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ABSTRACT A broadband circularly polarized (CP) cross-dipole antenna with multiple modes is proposed.
The antenna is composed of two pairs of crossed strip dipoles as driven elements, four square-slot patches,
and four corner-truncated patches as parasitic elements. A pair of vacant-quarter printed rings is used as
sequential phase feeding structure to generate a CP mode, which connect to crossed strip dipoles. By using
these coupled rotated elements, multiple CP modes can be stimulated to satisfy the need of broadband CP
radiation. In addition, four shorted squaremetal columns are also introduced in the antenna design to generate
an additional CP resonance. A verified prototype was fabricated and measured in this paper. The measured
results demonstrate the proposed antenna features wideband CP characteristics with a wide impedance
bandwidth (IBW) of 95.5% (0.92-2.60 GHz) and a broad axial-ratio bandwidth (ARBW) of 94.4%
(0.95-2.65 GHz).

INDEX TERMS Broadband, circularly polarized (CP), cross-dipoles, parasitic elements, sequentially rotated
configuration.

I. INTRODUCTION
Owing to the outstanding features of suppressing multipath
effects and mitigating polarization mismatch compared with
linearly polarized antennas, circularly polarized (CP) anten-
nas have been increasingly attractive in modern commu-
nication systems, for example various navigation satellite
system (GPS/BDS/GLONASS), radio frequency identifica-
tion (RFID), andwireless local area network (WLAN). Due to
these communication systems usually operate in different fre-
quency bands, multiple antennas will be inevitably installed
together to simultaneously satisfy these application demand,
which increases the complexity and push up cost of system.
Therefore, wideband CP antenna will be a potential candidate
for implement multiple bandwidth coverage.

In past years, all kinds of broadbandCP antennas have been
designed by utilizing different radiated structures [1]–[20].
Such as utilizing higher resonator order modes [1] or intro-
ducing additional dielectric resonators [2], using external
hybrid couplers [3], dielectric polarizers [4] or artificial
magnetic conductors [5], etc. Among them, cross-dipole
antenna is one of the most popular antennas for obtaining
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wideband CP radiation due to its excellent wideband opera-
tion characteristics. As a result, various cross-dipole antenna
structures have been massively investigated to enhance the
CP performance [6]–[17]. Recently, a vacant-quarter ring
rotated feeding structure has attracted a lot of attention,
and has been applied in CP antenna design due to its
unique characteristic of 90◦ phase difference. In [6], a
cross-dipole loaded with strip-line was used to achieve
15.6% CP bandwidth. Based on this configuration, sev-
eral wideband CP antennas with parasitic elements are
designed in [7]–[13], for example, parasitic loop resonators
(28.6%) [2], parasitic magneto-electric dipoles (26.8%) [8],
parasitic rotated-circular dipoles (47.8%) [9], a parasitic
asymmetrical dipoles (53.4%) [10], a dual-square cavity
ground (66.7%) [11], four parasitic triangle-patches [12], and
four shorted coupled pads [13].

Apart from these parasitic strips, planar modified cross-
dipoles [14]–[19] are also a potential means for obtaining
broad CP performance. In [14], by introducing rectangular
planar crossed dipoles, a wideband CP antenna with 24% CP
bandwidth was obtained. Similarly, an elliptical cross-dipole
patch, an asymmetric bowtie cross-dipole patch, a slit-
loaded rectangular slot patch, a stepped rectangular patch
and a L-shaped patch in [15]–[19] were employed to obtain
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wideband 3-dB axial ratio bandwidth (ARBW) of 96.6%,
51%, 23.2%, 55.1% and 67.5% respectively. Recently, some
works show that the CP performance of antenna can also
be further improved by introducing parasitic elements on
the planar modified cross-dipoles [20]–[25]. By combin-
ing a bowtie-shaped parasitic patch with bowtie cross-
dipoles [20], a CP antenna with 58.6% 3-dB ARBW can be
realized. Correspondingly, a parasitic patch was etched on
half ellipse cross-dipoles [21], achieves 68.6% 3-dB ARBW.
A crossed-stepped-dipole loaded with a parasitic cross-
slotted square patch, a crossed-slot-dipole with four bowtie-
patches, a driven crossed-strip-dipole with two kinds of
parasitic elements and a trapezoidal-cross-dipole with iden-
tical elements (horizontal and vertical part) are designed
in [22]–[25], because these parasitic structures can generate
additional CP mode, these CP antennas can realize 59.1%,
90.9%, 66% and 63.4% 3-dB ARBW respectively.

In this paper, we proposed a new broadband CP crossed
dipole antenna with multiple modes. The antenna is com-
posed of two pairs of cross-strip dipoles as driven elements,
four square-slot patches, and four corner-truncated patches as
parasitic elements. vacant-quarter rings are used as sequential
phase feed-structure to generate a CP mode, which connect
to crossed strip dipoles. By using these coupled rotated ele-
ments, multiple CP modes can be stimulated to satisfy the
need of broadband CP radiation. In addition, four shorted
square metal columns are also introduced in the antenna
design to generate an additional CP resonance. A verified
prototype was fabricated and measured in this paper. The
tested results demonstrate the presented antenna features
broadband CP performance with a wide impedance band-
width (IBW) of 97.1% (0.90-2.60 GHz) and a broad axial-
ratio bandwidth (ARBW) of 91.4% (0.95-2.55 GHz). Due to
the compact structure and wideband bandwidth CP perfor-
mance, the presented antenna might be suitable in modern
communication systems for CP applications, for example,
the GPS systems (L1 1.575 GHz) and WiBro systems
(2.3-2.39 GHz).

II. ANTENNA DESIGN
A. ANTENNA CONFIGURATION
The geometry of the presented CP cross-dipole antenna is
depicted in Fig. 1. The antenna is composed of two pairs
of crossed strip dipoles (L3×W3) as driven elements, four
outer parasitic elements (L1×L1) loaded with a tilted slot
(L5×W5), and four inner parasitic elements (L2×L2) with
truncated corner (W2×W2), which are arranged perpendicu-
lar to each other. vacant-quarter rings [1]–[20] are designed
to connect the cross-strip dipoles as feeding structure, due
to the ring length of λg/4 providing a 90◦ phase difference
between adjacent dipoles, which can stimulate CP radiation
wave. R0 and R1 represent the values of inner and outer
radiuses, respectively. It is noticed that the outer parasitic ele-
ments are connected to the end of driven crossed strip dipoles
by a coplanar waveguide feeding structure, while the inner

FIGURE 1. The geometry of the proposed antenna.

TABLE 1. The geometrical parameters of the proposed antenna.

parasitic elements are placed at the edge of driven cross-strip
dipoles by a capacitively coupled way. Meanwhile, these
parasitic elements, driven elements and vacant-quarter rings
are together printed on both side of an FR4-epoxy dielectric
substrate (εr = 4.4 and tanδ = 0.02), one of which is sym-
metric about the origin of the coordinates. Moreover, a square
ground plane (L×L) is employed to solder 50-coaxial cable
as a reflector with the height of H1 to achieve a directional
radiation pattern. The optimized dimensional parameters of
the presented antenna are listed in Table 1.

B. ANTENNA MECHANISM
In this section, an evolution of the presented antenna is
shown to demonstrate the bandwidth enhancement mecha-
nism in Fig. 2. Four antenna prototypes are proposed: Ant. 1:
a common cross-dipole; Ant. 2: a cross-dipole with outer par-
asitic square elements loadedwith tilted slot; Ant. 3: introduc-
ing inner square parasitic elements based on Ant. 2; Ant. 4:
Ant. 3 with four shorted square metal columns. Fig. 3(a) and
Fig. 3(b) show the corresponding simulated |S11| and AR
results, respectively. Firstly, we can see that the Ant. 1 has
a narrow circularly polarized bandwidth (CPBW) due to this
usually structure in [1]–[20]. Secondly, by introducing para-
sitic square elements loaded with tilted slot into Ant. 2, a new
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FIGURE 2. Four antenna structures in the design process.

FIGURE 3. |S11| and AR curves for different antennas, (a) |S11| curves
(b) AR curves.

AR resonance point is excited at 1.2 GHz, and the whole
CPBW of Ant. 2 shifts towards low frequency. However,
it needs to point out that the CPBW performance of Ant. 2 is
poor and not satisfied with the need of application. To fur-
ther enhance the CP performance and broaden the CPBW,
four square parasitic elements are inserted to the Ant. 2,
the IBW and ARBW of the Ant. 3 is significantly improved,
and another AR resonance point is stimulated at 2.6 GHz.
Eventually, Ant. 4 with four shorted square metal columns is
designed to realize a broadband CP radiation. It is noticed that
the CPBW is greatly enhanced to 91.4% (0.95-2.55 GHz).
This is because that the combination of shorted square metal
columns with outer parasitic square elements can be regarded
as electric-magnetic dipoles, which can generate a new AR
resonance point at 1 GHz. As a consequence, the antenna
realizes a broad 3-dB ARBW of 91.4% (0.95-2.55 GHz) and
a wide -10-dB IBW of 97.1% (0.90-2.60 GHz).

To illustrate the CP operation mechanisms of the pre-
sented antenna, the simulated surface current distributions on
Ant. 1-Ant.4 at different frequency point and time phases are
depicted in Fig. 4(a)-Fig. (d), respectively. At 1 GHz, the sim-
ulated current distributions mainly concentrate on the outer
parasitic elements and four shorted square metal columns,
and this distribution is similar to the shorted parasitic ele-
ments in [25]. Therefore, the combining four short square
metal columns with outer parasitic elements can be regarded
as a pair of crossed electric-magnetic dipoles, which can
realize wider CP radiation, and radiate left-hand circularly
polarized (LHCP) waves at same frequency with different
time phases. It is observed that surface current distributions
of Ant. 1-3 are mainly concentrated on cross-dipoles, outer
parasitic elements and inner parasitic elements at 2.1 GHz,
1.2 GHz and 2.6 GHz, respectively, which are good consistent
with the results of evolution of the antenna. In Fig. 4(a)-4(d),
it can be observed that the surface current directions are
clockwise with different time phases, and orthogonal in 0◦

and 90◦. Thus, the presented antenna can excite LHCP waves
at 1 GHz, 1.2 GHz, 2.1 GHz and 2.5 GHz.

FIGURE 4. Simulated current distributions on the Ant. 1-4 with the
phases of 0◦ and 90◦ at (a) 2.1 GHz, (b) 1.2 GHz (c) 2.6 GHz and (d) 1 GHz,
respectively.

C. ANTENNA PARAMETER ANALYSIS
Fig. 5 shows the change of IBWs and ARBWs with dif-
ferent lengths of the outer parasitic elements (L1), inner
parasitic elements (L2), crossed strip dipoles (L3) and shorted
square metal columns (L6). It is observed that the parame-
ters L1 and L2 have obviously impact on ARBWs in high
frequency. However, the parameters L3 and L6 have influ-
ence on IBWs and ARBWs in low frequency and mid-
dle frequency, this is because that the crossed strip dipoles
and shorted square metal columns generate resonant point
at 1.3 GHz and 1.0 GHz. These are consistent with the
surface current distributions in Fig. 4. Moreover, in order
to illustrate the proposed antenna has an excellent perfor-
mance, a distinct comparison between the previous cross-
dipole CP antenna and presented CP antenna is plotted
in Table 2.

VOLUME 8, 2020 66491



L. Wang et al.: Broadband CP Cross-Dipole Antenna With Multiple Modes

FIGURE 5. AR of the proposed antenna with different parameters: (a) L1,
(b) L2, (c) L3 and (d) L6.

TABLE 2. Comparison of the proposed antenna to previous presented
antenna.

FIGURE 6. and measured |S11| and AR results of the antenna.

III. EXPERIMENTAL RESULTS
The presented broadband CP cross-dipole antenna was fab-
ricated, and measured to validate the accuracy of the opti-
mized design. The comparison of the simulated andmeasured
|S11| and AR are shown in Fig. 6. It can be known that the

FIGURE 7. Simulated and measured antenna gains and measurement
photograph.

FIGURE 8. Simulated and measured antenna radiation patterns
at (a) 1.0 GHz, (b) 1.3 GHz, (c) 1.9 GHz and (d) 2.5 GHz.

simulated |S11| and AR are 97.1% (0.90-2.60 GHz) and
91.4% (0.95-2.55 GHz), respectively. However, the mea-
sured |S11| and AR are 95.5% (0.92-2.60 GHz) and
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94.4% (0.95-2.65 GHz), respectively. The measured results
slightly shift towards high frequency compared with sim-
ulated results due to fabrication and measurement errors.
Fig. 7 depicts the simulated and measured broadside gain,
and the average gain is about 6.8 dBic within the CPBW.
In addition, Fig. 8(a)-8(d) plots the simulated and measured
unidirectional radiation patterns at 1, 1.3, 1.9, and 2.5 GHz,
respectively. It is noted that the stable patterns can be obtained
through whole operating bandwidth, and the LHCP radiation
patterns can be seen as expected.

IV. CONLUSIONS
In this paper, a broadband crossed dipole CP antenna with
multiple modes is proposed. The antenna is composed of two
pairs of cross-strip dipoles as driven elements, four square-
slot patches, and four corner-truncated patches as parasitic
elements. A pair of vacant-quarter printed rings is used as
sequential phase feeding structure to generate a CP mode,
which connect to crossed strip dipoles. By using these cou-
pled rotated elements, multiple CP modes can be stimulated
to satisfy the need of broadband CP radiation. In addition,
four shorted square metal columns are also introduced in the
antenna design to excite an additional CP resonance. A veri-
fied prototype was fabricated and measured in this paper. The
measured results demonstrate the designed antenna features
broadband CP performance with a wide IBW of 95.5%
(0.92-2.60 GHz), and a broad ARBW of 94.4%
(0.95-2.65 GHz). Due to the compact structure and wideband
bandwidth CP performance, the proposed antenna might be
suitable in modern communication systems for CP applica-
tions, for example, the GPS systems (L1 1.575 GHz) and
WiBro systems (2.3-2.39 GHz).
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