properties, e.g., a node can lose inherited
properties.

The change of position or order of predecessor nodes
can be observed as the change in the distance between the
nodes, i.e., the number of edges on the path between nodes.
In Figure 7, the distance between nodes a and d in the source
tree is equal to 3, and in the target tree to 2. Furthermore,
the distance between nodes b and d is equal to 2 and 3,
in the source and the target tree, respectively. Similar can
be observed for node c, where predecessor node sets remain
equal but the distance to nodes a and b changes.
The distance between nodes on the path to the empty node

is equal to the difference of node depths, but to simplify dis-
tance comparison between nodes, we define the node distance

FIGURE 7. Move edge operations with equal sets of nodes Pε(c)
and Pε(d ).

as the cardinality of the set of nodes on the path from the node
u to the node v. Formally, we define a distance function as:

d : V × V → R, such that d(u, v) = |Pu(v)|

In the example illustrated by Figure 7, we canwrite d1(a, c) 6=
d2(a, c) because d1(a, c) = 2 and d2(a, c) = 1, and
d1(b, c) 6= d2(b, c). Note that the distance function defined
in this way reflects a structural change in the tree, but the
distance function can also reflect modified properties of
nodes or edges.We can conclude that the inheritance relation-
ship for the node has changed if the predecessor node sets are
different or if there is a node on the path that has changed the
distance relative to the node.
Definition 5: Let X1(V1 ∪{ε},E1) and X2(V2 ∪{ε},E2) be

edge extended trees. Let Pε1(v) in X1 and Pε2(v) in X2 for
v ∈ V1 ∪ V2 be predecessor node sets. Let d1(u, v) be nodes
distance function in X1 and d2(u, v) in X2, where u ∈ Pε1(v)∪
Pε2(v). The inheritance relationship is changed, i.e., node v is
edited, if the following applies:

Pε1(v) 6= Pε2(v) or ∃u ∈ Pε1(v) ∩ Pε2(v) such that

d1(u, v) 6= d2(u, v)

C. DIRECT AND INDIRECT EDIT OPERATIONS
Edge edit operations described by Definition 2 have direct
and indirect effects on inheritance editing. To define indirect
effects of edge edit operations on inheritance editing, first,
we will determine the direct effects of edge edit operations on
the changes in node sets Pε(v), and distance between nodes
on the path to the empty node.

Let X1 and X2 be edge extended trees, Pε1(v) in X1, and
Pε2(v) in X2 be set of predecessor nodes, for v from V1 ∪ V2.
Edge add operation implies empty set Pε1(v) and non-empty
set Pε2(v) because the path for the added node v in X1 is
not defined, as the added node is not part of X1. Similarly,
for delete edge operation, set Pε1(v) is not empty, and Pε2(v)
is empty, as the path to the deleted node v is not defined in
X2. Furthermore, move edge edit operation involves a change
of the node v parent, resulting in different sets Pε1(v) and
Pε2(v), or change in the distance between nodes in these sets.
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By Definition 2 and Definition 5, for edge edit operations
we can determine the following:

1) add: λ → e2 corresponds to v ∈ V2 \ V1, implies
Pε1(v) = ∅ ∧ Pε2(v) 6= ∅

2) delete: e1 → λ corresponds to v ∈ V1 \ V2, implies
Pε1(v) 6= ∅ ∧ Pε2(v) = ∅

3) move: e1 → e2 corresponds to v ∈ V1 ∩ V2 ∧ p1(v) 6=
p2(v), implies Pε1(v) 6= Pε2(v) or ∃u ∈ Pε1(v) ∩ Pε2(v)
such that d1(u, v) 6= d2(u, v)

On the other hand, as an indirect result of edge edit opera-
tions, by Definition 5, the path to the empty node is changed
for descendant nodes. Consequently, descendant nodes are
involved in indirect edit operations.
Definition 6: Node v ∈ V1 ∩ V2 is indirectly edited if

p1(v) = p2(v) and Pε1(v) 6= Pε2(v) or ∃u ∈ Pε1(v) ∩ Pε2(v)
such that d1(u, v) 6= d2(u, v). Edge e = (p(v), v) is indirectly
edited if node v is indirectly edited, as a consequence of a
change in inheritance relationship for the node v.
Add, delete, andmove edge edit operations induce changed

paths to the empty node. Given the structural changes in the
tree, indirect operations are an indirect result of themove edge
edit operations, and possibly an indirect result of the add and
delete edge edit operations, in order 1-2-3 or 2-3, where the
numbers represent operation type, as shown in Figure 6 and
Figure 7 (1 – add or delete, 2 – move, 3 – indirect).

D. INHERITANCE EDIT OPERATIONS
In the previous subsections, inheritance change is detected
by changes in paths to the empty node. These changes were
observed only by detecting whether the inheritance relation-
ship for a node is changed or not, i.e., whether the node is
edited directly or indirectly. However, to compare inheritance
changes between two trees, it is necessary to determine how
inheritance has changed for each node. For a single node,
one or more nodes can be added, deleted, or can change their
position or other properties on the path to the empty node.
Each such modification on the path to the empty node is a sin-
gle inheritance operation. Similar to the edge edit operations,
we define, add, delete, and move inheritance operations:
Definition 7: Let X1(V1 ∪ {ε},E1) and X2(V2 ∪ {ε},E2)

be edge extended trees, Pε1(v) in X1 and Pε2(v) in X2, for
v ∈ V1 ∪ V2 be sets of predecessor nodes, d1(u, v) be node
distance function in X1 and d2(u, v) be node distance function
in X2, where u ∈ Pε1(v) ∪ Pε2(v).

Inheritance edit operations on node v ∈ V1 ∪ V2 are:

1) add, u ∈ Pε2(v) \ Pε1(v),
node u is added to the inheritance relationship for
node v

2) delete, u ∈ Pε1(v) \ Pε2(v),
node u is deleted from the inheritance relationship for
node v

3) move, u ∈ Pε1(v) ∩ Pε2(v) ∧ d1(u, v) 6= d2(u, v),
nodes u and v are moved relative to one another

Remark 2: We have already shown how edge edit oper-
ations implicitly result in inheritance changes for the

involved node. Consequently, inheritance operations occurred
by such changes are direct inheritance operations. On the
other hand, inheritance operations occurred on nodes indi-
rectly are indirect inheritance operations.

Single edge edit operation could result in multiple
inheritance operations. In Figure 6, move edge operation
(c, e) → (a, e) results in four delete inheritance operations
because node c is removed from the path for node e and
its descendants f , g, and h. On the other hand, move edge
edit operations in Figure 7 resulted in overall six inheritance
operations. Node b is added to the inheritance relationship for
node a. Analogously, node a is removed from the inheritance
relationship for node b. Consequently, nodes a and b are
relatively moved to nodes c and d .

In previous figures, we intuitively observed inheritance
operations as sets of added, deleted, and moved node sets for
the edited node, which corresponds to add, delete, and move
inheritance operations. By using Definition 7, we determine
these sets as:
Definition 8: Let Pε1(v) be set of predecessor nodes for

v in X1, Pε2(v) in X2, and d1(u, v) and d2(u, v) be distance
functions in X1 and X2, where u ∈ Pε1(v) ∩ Pε2(v). Then,
set of added nodes Va(v), deleted nodes Vd (v), and moved
nodes Vm(v) on the path from empty node ε to the node v, for
v ∈ V1 ∪ V2 are defined as:

Va(v) = Pε2(v) \ Pε1(v)

Vd (v) = Pε1(v) \ Pε2(v)

Vm(v) = Pε1(v) ∩ Pε2(v) | d1(u, v) 6= d2(u, v)

Inheritance operations can be conveniently shown in tabu-
lar form, where columns represent node sets Va(v), Vd (v), and
Vm(v) for every node v in the table rows, whether the node
is edited or not. In Figure 8, for example, inheritance edit
operations occur on all nodes. Consequently, for each node
v in X1 and X2, at least one of the node sets Va(v), Vd (v), and
Vm(v) is not empty. From Table 1, we can detect that there
are indirect inheritance operations. Node c and d have equal
node sets because direct inheritance changes on node c are
propagated to the node d .

From node sets Va(v), Vd (v), and Vm(v), we can observe
the connection between edge edit operations and inheri-
tance operations. For some nodes v, sets Va(v) and Vd (v)
contain empty node ε, which means that these nodes are
added or deleted. In Table 1, set Va(g) contains only node
ε because node g is added as the new root node. On the
contrary, nodes vwithout empty node ε in node sets Va(v) and
Vd (v), are edited by move edge operations. By Definition 2
and Definition 7, we can observe three cases, how inheritance
edit operations affect Va(v), Vd (v), and Vm(v) node sets:

1) move, Pε1(v) 6= Pε2(v) or d1(u, v) 6= d2(u, v) implies
Va(v) 6= ∅ or Vd (v) 6= ∅ or Vm(v) 6= ∅

2) add, Pε1(v) = ∅ ∧ Pε2(v) 6= ∅ implies Va(v) 6= ∅ ∧
Vd (v) = ∅ ∧ Vm(v) = ∅

3) delete, Pε1(v) 6= ∅ ∧ Pε2(v) = ∅ implies Va(v) =
∅ ∧ Vd (v) 6= ∅ ∧ Vm(v) = ∅
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FIGURE 8. Inheritance edit operations example.

TABLE 1. Inheritance edit operations in tabular form.

These cases are similar to the observation of edge edit oper-
ations impact on the predecessor node set Pε, in the previous
section. The main difference is in the first case, where both
direct and indirect edit operations are included, i.e., cases
where p1(v) 6= p2(v) or p1(v) = p2(v).

E. INHERITANCE COST
Inheritance operations describe inheritance changes between
trees. In order to define inheritance dissimilarity measure,
it is necessary to determine the cost of inheritance changes
between trees, which is equal to the total cost of inheritance
operations. In the previous subsection, we have determined
how inheritance edit operation corresponds to nodes con-
tained in sets Va(v), Vd (v), and Vm(v). Let Vi(v) contain all
nodes involved in the inheritance operation for node v such
that Vi(v) = Va(v)∪Vd (v)∪Vm(v). Accordingly, to determine
the inheritance cost of nodes contained in Vi(v) on node v,
we define cost function ϕ for the inheritance edit operation.
Definition 9: Let ϕ : (V1 ∪ V2) × (V1 ∪ V2) → R be the

cost function of the inheritance operation of node u ∈ Vi(v)
on node v ∈ V1 ∪ V2.

In the case of add operation, both node u from Va(v)
and node v are contained in V2. Similar is for the delete
operation, where both node u from Vd (v) and node v are
in V1. For move operation, node u from Vm(v), and v are in
V1 ∩ V2. Furthermore, such arguments are associated with

the symmetry property of the function ϕ, which ensures that
adding and deleting the same node on the path to the empty
node is complementary. Similar applies to complementary
move inheritance operations, involving the same nodes u and
v, where nodes repeatedly exchange their relative positions,
resulting in the preserved distance.

Function ϕ can be as simple as ϕ(va, vb) = c for all va,
vb ∈ V1 ∪ V2, where c is a constant number. Furthermore,
function ϕ can be dependent on the distance between involved
nodes: ϕ(va, vb) = c ∗ d(va,vb)

k , or alternatively, ϕ(va, vb) =

c∗e−
d(va,vb)

k , where d(va, vb) is the distance function between
nodes va and vb, and k is the constant to control inheritance
range and strength of the edit operation. Namely, in the con-
text of edge operations, nodes closer to the edge operation are
more influenced by the inheritance change than leaf nodes.

Inheritance editing of a single node has previously been
shown by the set of nodes Vi(v), which corresponds to the
set of inheritance edit operations performed on the node v.
Consequently, the inheritance cost for a single node v is
defined by the sum of inheritance operations costs on the node
v, i.e., by the sum calculated by using a function ϕ over nodes
from set Vi(v).
Definition 10: Let Vi(v) = Va(v) ∪ Vd (v) ∪ Vm(v) are

node sets containing nodes involved in inheritance opera-
tions on node v. Inheritance cost function for node v is
δ : V1 ∪ V2→ R, defined as:

δ(v) =
∑

ua∈Va(v)

ϕ(ua, v) +
∑

ud∈Vd (v)

ϕ(ud , v) +
∑

um∈Vm(v)

ϕ(um, v)

=

∑
u∈Vi(v)

ϕ(u, v)

where ϕ is an inheritance operation cost function (V1∪V2)×
(V1 ∪ V2)→ R.
If the function ϕ is constant for all nodes, then the inher-

itance cost for node f in Figure 8 is equal to 5, because set
Va(f ) contains five nodes ε, g, a, e, and c. If the source and
target trees exchange places, then set Vd (f ) contains nodes ε,
g, a, e, and c, while set Va(f ) is empty, resulting in inheritance
cost that is again equal to 5. We can observe how function δ
inherits symmetry property from function ϕ because adding
and deleting node are complementary operations regarding
inheritance operations. The same applies to moved and, indi-
rectly edited nodes.

The inheritance cost between trees is determined by the
total cost of inheritance editing of all nodes. Let Si be the
set of edited nodes between trees X1 and X2, where Si =
{v1, . . . , vi, . . . , vn}, such that according to Definition 5,
∀vi ∈ V1 ∪ V2 implies that Pε1(vi) 6= Pε2(vi) or d1(u, vi) 6=
d2(u, vi). Now we can define inheritance tree distance:
Definition 11: Tree Inheritance Distance (TID) between

edge extended trees X1 and X2 is the total cost of the edited
nodes Si = {v1, . . . , vi, . . . , vn} between X1 and X2:

di(X1,X2) =
∑
vi∈Si

δ(vi)
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Algorithm 2 Tree Inheritance Distance Algorithm
input : trees X1(V1 ∪ {ε},E1) and X2(V2 ∪ {ε},E2),

distance functions d1 : V1 × V1→ R, and
d2 : V2 × V2→ R, and cost function
δ′ : V1 ∪ V2 × V1 ∪ V2→ R

output: an inheritance edit distance di and set of edited
nodes Si

1 Si← ∅, di← ∅;
2 foreach node v in V1 do
3 Vi← ∅;
4 Pε1← getPreds(X1, v);
5 if contains(V2, v) then
6 Pε2← getPreds(X2, v);
7 Vi← inheritanceChanges(Pε2,

Pε1)
8 else
9 Vi← Pε1;
10 end
11 if Vi 6= ∅ then
12 Si← Si ∪ {v};
13 di← di + δ(v,Vi);
14 end
15 end
16 foreach node v in V2 do
17 Vi← ∅;
18 if not contains(V1, v) then
19 Vi← getPreds(X2, v);
20 Si← Si ∪ {v};
21 di← di + δ(v, Vi);
22 end
23 end

We can observe that set of inheritance edited nodes Si
is an extension of the set of edge edit operations Se with
added indirect operations. Since Si is an extension of Se,
the main difference of inheritance distance algorithm shown
in Algorithm 2, from edge edit distance Algorithm 1 is
in detecting indirect operations. Therefore, the condition
at line 4 in Algorithm 1, where parent nodes are com-
pared is replaced by detection of inheritance operations in
Algorithm 2 at line 7 by using Algorithm 3 (procedure
detectInheritanceChanges). Algorithm 3 detects
inheritance operations between source and target trees by
detecting changes in predecessor nodes. In Algorithm 2, pro-
cedure detectInheritanceChanges is used to detect
inheritance operations that occurred on nodes that are equal
in both trees. However, Algorithm 3 could be used to detect
direct inheritance operations caused by add and delete edge
edit operations, but such operations are straightforwardly
detected over predecessor nodes. In order to detect prede-
cessor nodes for a given node, by traversing the path to the
empty node, function getPreds is used. Note that the result
of function getPreds is used as input for Algorithm 3,
where function getPreds is used to obtain predecessor

Algorithm 3 Procedure detectInheritanceChanges
(v, Pε1, Pε2, d1, d2)

1 procedure detectInheritanceChanges(v,
Pε1, Pε2, d1, d2)

2 Vi← ∅;
3 foreach node v in Pε1 do
4 if contains(Pε2, v) then
5 if d1(u, v) 6= d2(u, v) then
6 Vi← Vi ∪ {v};
7 end
8 else
9 Vi← Vi ∪ {v};
10 end
11 end
12 foreach node v in Pε2 do
13 if not contains(Pε1, v) then
14 Vi← Vi ∪ {v};
15 end
16 end
17 return Vi;

node sets for nodes equal in both trees (lines 4 and 6 in
Algorithm 2). In Algorithm 2, cost function δ′ is used to
calculate inheritance operations cost. Input parameters to cost
function δ′ are node and its inheritance operations, as a set of
changed predecessor nodes Vi.
Algorithm 3 is similar to Algorithm 1, since add and

delete inheritance operations are determined by the difference
between node sets, in this case by predecessor node sets.
However, instead of parent functions, move inheritance oper-
ation is determined by given distance functions d1 and d2.

In order to determine the time complexity of the algorithm
to calculate tree inheritance distance, let the n1 be the number
of nodes in X1, and n2 be the number of nodes in X2. Let k1
and k2 denote the average distance from a node to the empty
node, i.e., average node depth in X1 and X2, respectively. The
time complexity of the tree inheritance distance algorithm
(Algorithm 2) is O(n1 ∗ k1 + n2 ∗ k2). It is assumed that an
appropriate contains function is used with the complexity
O(1), e.g., hash function. Similar to Algorithm 1, this algo-
rithm iterates through a set of nodes V1 and V2, searching for
matching nodes by using the lookup function contains.
This function determines predecessor nodes, with path traver-
sal complexity O(k).
Furthermore, let us consider the case when all nodes are

moved. In this case n = n1 = n2. The traversing of paths
in both trees is performed only for matched nodes, thus n
times, with the complexity O(k1) in the first tree and O(k2)
in the second tree. Therefore, the complexity is equal to
O(n ∗ (k1 + k2)).
Procedure detectInheritanceChanges (Algo-

rithm 3) additionally compares paths to the empty node
for each matched node in both trees with the complexity
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FIGURE 9. TED and EED result graph between Pinpoint program versions.

O(k1 + k2), if an appropriate O(1) function contains is
used. Furthermore, the complexity of Algorithm 3,O(k1+k2),
is valid if the complexity of distance functions d1 and d2
are equal to O(1). If the complexity of distance functions is
greater thanO(1), it would increase the algorithm complexity.
To calculate the tree inheritance distance, for each node,
the traversing of predecessor nodes is performed twice, once
inAlgorithm 2, and once inAlgorithm 3. However, the overall
time complexity is not increased. E.g. in the case when all
nodes are moved (n = n1 = n2), the complexity is equal to
O(n ∗ (k1 + k2)) + n ∗ O(k1 + k2) = O(2 ∗ n ∗ (k1 + k2)) =
O(n ∗ (k1 + k2)).

V. EXPERIMENT RESULTS
The dissimilarity between class hierarchy in object-oriented
languages can be used in program analysis for various tasks,
such as regression testing, code clone detection, or dynamic
software updating.

The class hierarchy can suitably be represented as a tree
if multiple inheritances are omitted. Multiple inheritances
enable inheritance from multiple classes and is supported by
some programming languages, e.g., C++. However, it intro-
duces an inheritance diamond problem [23], [24]. Most of
the current object-oriented languages support only single
inheritance, where a class can only inherit a single class.
Consequently, in this paper, we consider the case of single
inheritance only. On the other hand, Java interfaces define
a set of methods that class supporting the interface imple-
ments. Interfaces are organized hierarchically and allow mul-
tiple inheritances, while classes can implement more than
one interface. Interface hierarchy is not considered, since,
the focus is on the class hierarchy. In this paper, if the class
in the modified version implements the methods specified in
the interface, the change reflects through the class hierarchy.

As an experiment, we measure the dissimilarity of class
hierarchy between program versions in Java object-oriented
language. In the first experiment, to evaluate the effectiveness
of the EED algorithm introduced in section III, the results
of the EED, are compared with the results of the TED

algorithm [12]. To determine when the EED can be used
instead of the TID algorithm introduced in section IV,
in the second experiment, the results of the EED are com-
pared to TID, both with the unit cost. In the third experi-
ment, to evaluate the usefulness of TID, the results of a TID
algorithm are analyzed when the cost is calculated based
on the method changes in class. The results of the first
experiment are shown in the subsection V-B, whereas the
results for the second and third experiments are shown in
subsection V-C.

A. EXPERIMENTS SETUP
The experiments consists in executing the dissimilarity mea-
sures algorithms on program versions of two publicly avail-
able Java programs, Pinpoint1 and NewPipe.2 Pinpoint is
Application Performance Management (APM) tool with
about 4000 classes in the latest version [25]. NewPipe is
a streaming Android application with about 350 classes in
the latest version [26]. Trees used as input for algorithms
represent the class hierarchy of the single program version.
In the first and second experiments, classes are considered
without properties. Edge operations correspond to added,
deleted, and moved class in the class hierarchy between two
program versions. Move inheritance operations are detected
as a change in the distance between nodes, i.e., as a structural
change, whereas in the third experiment as a change in class
methods. In the first and second experiments, operations cost
is set to 1 for both edge and inheritance edit operations,
whereas in the third experiment, cost function ϕm is based
on the class method changes. LetM1(u) andM2(u) be sets of
methods for class u in the source and target tree, respectively,
then ϕm(u, v) for u ∈ Vi(v) is defined as follows:

ϕm(u, v) =


|M1(u)|, u ∈ Vd (v)
|M2(u)|, u ∈ Va(v)
|M1(u)\M2(u)∪M2(u)\M1(u)|, u ∈ Vm(v)

1 https://github.com/naver/pinpoint
2 https://github.com/TeamNewPipe/NewPipe
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Distance functions used to determine set of nodes Vm(v),
are defined as d1(u, v) = M1(u) and d2(u, v) = M2(u).
Consequently, move inheritance operations are detected as
changes in method sets, M1(u) 6= M2(u) for class u. For the
experiment, methods are compared by method signature.

Furthermore, for each experiment, there are two experi-
mental setups. In the first setup, TED [12] and algorithms
presented in this paper are executed on class hierarchy trees
created from subsequent program versions, e.g., the first pair
is the first and second version, the second pair is the sec-
ond and third version, and so on until the last version pair.
In the second experimental setup, each program version,
i.e., revision, is compared to its corresponding minor version.
Since some minor versions are not available, corresponding
prerelease versions are used asminor versions instead, release
candidate (RC) in Pinpoint, and beta in NewPipe. Compari-
son to themajor version, could not bemade, as major versions
are not available for both programs.

B. EFFICIENCY
In the first experiment, we compare the EED algorithm with
the ordered tree TED algorithm [12] based on the edit graph
with the time and space complexity of O(n1 ∗ n2). Although
this variant of TED is constrained by add and delete opera-
tions performed only on the leaf nodes, it is more efficient
than the latest algorithm [27] with complexity in worst case
O(n3), based on work [18] that is considered as the most
general TED definition [21]. An ordered tree algorithm is
used because algorithms for unordered trees are with greater
complexity [21]. The results of both algorithms are compared
to determine the extent to which results from algorithms
correspond. As shown in section 2, it is expected that the TED
can not be used to determine the exact number of changed
edges as EED.However, the results can indicate whether EED
could be used instead of TED in some usage scenarios.

Both EED and TED distances are calculated between the
class hierarchy of all currently available 62NewPipe program
versions. It is expected that comparison to the minor versions
will result in the greater distance for EED and TID results
compared to subsequent versions, as program versions are
more dissimilar as a program evolves over time. The results
are shown in Figure 9. For the experimental setup with the
comparison of subsequent versions, results of EDD and TED
correspond, if not in the same or similar values, then in dis-
tance change tendency. The significant difference in distances
is for versions 0.7.1.where the value of the TED is higher than
the EED, and a difference in the distance change tendency
for program versions 0.9.3 and v0.9.4. On the other hand,
e.g., in version 0.11.0, the TED distance is much higher than
the EED, whereas for the 0.8.5 and 0.8.13, the EED distance
is slightly higher than the TED, although the tendency of
change in distances is the same. In the case with the com-
parison of the revision and minor versions, results conform
to the results of the subsequent versions. If distances are not
equal or similar, EED is with higher values than TED with
an equal tendency in distance change. A greater difference in

distance values is for the version 0.11.0. The results of both
distances conform to the prediction that distance values are
higher in comparison with the minor version. On the other
hand, smaller distance values can be used to determine if the
difference between the program versions is small. From the
results, it can be concluded that EED can be used instead of
TED in scenarios where exact absolute value is not required.
E.g., in computer vision, where the relative ratio between
distance value for different patterns is relevant. Considering
the time complexity of the EED algorithm isO(n1+n2), EED
provides a more efficient comparison than TED. On the other
hand, the results of the experiment show that a significant
difference between distance values can occur. Therefore, it is
necessary to evaluate both distances for a specific use.

C. USEFULNESS
Before analyzing the results of the experiments, let us
discuss introduced inheritance operations in the case of
object-oriented classes. An object-oriented class can inherit
members of the class, such as fields, methods, or prop-
erties, depending on the programming language. Add and
delete inheritance operations are straightforward. If the class
is added or deleted, to or from inheritance relationship,
the descendant class inherits or does not any longer inherit
members from the ancestor class. E.g., in dynamic software
updating, it is important to detect which class members are
valid in the updated program version. If a class implement-
ing the method is moved in relation to the inheriting class,
inheriting classes may still be able to use, e.g., the methods
defined in ancestor classes. On the other hand, if the class
members are changed, e.g., method is added or deleted, there
is a change for subclasses through inheritance relationship.
In the second experiment, edge edit operations are used
from the structural aspect, similar to the first experiment,
to show the connection between an edge and inheritance edit
operations.

The results of the second experiment are shown in Table 2
for Pinpoint and Table 3 for NewPipe. The first column
denotes the program version. The experiment is performed
on all currently available versions, but the results shown in
tables are from the last 14 versions for Pinpoint and the last
15 versions of NewPipe. Each class implicitly contains the
root, i.e., object class as the ancestor class. As a root class
does not change, it corresponds to the empty node in EET.
Note that the properties, possibly inherited from the root
class, are neglected regarding the specific program domain.
On the other hand, there are two types of hierarchy in the
tree created from the class hierarchy. First, a class hierarchy
where the parent class is the root class, and the class does
not have subclasses, do not introduce inheritance. Such class
introduces a new behavior in the program, but the behavior
is not further propagated through the hierarchy. It is a single
class in the hierarchy with the depth equal to 1. However,
to detect inheritance operation for such class is useful in
program analysis to detect added and deleted functionality.
The second type is the class hierarchy, where a class has
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TABLE 2. Pinpoint experiment results.

TABLE 3. NewPipe experiment results.

subclass, i.e., with class and, at least, one more class
beside the root class, thus with a depth greater than 1.
Program behavior introduced by such class is propagated
through the class hierarchy. Consequently, the second col-
umn is the total number of classes (NOC) regardless of the
hierarchy type, and the third column denotes the number of
classes in hierarchies (NOCH) with the depth greater than 1.
The fourth and fifth column refers to edge edit distance (EED)
and tree edit distance (TID) experiment results. Distances are
calculated both to the previous version, i.e., revision and to
the previous minor version (p/m). Minor versions used for
comparison are bolded in the first column.

From the aspect of usefulness for program analysis, results
show that a program with a smaller number of classes can
have a similar number of inheritance changes as a program

with a larger number of classes. For example, in the case
of NewPipe, inheritance distance between program versions
0.13.2 and 0.13.3 is equal to 224, whereas, in the case of Pin-
point, inheritance distance between versions 1.7.1 and 1.7.2 is
equal to 156. Note that NewPipe in version 0.13.2 and 0.13.3
have 287 and 274 classes, respectively, whereas Pinpoint in
versions 1.7.1. and 1.72. have 931 and 911 classes. Further-
more, as expected, the dissimilarity between subsequent ver-
sions is smaller than between revisions and major versions.
Moreover, the results show the connection between edge
edit and inheritance distance. The increasing dissimilarity of
edges is reflected with increasing inheritance dissimilarity.
Therefore, as an indication of structural changes in a class
hierarchy, EED compared to TID is good enough, and with
better efficiency.

The results for the third experiment are shown in Figure 10,
similar to the first experiment, for all currently available 62
NewPipe program versions. The figure shows TIDm results
with cost function ϕm, and TID results with the unit cost.
Results for setup with subsequent versions show that TID
results correspond to TIDm results. However, in some cases
such as v0.9.0, v0.9.3, v0.13.6, and v0.16.0, there are also
considerable differences in distance values. The similarity
in the distance values is because add and delete inheritance
operations prevail between the class hierarchy in subsequent
program versions. Differences between distances occur when
there is a significant number of classes ‘‘moved’’ based on
the number of methods changes in classes that remain in the
inheritance relationship with subclasses. On the other hand,
the results of the comparison to minor version show that
besides the comparison between v0.8.9 to v0.9.0, there is no
difference in distance changes. For the same reason as for the
subsequent version comparison, add and delete inheritance
operations prevail in comparison to the class hierarchy of
the minor version. Based on the results, ϕm function is more
suitable for use in scenarios for comparison of subsequent
program versions. E.g., it can be decided whether to perform
a dynamic update from version v0.9.2 to v0.9.3 or from
v0.11.6-beta to v0.12.0-beta, as there is a significant number
of method changes, which may lead to unexpected behavior
after the update.

D. DISCUSSION
Based on the evaluation results, e.g., if inheritance distance
is above some threshold, a decision can be made which
classes of program version should be tested for regres-
sion testing, or which updates could be performed dynami-
cally. Therefore, presented approaches to detect dissimilarity
between class hierarchy could be used for program analysis,
such as regression testing or dynamic software updating. The
first experiment shows that EED compared to the TED [12]
could be an efficient solution in some scenarios where accu-
racy and exact distances are not required. However, the exper-
iment is performed by using unit costs and only for class
hierarchy comparison. Particular usage requires evaluation
and finding of appropriate cost functions. The results of
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FIGURE 10. TID and TIDm result graph between Pinpoint program versions.

the second and third experiments show that for class hierarchy
comparison between revision and minor version, generally,
EED could be used. The third experiment shows how more
complex cost functions can provide more accurate results for
a decision, based on specific usage, in this case of themethods
changes. However, inheritance operations may affect inherit-
ing classes if added or deleted class, or any class on the path to
the root node overrides a method used in an inheriting class.
This case could be detected with an appropriate distance
function, e.g., the function can determine the distance to the
first ancestor class that is implementing, i.e., overriding a
class method. Consequently, the future work should include
evaluating different approaches for cost functions, instead of
the constant number and number of changed methods.

VI. RELATED WORK
There are various approaches in the related literature to
determine dissimilarity between trees [12], [21]. Tree Edit
Distance variants differ in the definition of used operations
and the conditions of the distance calculation [21]. Most of
the work is concentrated on the distance between ordered
trees [16]–[18], [20], [27], [28]. Compared to unordered
trees, there is an additional condition of order among sib-
lings. The TED definition in [18] and derivative works on
ordered [17], [27], and unordered [1] trees limit the possi-
ble operations by the condition of preserving the ancestor-
descendant relationship in the mapping between the trees.
In section II, the example shows that the resulting operations
are not suitable for detecting relationship changes between
nodes. Furthermore, edit distance is in general defined as the
lowest transformation cost. However, the work most similar
to ours is the unit cost algorithm [29] between ordered trees.
Similar to our approach, distance is defined as the minimum
number of operations, while the cost of node operations is
a unit cost. The approach presented in this paper is based
on unordered trees and cost for operations as cost functions.
The approach in [28], similar to ours, defines operations on
the edges instead of nodes, with relabeling, i.e., substitute
instead ofmove edge operation. It is based on the work of [17]
by using strings to calculate distance. On the other hand,

the GED algorithm [13] works on graphs and does not set
the condition of a preserved ancestor-descendant relation-
ship. With the defined cost for add, delete, and substitute
edge operation, GED can provide a similar result as EED.
However, node operations are implicitly included, and the
move edge operation defined in this paper is reflected as
delete and add edge operation. Furthermore, the best-first
algorithm is not efficient because the time complexity is
exponential.

VII. CONCLUSION
In this paper, edit operations on trees are presented by
edge edit operations, with the principal motivation to detect
changes in relationships between nodes. Edge edit operations
are introduced on the Edge Extended Tree (EET), to support
the same operations on all nodes in the tree, including the
root node. Based on EET and edge edit operations, Edge Edit
Distance (EED) is introduced, an edge dissimilarity measure
between unordered trees. It is shown that edge modifica-
tions cause indirect and inheritance changes in the relation-
ship between nodes. In order to detect inheritance changes
between unordered trees, inheritance operations are intro-
duced, and a dissimilarity measure, Tree Inheritance Distance
(TID) is defined. Efficient algorithms are presented for the
introducedmeasures, which are evaluated in experiment anal-
ysis of two publicly available object-oriented programs. The
results of comparing the EED with the TED variant indicate
that the EED could be used in some scenarios instead of the
TED. Furthermore, EED and TID experiment results on the
class hierarchy between program versions, are promising in
the program analysis domain, with emphasis on the software
evolution. Future work will include the evaluation of various
functions to observe changes in node and edge properties.
Furthermore, edge edit and tree inheritance distance could be
used in other application domains with a focus on the inheri-
tance relationship, e.g., molecular biology or phylogeny.
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