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ABSTRACT Recently, it has gained lots of interests to jointly learn the embeddings of knowledge
graph (KG) and text information. However, previous work fails to incorporate the complex structural signals
(from structure representation) and semantic signals (from text representation). This paper proposes a novel
text-enhanced knowledge graph representation model, which can utilize textual information to enhance the
knowledge representations. Especially, a mutual attention mechanism between KG and text is proposed to
learn more accurate textual representations for further improving knowledge graph representation, within
a unified parameter sharing semantic space. Different from conventional joint models, no complicated
linguistic analysis or strict alignments between KG and text are required to train our model. Besides,
the proposed model could fully incorporate the multi-direction signals. Experimental results show that the
proposed model achieves the state-of-the-art performance on both link prediction and triple classification
tasks, and significantly outperforms previous text-enhanced knowledge representation models.

INDEX TERMS Knowledge graph representation, textual relation representation, mutual attention mecha-
nism, representation learning.

I. INTRODUCTION
Knowledge Graphs (KGs) are graph-structured knowledge
bases, wherein factual knowledge is represented in the form
of relationships between entities, recorded as a set of rela-
tional triples (h, r, t), which indicate relation r between two
entities h and t . Knowledge Graphs have become a crucial
resource formany tasks inmachine learning, datamining, and
artificial intelligence applications including question answer-
ing [1], entity linking/disambiguation [2], text generation [3],
fact checking [4], short-text conceptualization [5], informa-
tion retrieval [6] and link prediction [7]. KGs are widely used
for many practical tasks, however, their completeness are not
guaranteed. Therefore, it is necessary to develop Knowledge
Graph Completion (KGC) methods to find missing or errant
relationships with the goal of improving the general quality
of KGs, which, in turn, can be used to improve or create
interesting downstream applications.
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Nowadays, a variety of low-dimensional representation-
based methods [8], [9] have been developed to work on
the KGC task. These methods usually learn continuous,
low-dimensional vector representations (i.e., embeddings)
for entities and relationships by minimizing a margin-based
pairwise ranking loss [10]. Motivated by the linear trans-
lation phenomenon observed in well trained word embed-
dings [11], Many Representation Learning (RL) based
algorithms [12]–[17], have been proposed, aiming at embed-
ding entities and relations into a vector space and predicting
the missing element of triples. These models represents the
head entity h, the relation r and the tail entity t with vectors
h, r and t respectively, which were trained so that h+ r ≈ t .
However, traditional knowledge graph model based on

representation learning, only utilizes the structure informa-
tion embedded in the given knowledge graph, and on the
other hand textual information in plain text provides abundant
semantic and contextual information, which could contribute
to disambiguation and completion of the entity represen-
tation and relation representation of the given knowledge
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graph. Hence, textual information could be regarded as
an effective supplements for knowledge graph comple-
tion task. To explore the instructive semantic signals from
the plain text, recently it has gained lots of interests to
jointly learn the embeddings of knowledge graph and text
information [18], [19], and there are several methods using
textual information to help KG representation learning based
on a jointly learning framework [13], [20]–[24], differ-
ent from the aforementioned work which reply only on
structure information of knowledge graph itself. In these
jointly-learning based models, text-based attention mecha-
nism [25]–[29] is widely used. However, attention values
assigned for the knowledge graph representation learning
(i.e., structure representation) and for the textual relation
representation learning (i.e., text representation) haven’t been
fully integrated [19], [22], [30]–[32]. Hence, the previous
work fails to incorporate the complex structural signals from
structure representation and semantic signals from text rep-
resentation. To fully incorporate the multi-direction signals,
this paper propose a novel mutual attention mechanism, and
therefore propose a text-enhanced knowledge graph represen-
tation with collaborative attention.

Actually, the main intuition behind the proposed mutual
attention is that there exists a mutually reinforcing rela-
tionship among the knowledge graph representation learning
(i.e., structure representation) and textual relation repre-
sentation learning (i.e., text representation), that could be
reflected in the iterative training procedure, which is inspired
by co-ranking strategy adopted in cooperative ranking over
heterogeneous elements (e.g., entities and relations). How-
ever, our proposed adaptation of the mutual attention mech-
anism to joint-learning task of knowledge graph and text is
novel, and could make the multi-direction signals, i.e., sig-
nals from knowledge graph representation learning to tex-
tual relation representation learning and vice versa, to be
fully integrated for deriving the solid joint-learning results
for model the semantic embedded in the given knowledge
graph.

In summary, the contributions of the proposed work are
concluded as follows: (i) We propose a novel mutual atten-
tion mechanism, which could mutually reinforce relationship
among the knowledge graph representation learning and the
textual relation representation learning; (ii) We propose a
novel text-enhanced knowledge graph representation with
mutual attention; and (iii) We show the effectiveness of our
model by outperforming baselines on benchmark datasets for
knowledge graph representation learning task.

II. RELATED WORK
Many knowledge graphs have recently arisen, pushed by
the W3C recommendation to use the resource descrip-
tion framework (RDF) for data representation. Exam-
ples of such knowledge graphs include DBPedia [33],
Freebase [34] and the Google Knowledge Vault [35].
Motivating applications of knowledge graph comple-
tion include question answering [36] and more generally

probabilistic querying of knowledge bases [37], [38]. First
approaches to relational learning relied upon probabilistic
graphical models [39], such as bayesian networks andmarkov
logic networks. Then, asymmetry of relations was quickly
seen as a problem and asymmetric extensions of tensors were
studied, mostly by either considering independent embed-
dings [40] or considering relations as matrices instead of vec-
tors in the RESCAL model [41]. Pairwise interaction models
were also considered to improve prediction performances.
For example, the Universal Schema approach [23] factorizes
a 2D unfolding of the tensor (a matrix of entity pairs vs.
relations).

Nowadays, a variety of low-dimensional representation-
based methods have been developed to work on the KGC
task, including Bilinear Model [42], Distance Model [8],
Unstructured Model [9], and Single Layer Model [20]. And
many translation-based methods are introduced, including
TransE [12] and its extensions like TransH [13], TransD [43],
TransR [14], TransG [15], ComplEx [16], and so on. These
methods usually learn continuous, low-dimensional vec-
tor representations (i.e., embeddings) for entities and rela-
tionships by minimizing a margin-based pairwise ranking
loss [10], [44]. The most widely used embedding model in
this category is TransE [12], which views relationships as
translations from a head entity to a tail entity on the same
low-dimensional plane. Based on the initial idea of treat-
ing two entities as a translation of one another (via their
relationship) in the same embedding plane, several models
have been introduced to improve the initial TransE model.
The newest contributions in this line of work focus pri-
marily on the changes in how the embedding planes are
computed and/or how the embeddings are combined. For
example, the entity translations in TransH [13] are computed
on a hyperplane that is perpendicular to the relationship
embedding. In TransR [14] the entities and relationships are
embedded on separate planes and then the entity-vectors are
translated to the relationship’s plane. Structured Embedding
(SE) [8] creates two translation matrices for each relation-
ship and applies them to head and tail entities separately.
Knowledge Vault [35] and HolE [45], on the other hand,
focus on learning a new combination operator instead of
simply adding two entity embeddings element-wise. Take
HolE as example, the circular correlation is used for com-
bining entity embeddings, measuring the covariance between
embeddings at different dimension shifts. Besides, [15] pro-
posed a manifold-based embedding principle to deal with
the overstrict geometric form of translation-based assump-
tion. Reference [16] employed complex value embeddings to
understand the structural information. However, only original
structure information is utilized in these traditional knowl-
edge graph representation learning methods, which directly
affect the disambiguation and completion of the entity repre-
sentation and relation representation of the given knowledge
graph.

To overcome this problem, recent research has explored the
instructive semantic signals from the plain text, and recently

52896 VOLUME 8, 2020



Y. Wang et al.: Model of Text-Enhanced KG RL With Mutual Attention

TABLE 1. Overview of notations in this study.

it has gained lots of interests to jointly learn the embeddings
of knowledge graph and text information [14], [18], [19], [46]
[18]. Several methods using textual information to help KG
representation learning based on a jointly learning framework
have been proposed [13], [20]–[24], different from the afore-
mentioned traditional representation learning work which
reply only on structure information of knowledge graph
itself. Generally, these kinds of jointly-learning based models
widely used the text-based attention mechanism [25]–[29].
Especially, [24] directly sum up knowledge and text rank-
ing scores. References [46] and [47] used neural networks
to embed text descriptions into knowledge graph embed-
ding spaces. Reference [19] extracted textual relations using
dependency parsing to incorporate text information. These
models need well-aligned datasets and cannot be well gener-
alized to most general cases of combining knowledge graph
and text. Reference [22] trained words and entities together
to let them share parameters. Reference [23] proposed uni-
versal schema to transmit information between relations of
knowledge graph and textual patterns via their common entity
pairs. Reference [32] further incorporated neural networks to
relax constraints imposed by entity pairs in universal schema.
These models have no need of strictly aligned datasets,
but only take partial information into consideration. These
works have achieved reasonable results by attempting to com-
bine knowledge graph and text for knowledge acquisition.
Unfortunately, in these models, attention values assigned for
the knowledge graph representation learning (i.e., structure
representation) and for the textual relation representation
learning (i.e., text representation) haven’t been fully inte-
grated [19], [22], [30]–[32]. Hence, the previous work fails
to incorporate the complex structural signals from structure
representation and semantic signals from text representation.
We argue that, there exists a mutually reinforcing relationship
among the knowledge graph representation learning (i.e.,
structure representation) and textual relation representation
learning (i.e., text representation), that could be reflected
in the iterative training procedure, which is inspired by
co-ranking strategy adopted in cooperative ranking over het-
erogeneous elements (e.g., entities and relations). To fully
incorporate the multi-direction signals, this paper propose a
novel mutual attention mechanism, and therefore propose a
text-enhanced knowledge graph representation with collabo-
rative attention. Our proposed adaptation of the mutual atten-
tion mechanism to joint-learning task of knowledge graph
and text is novel, and could make the multi-direction signals,
i.e., signals from knowledge graph representation learning to

textual relation representation learning and vice versa, to be
fully integrated for deriving the solid joint-learning results
for model the semantic embedded in the given knowledge
graph.

III. METHODOLOGY
In this section, we introduce the model of text and knowledge
graph jointly-learning with mutual attention, starting with
notations and definitions.

A. NOTATIONS AND DEFINITIONS
We denote knowledge graph (KG) as G = {E,R,T }, where
E , R and T indicate sets of entities, relations and facts respec-
tively. Each fact triple (h, r, t) ∈ T indicates a relation r ∈ R
between h ∈ E and t ∈ E .
Accompanying with G, we denote the text corpus con-

sisting of sentences as T . The vocabulary of T is denoted
as V . Each sentence in T is a sequence with n words s =
{w1, . . . ,wn}, wi ∈ V . In each sentence, there are two
annotated entity mentions along with a textual relation rs ∈ R
between them. For each entity, relation andword h, t ∈ E , r ∈
R and w ∈ V , we use the bold face h, t, r, w∈ Rkw to indicate
their low-dimensional vectors respectively, where kw is the
embedding dimension. The main parameters of the proposed
model is described in details in the following Table 1.

B. OVERVIEW
Overall, the proposed model aims to find optimal parameters:

θ̂ = argminL2(G,C) (1)

Which is denoted as the joint representations of enti-
ties, relationships and words. Wherein, L2(G,C) represents
the loss function defined over the given knowledge graph
G and the text corpus C , according to the parameters 2.
To closely coupling the process of knowledge graph repre-
sentation learning and the process of textual representation
learning, we could further reform L2(G,C) in the E.q. (1) as
follows:

L2(G,C) = LθEG ,θRG (G)+ α · LθRC (G,C)+ λ· ‖ 2 ‖l
(2)

wherein, we usually use the l2 norm of 2 to represent ‖
2 ‖l . LθEG ,θRG (G) is used to learn the vector represen-
tation for entities and relations from the given knowledge
graph G, which will be described in details in following
Section III-C, and LθRC (G,C) is used to learn the vector
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FIGURE 1. The overall framework of the proposed jointly-learning model with mutual attention.

representation for relations from the plain text in corpus C ,
which will be discussed in Section III-D. Besides, the widely-
used Skip-Gram mechanism [11] based on negative sam-
pling is leveraged for constructing word vector w ∈ Rk .
Figure 1 overview the architecture of the proposed model
for jointly-learning text and knowledge graph with mutual
attention (Section III-E), combing knowledge graph repre-
sentation learning (Section III-C) and textual relation rep-
resentation learning (Section III-D). Finally, the stochastic
gradient descent (SGD) strategy is applied to optimize the
optimization function in the proposed algorithm.

Besides, Figure 2 sketches the key modules of the overall
model:

FIGURE 2. The flow chart of the proposed approach for text-enhanced
knowledge graph representation with mutual attention.

(i) Knowledge Graph Representation Learning Module
(details in Section III-C): This module learning the embed-
ded representation for entity vector representation from

knowledge graph G and relation vector representation from
knowledge graph G, as shown in the green part in Figure 1.
(ii) Textual Relation Representation Learning Module

(details in Section III-D): This module learning the embedded
representation for relation vector representation from plain
text in corpus C , as shown in the blue part in Figure 1.

(iii) Mutual Attention Module (details in Section III-E):
During the training procedure, the proposed mutual attention
mechanism integrate the aforementioned modules, as shown
in the orange part in Figure 1 (Especially, green/blue crossed
dashed lines in Figure 1 represent the proposed mutual mech-
anism between knowledge graph representation learning and
textual relation representation learning).

In the following parts, we will describe each component in
detail.

C. KNOWLEDGE GRAPH REPRESENTATION LEARNING
Recently, to complete or predict the missing relation element
of triples, translation-based knowledge graph representa-
tion learning (RL) is widely deployed. RL embeds enti-
ties and relations into a vector space, and has produced
many successful translationmodels includingmodels, includ-
ing TransE [12], TransH [13], and TransR [14]. Therefore,
translation-based model is utilized here to learn the distri-
butional vector representation of entities and relations form
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knowledge graph G. In order to facilitate the description,
only TransE model [12], which aims to generate precise
vectors of entities and relations following the principle h +
r ≈ t , which means t is ‘‘translated’’ from h by r , is taken
here as an example to describe the modeling procedure.
Note that, any other knowledge graph embedding meth-
ods could be adopted here, because these methods usu-
ally learn continuous, low-dimensional vector representations
(i.e., embeddings) for entities and relationships by minimiz-
ing a margin-based pairwise ranking loss. The following
experimental section (Section IV) compare the experimen-
tal results of different kinds of knowledge graph represen-
tation learning methods based on translation mechanisms
(e.g., TransE [12], TransH [13], TransA [48], HolE [45] and
TransR [14], etc.,).

For a each couple of head entity h and tail entity t defined in
given knowledge graphG, we assume that there is an implicit
relation vector rh,t , indicating the ‘‘translation’’ from head
entity vector hG (respect to the head entity h) to tail entity
vector tG (respect to the tail entity t), as follows:

rh,t = tG − hG (3)

Moreover, we could denote rG as the explicit relation vector
for each triple (h, r, t) ∈ T defined in knowledge graph G,
representing the ‘‘translation’’ from hG to tG. E.q. (4) shows
that, for each (h, r, t) ∈ T , We would like that tG − hG ≈
rG, hence the score function for each triple (h, r, t) could be
defined as follows:

ϕr (h, t) =‖ rh,t − rG ‖l=‖ (tG − hG)− rG ‖l (4)

Usually, l2 norm is utilized in E.q. (4). Based on the this
score function, the loss function over all the triples in T ,
LθEG ,θRG (G) in E.q. (2), could be defined as follows:

LθEG ,θRG (G) =
∑

(h,r,t)∈T

∑
(h′,r,t ′)∈T ′

[µ+ ϕr (h, t)− ϕr (h′, t ′)]+

(5)

wherein, µ > 0 represents the margin parameter. [x]+ = x
where x > 0, and [x]+ = 0 where x ≤ 0. µ > 0
represents the margin parameter. T ′ is the set of negative
triple respect to T defined above, i.e., we need to sample
a negative triple (h′, r, t ′) to compute loss, given a positive
triple (h, r, t) ∈ T . We construct a set of negative triples by
replacing the head entity h or tail entity t with a random entity
uniformly sampled from the knowledge graph G, following
previous work [14], [49], [50], which is widely used in many
research. Therefore, h′ ∈ E and t ′ ∈ E indicate the negative
head entity and tail entity obtained by random sampling
respectively.

D. TEXTUAL RELATION REPRESENTATION LEARNING
The main goal of textual relation extraction is to determine a
type of relation between two entities appearing together in a
piece of text. Following [51], to each occurrence of the target
entity pair h and t in the given sentence d , we should assign

a relation type r ∈ R, representing the implicit semantic of
the textual relation between these two entities, for h and t .
Recently, the deep neural network models and representation
learning strategy, are widely-used in previous work [51], [52]
for capturing textual relations, which are projected into a
low-dimensional semantic space in these models. Compared
with the traditional algorithm [30], the algorithm based on
deep learning can accurately model the semantic relation
between entities from context fragments without using extra
and explicit syntactic feature [53], [54]. The convolutional
neural network (CNN) is adopted in this study for textual
relation representation learning.

Therefore, given a sentence d = {w1, · · · ,w|d |} contain-
ing entity pair (h, t), we assume that this sentence includes
semantic signals about textual relation rC . CNN is utilized
here to expose implicit semantic of the textual relation
between entity h and entity t . The procedure could be
described as follows. There exists relation r defined in the
knowledge graph between h and t , and the corresponding
relation vector is denoted as rG. The concatenation of word
vectors (wi) and their corresponding position vectors (pi),
is utilized as CNN’s input, and we could obtain the final
embedded vector rC for textual relation with the pooling layer
and the convolution layer of CNN. The score function for the
given sentence d could be defined as follows:

ψr (d) =‖ rC − rG ‖2 (6)

With efforts above, the loss function over all the sentence in
corpusC ,LθRC (G,C) in E.q. (2), could be defined as follows:

LθRC (G,C) =
∑
d∈C

∑
r ′ 6=r

[γ + ψr (d)− ψr ′ (d)]+ (7)

E. JOINTLY-LEARNING WITH MUTUAL ATTENTION
The proposed mutual attention mechanism for text
and knowledge graph jointly-learning could make the
multi-direction signals, i.e., signals from KG represen-
tation learning to textual relation representation learning
(Section III-E.1) and vice versa (Section III-E.2), to be fully
integrated for deriving the solid joint-learning results for
model the semantic embedded in the given knowledge graph.

1) ATTENTION FROM TEXTUAL RELATION REPRESENTATION
LEARNING TO KG REPRESENTATION LEARNING
As discussed above, given relation r defined in the knowl-
edge graph (KG), there exist two kinds of relation vectors
for r : (i) Implicit relation vectors: we assume that there
exist m pairs of entities which are eligible to relation r ,
{(h1, t1), · · · , (hm, tm)} (shown in Figure 1), and the corre-
sponding implicit relation vectors are {rh1,r1 , · · · , rhm,rm},
representing the translation from head entity vector hiG
(cor responding to head entity hi) to tail entity vector tiG
(corresponding to tail entity ti). (ii) Explicit relation vector:
there exists an explicit relation vector rG corresponding to
relation r defined in knowledge graph. However, not each
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rhi,ri contributes to rG equally, let alone the noise. To over-
come this problem, we attempt to leverage the beneficial
semantic signal from textual relation representation learning
for knowledge graph representation learning, by introducing
a softmax-based attention mechanism (notation ‘‘C → G’’
indicating the attention direction from corpus to knowledge
graph), as follows:

ATTC→G[i] = Softmx[rhi,ri · tanh(MC→G · rC + bC→G)]

(8)

wherein, {MC→G ∈ Rk×k , bC→G ∈ Rk} are parts of param-
eters to be trained. With efforts above, the implicit relation
representation rh,t (E.q. (3)) could be modeled as follows:

rh,t =
m∑
i=1

ATTC→G[i] · rhi,ri (9)

wherein, ATTC→G[i] denotes the i-th attention for the
corresponding implicit vector rhi,ri , representing the Con-
fidence of the implicit vector. Therefore, we could
redefine score function (E.q. (4)) for each triple (h, r, t) ∈
{(h1, r, t1), · · · , (hm, r, tm)}, as follows:

ϕr (h, t) =‖ rh,t − rG ‖l (10)

Intuitively, this score function is respect to the red dashed
line in Figure 1, marked with ‘‘bridging the gap between rh,t
and rG’’. Based on the this score function, the loss function
over all the triples in {rh1,r1 , · · · , rhm,rm}, LθEG ,θRG (G) in
E.q. (2), could be defined as following E.q. (11), shown at
the bottom of the next page. Wherein, the definition of µ > 0
and [·]+ are the same with E.q. 5.

2) ATTENTION FROM KG REPRESENTATION LEARNING TO
TEXTUAL RELATION REPRESENTATION LEARNING
As discussed in Section III-D, for each relation r ∈ R
defined in the knowledge graph G, we could derive a set of
sentences, {d1, · · · , dn} (shown in Figure 1), which reveal the
implicit semantic of the textual relation rC of relation r with
the occurrence of the target entity pair h and t in this sen-
tence while the triple (h, r, t) is defined in given knowledge
graph. Besides, the corresponding output embedded relation
vectors are {rC1 , · · · , rCn}. On the other hand, there exists
an explicit relation vector rG corresponding to relation r .
We aims at bridging the gap between rC and rG (as described
in E.q. (6)), with the help of modeling {d1, · · · , dn} to gener-
ate {rC1 , · · · , rCn}. However, facing the same difficulties with
representation learning of knowledge graph (i.e., structure
representation learning in Section III-C), not each dj con-
tributes to rC equally. To overcome this problem,we seek help
from the beneficial semantic signal from knowledge graph
representation learning for enhance the semantic robustness
of textual relation representation learning, by introducing a
softmax-based attention mechanism (notation ‘‘G → C’’
representing the attention direction from knowledge graph to
corpus), as follows:

ATTG→C = Softmx[rh,t · tanh(MG→C · rCj + bG→C )]

(12)

wherein, MG→C ∈ Rk×k and bG→C ∈ Rk are a part
of parameters to be trained. With efforts above, the final
embedded vector rC for textual relation (in E.q. (6)) could
be modeled as follows:

rC =
n∑
j=1

ATTG→C [j] · rCj (13)

wherein, ATTG→C [j] corresponds to the attention for j-th
sentence with the occurrence of the target entity pair h and
t in this sentence while the triple (h, r, t) is defined in given
knowledge graph G, measuring the importance of the corre-
sponding embedded vector rCj . Therefore, we could redefine
score function (E.q. (6)) for each sentence in {d1, · · · , dn},
as follows:

ψr (d) =‖ rC − rG ‖l (14)

This score function is respect to the red dashed line in
Figure 1, marked with ‘‘bridging the gap between rC and rG’’.
With efforts above, based on the this score function, we
form the loss function over all the sentences in {d1, · · · , dn},
LθRC (G,C) in E.q. (2), as follows:

LθRC (G,C) =
∑

d∈{d1,··· ,dn}

∑
r ′ 6=r

[γ + ψr (d)− ψr ′ (d)]+ (15)

IV. EXPERIMENTS
We evaluate our proposed text-enhanced knowledge graph
representation model with mutual attention based on Knowl-
edge Graph Completion (KGC) task, mainly consists of:
Link Prediction (Section IV-C), and (ii) Triple Classification
(Section IV-D). Besides, the statistical t-test [55], [56] is
employed here: To decide whether the improvement by algo-
rithm A over algorithm B is significant, the t-test calculates a
value p based on the performance of A and B. The smaller p
is, the more significant the improvement is. If the p is small
enough (p < 0.05), we conclude that the improvement is
statistically significant.

A. DATASETS
This paper conducts experiments on the dataset WN11
(WordNet), dataset WN18 (WordNet), dataset WN18RR
(WordNet), dataset FB13 (Freebase), dataset FB15k (Free-
base) and dataset FB15k-237 introduced by [12], [13], [17],
[57], [58], to evaluate the proposed text-enhanced knowledge
graph representation model with mutual attention. Note that,
we use the same training\validation\test split as in previ-
ous work. The statistic information of the aforementioned
datasets is sketched in Table 2.Wherein, |E| and |R| represent
the number of entities and relation types respectively. #Train,
#Valid and #Test indicate the numbers of triple in the training,
validation and test sets, respectively. Moreover, a Wikipedia
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TABLE 2. Statistics of dataset WN11, dataset WN18, dataset WN18RR,
dataset FB13 and dataset FB15k and dataset FB15k-237.

dataset is constructed with help fo the following strategies
[59]: We preprocess theWikipedia articles with the following
rules. First, we remove the articles less than 100 words,
as well as the articles less than 10 links. Then we remove
all the category pages and disambiguation pages. Moreover,
we move the content to the right redirection pages. Finally we
obtain about 3.74 million Wikipedia articles for indexing.

B. COMPARATIVE MODELS
Following [60], TransE [12], TransH [13], TransR [14] and
ComplEx [16] are utilized here for the baseline models, and
we introduce two kinds of extended versions:
(i) JOINT+TransE, JOINT+TransH, JOINT+TransR,

and JOINT+ComplEx, which are enhanced text sig-
nals with E.q. (4), E.q. (5), E.q. (6), and E.q. (7);

(ii) maJOINT+TransE, maJOINT+TransH, maJOINT+
TransR, and maJOINT+ComplEx, which are
enhanced text signals with E.q. (10), E.q. (11), E.q. (14),
and E.q. (15).

The prefix ‘‘ma-’’ (respect to ‘‘mutual attention’’), distin-
guishes these two kinds of extended versions, indicating
whether the mutual attention is used. Besides, TransD [43],
TransA [48],HolE [45],TransG [15] are also introduced for
the contrast experiments.

C. LINK PREDICTION TASK
Link prediction aims at predicting the missing relation when
given two entities, i.e., we predict r given (h, ?, t). Following
[17], [60]–[62], the dataset WN18, dataset WN18RR, dataset
FB15k and dataset FB15k-237 are the benchmark datasets
for this task. According to the previous work, for each triple
(h, r, t) in the test set, we replace the relation r with every
relation in the dataset. Overall, the original TransE [12],
TransH [13], TransR [43], TransD [43] and TransG [15]
and ComplEx [16] are introduced here, and boosted by
the proposed jointly-learning model, and furthermore com-
pared with their enhanced variant with TEKE [47]. Two
widely-used measures are considered as evaluation metrics
in our experiments: (i) Mean Rank (MR), indicating the mean
rank of original triples in the corresponding probability ranks;

and (ii) HITS@N , indicating the proportion of original triples
whose rank is not larger than N (N = 10 is utilized here).
Lower mean rank or higher HITS@10 mean better perfor-
mance. As the datasets are the same, we directly reuse the
experimental results of several baselines from the previous
literature [17], [60].

For dataset WN18 and dataset WN18RR, the optimal-
parameter configurations are described as follows:
(i) the learning rate for LθEG ,θRG (G) in E.q. (2) is 0.0005,
(ii) the learning rate for LθRD (G,D) in E.q. (2) is 0.0005,
(iii) the vector dimension k is 300, (iv) the harmonic factors
α and λ in E.q. (2) are set as 0.00005 and 0.0001 respectively,
and (v) themargin parametersµ in E.q. (11) and γ in E.q. (15)
are set as 5 and 3 respectively. We train the model until
convergence. For dataset FB15k and dataset FB15k-237, the
optimal-parameter configurations are described as follows:
(i) the learning rate forLθEG ,θRG (G) in E.q. (2) is 0.001, (ii) the
learning rate for LθRD (G,D) in E.q. (2) is 0.0005, (iii) the
vector dimension k is 230, (iv) the harmonic factors α and
λ in E.q. (2) are both set as 0.0001 respectively, and (v) the
margin parameters µ in E.q. (11) and γ in E.q. (15) are set
as 3 and 4 respectively.

The overall link prediction results are presented in Table 3
sketches the overall evaluation results of link prediction
task on several datasets. Both maJOINT+TransR and
maJOINT+ComplEx have reached the best experimen-
tal results at metric HITS@10, in most cases. The pro-
posed text and knowledge graph jointly-learning model
with mutual attention outperforms previous text-enhanced
knowledge representation models in the most cases, and
the enhancements from the proposed mutual attention are
more marked at metric HIT@10 compared with metric
MR. E.g., for daset FB15K-237, compared with conven-
tional TransE [12], our maJOINT+TransE improves the
average accuracy by 5.16% for metric HIT@10, while
the improvement over metric MR is 57.93%; compared
with TransR [14], our jointly-learning enhanced model
maJOINT+TransR improves the average accuracy by
3.56% for metric HIT@10, while the improvement over
metric MR is 13.89%; The proposed mutual attention
methodology among text and KG has more evident effect
on upgrading of performance on dataset FB15K, which
contains more complex relationship types, than dataset
WN18: (i) On datset WN18, compared with TransE [12],
our maJOINT+TransE improves the average accuracy
by 5.27% for metric HIT@10. Similarly, compared with
TransH [13] and ComplEx [16], our maJOINT+TransH
improves the average accuracy by 9.34% for metric
HIT@10. (ii) On datset FB15K, compared with TransE [12],
our maJOINT+TransE improves the average accuracy
by 67.09% for metric HIT@10. Similarly, compared with

LθEG ,θRG (G) =
∑

(h,r,t)∈{(h1,r,t1),··· ,(hm,r,tm)}

∑
(h′,r,t ′)/∈{(h1,r,t1),··· ,(hm,r,tm)}

[µ+ ϕr (h, t)− ϕr (h′, t ′)]+ (11)
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TABLE 3. Performance of link prediction task on dataset WN18, dataset WN18RR, dataset FB15K and dataset FB15K-237 (MR and HIT@10). The
superscript §, ?, † and ‡ respectively denote statistically significant improvements over TransE [12], TransR [14], TransG [15] and ComplEx [16] (p < 0.05).

TransH [13] and ComplEx [16], our maJOINT+TransH
and maJOINT+ComplEx improves the average accuracy
by 28.38% and 5.12%, respectively for metric HIT@10.

Interestingly, the performance of the conventional
TransR [14] is not being as good as that of conventional
ComplEx [16], however our jointly-learning mechanism
make it be a match forComplEx. Actually, the main intuition
behind the proposed mutual attention is that there exists
a mutually reinforcing relationship among the knowledge
graph representation learning (i.e., structure representation)
and textual relation representation learning (i.e., text rep-
resentation), that could be reflected in the iterative train-
ing procedure, which is inspired by co-ranking strategy
adopted in cooperative ranking over heterogeneous elements
(e.g., entities and relations).

Moreover, note that, we use two recent benchmark datasets
WN18RR and FB15k-237 here. These two datasets are cre-
ated to avoid reversible relation problems, thus the prediction
task becomes more realistic and hence more challenging. The
experimental results support this phenomenon: (i) the perfor-
mance of most of the comparative models degrades on these
dataset; (ii) the proposed text-enhanced model achieves the
optimal results on all the metric (e.g., maJOINT+TransR
and maJOINT+TransE on dataset WN18RR).

D. TRIPLE CLASSIFICATION TASK
Generally, the triple classification is a classical task in knowl-
edge base embedding, which aims at predicting whether a
given triple (h, r, t) is correct or not [12], [17], [47]. Follow-
ing [20], [60], our evaluation protocol is the same as prior
studies. Besides,WN11 and FB13 are the benchmark datasets
for this task, and binary classification accuracy (%) is used as
the evaluation metric here. Evaluation of classification needs
negative labels. Especially, the datasets above mentioned
have already been built with negative triples, where each
correct triple is corrupted to get one negative triple.

TABLE 4. Performance of triple classification task on dataset WN11 and
dataset FB13 (Accuracy(%)). The superscript §, ?, † and ‡ respectively
denote statistically significant improvements over TransE [12],
TransR [14], TransG [15] and ComplEx [16] (p < 0.05).

We leverage the proposed jointly-learning model with
mutual attention mechanism, for boosting the original
TransE [12], TransH [13], TransR [43] andComplEx [16],
and compare with their enhanced variant with TEKE [47].
Besides, similar to previous evaluation section, TransD [43],
TransA [48],HolE [45] andTransG [15] are also introduced
for the contrast experiments.

As all methods use the same datasets, we directly copy the
results of different methods from the previous literature (such
as [60]), and the overall results of triple classification task
are listed in Table 4. We have tried several settings on the
validation dataset to get the best configuration, the optimal
configurations are: For dataset WN11, (i) the learning rate
for LθEG ,θRG (G) in E.q. (2) is 0.0005, (ii) the learning rate
for LθRC (G,C) in E.q. (2) is 0.001, (iii) the vector dimension
k is 200, (iv) the harmonic factors α and λ in E.q. (2) are
set as 0.00005 and 0.0001 respectively, and (v) the margin
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parameters µ in E.q. (11) and γ in E.q. (15) are set as 3 and 4
respectively. We train the model until convergence. For
dataset FB13, (i) the learning rate for LθEG ,θRG (G) in E.q. (2)
is 0.001, (ii) the learning rate for LθRC (G,C) in E.q. (2)
is 0.001, (iii) the vector dimension k is 250, (iv) the har-
monic factors α and λ in E.q. (2) are set as 0.00005 and
0.0001 respectively, and (v) the margin parameters µ in
E.q. (11) and γ in E.q. (15) are set as 5 and 4 respectively.
From Table 4, we observe that: the proposed text-enhanced

knowledge graph representation learning model yields
the best average accuracy in most cases, illustrat-
ing the effectiveness of the mutual attention mecha-
nism. Compared with the conventional TransE [12],
TransH [13] and ComplEx [16], our maJOINT+TransH
and maJOINT+ComplEx improves the average accuracy
by 10.67%, 7.40% and 2.21%, respectively. This proves the
theoretical analysis and the effectiveness of the proposed
jointly-learning representation model with with mutual atten-
tion, which could utilize accurate textual information enhance
the knowledge representations of a triple. Furthermore,
compared with JOINT+TransE and JOINT+TransH,
the mutual attention variants maJOINT+TransE and
maJOINT+TransH perform better and especially improve
the average accuracy by 9.15% and 3.32%, respectively.
The results verifies that it is critical to introduce the mutual
attention mechanism (details in Section III-E) to mutually
reinforce the relationship among the knowledge graph rep-
resentation learning (details in Section III-C) and textual
relation representation learning (details in Section III-D),
as described in Figure 1.

V. DISCUSSION
A typical knowledge graph (KG) is usually a multiple rela-
tional directed graph, recorded as a set of relational triples
(h, r, t), which indicate relation r between two entities h
and t . Recently, it has gained lots of interests to jointly
learn the embeddings of knowledge graph (KG) and text
information. previous work fails to incorporate the complex
structural signals from structure representation and semantic
signals from text representation. We argue that, there exists
a mutually reinforcing relationship among the knowledge
graph representation learning (i.e., structure representation)
and textual relation representation learning (i.e., text rep-
resentation), that could be reflected in the iterative train-
ing procedure, which is inspired by co-ranking strategy
adopted in cooperative ranking over heterogeneous ele-
ments (e.g., entities and relations). Hence, to fully utilize
the mutually reinforcing relationship among the knowledge
graph representation learning (i.e., structure representation
in Section III-C) and textual relation representation learning
(i.e., text representation in Section III-D), this paper pro-
poses a novel mutual attention mechanism to enhance the
knowledge graph representation by text semantic signals,
which could make the multi-direction signals, i.e., signals
from knowledge graph representation learning to textual
relation representation learning and vice versa (details in

Section III-E), to be fully integrated. Empirically, we show
the proposed text-enhanced knowledge graph representation
with mutual attention can improve the performance of the
current translation-based knowledge representation models
on several benchmark datasets (details in Section IV).

VI. CONCLUSION
In this paper, we propose an accurate text-enhanced
knowledge graph representation framework, which can uti-
lize accurate textual information enhance the knowledge rep-
resentations of a triple, and can work well with non-strictly
aligned data through a mutual attention model between KG
and text. Experiment results show that our method can
achieve the state-of-the-art performance, and significantly
outperforms previous text-enhanced knowledge representa-
tion models. And the mutual attention between relation
mentions and entity descriptions can significantly improve
the performance of knowledge representation. This paper
achieves new state-of-the-art performances on link prediction
and triple classification tasks over most widely used bench-
marks. For future work, wewant to further exploit entity types
and logic rules as constraints to further improve knowledge
representations.
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