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ABSTRACT The cyber intrusion prevention model represents a new means of cyber protection with
intelligent defense capability. It can not only detect intrusion behavior but also respond to such behavior in
a timely manner. This study applies deep learning theory and semi-supervised clustering to cyber intrusion
prevention technology. Deep learning based on deep structures represents the current development trend of
neural networks. Semi-supervised learning uses a large amount of unlabeled cyber traffic data and a small
amount of labeled cyber traffic data to achieve cyber intrusion prevention with a low recognition error rate.
Discriminative deep belief network (DDBN)-based cyber defense technology has emerged as a research
hotspot in the field of cyber intrusion prevention owing to its low error rate. This paper proposes a cyber
intrusion prevention technology using DDBN for large-scale semi-supervised deep learning based on local
and non-local regularization to overcome the problem of high classification error rates of the cyber intrusion
prevention model. Through comparisons with the cyber intrusion prevention results of the Hopfield, support
vector machine (SVM), generative adversarial network (GAN), and deep belief network-random forest
(DBN-RFS) classifiers, the proposed DDBNmodel is shown to have the lowest error rate. Thus, the proposed
approach can improve the performance of the cyber intrusion prevention system. The training and testing
error rates of the exponent loss function with local and non-local regularization (exponent with LNR) are
lower than those of the exponent, square, and hinge loss functions. The experimental results show that the
running time decreases as the number of hidden layers increases, especially with 6144 and 4096 hidden layer
nodes.

INDEX TERMS Cyber security, discriminative deep belief networks, intrusion prevention, local and
non-local regularization, semi-supervised deep learning.

I. INTRODUCTION
Cyber security [1], [2] has become increasingly important
in recent years [3]. Owing to the complexity of the current
cyber environment, conventional protection technologies [4]
cannot meet the requirements of cyber security. Intrusion
detection is the core technology of intrusion prevention sys-
tems. Such systems combine the advantages of intrusion
detection technology and firewall technology. Thus, they can
not only detect intrusion but also adopt timely protective
measures. In addition, they have an active defense function
that effectively improves cyber security [5].

The associate editor coordinating the review of this manuscript and

approving it for publication was Shadi Alawneh .

Intrusion prevention systems have been widely used to
prevent information from being compromised, and various
machine learningmethods have been proposed to enhance the
performance of such systems [6]. The intrusion prevention
model (IPM) provides cyber security by implementing intel-
ligent detection [7] and active response. It consists of several
modules. Intrusion prevention systems provide cyber secu-
rity through the following process [8]–[10]. They check the
external data packets; normal data can enter the internal cyber
space after checking, while suitable measures are adopted
against abnormal data [11], [12]. The intrusion prevention
model [13] is shown in Fig.1.

Machine learning technology [14]–[17] has been success-
fully applied to various fields [18]–[20]. As the detection
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FIGURE 1. Cyber intrusion prevention model.

algorithm has a direct impact on the defense performance
of the entire defense system, intelligent detection based on
machine learning has emerged as a research hotspot in the
field of intrusion detection. It is difficult for supervised-
clustering-based intrusion detection algorithms used in
traditional machine learning to detect unknown attacks. Fur-
ther, it is difficult to predict the intrusion methods in actual
cyber situations. Although methods based on unsupervised
learning can detect unknown attacks, it is difficult for them
to classify the attacks properly. In other words, such meth-
ods provide only general protection; they do not offer sig-
nificant performance advantages in terms of cyber security.
As methods based on supervised and unsupervised learning
cannot achieve ideal classification results, methods based on
semi-supervised learning have been considered. Numerous
performance evaluations and comparative experiments have
shown that such methods can extract more discriminant fea-
tures and offer significant advantages in cyber intrusion pre-
vention tasks. By combining the characteristics of supervised
and unsupervised learning, semi-supervised learning offers
the advantages of both approaches. Deep learning [21], [22]
is a more accurate approach that can be combined with
semi-supervised learning to fully exploit [23], [24] its own
advantages as well as those of semi-supervised learning [18].
Many practical applications involve abundant unlabeled data
and sparse labeled data. Semi-supervised learning relies on
a large amount of unlabeled data and a small amount of
labeled data for training; thus, it can overcome the short-
age of labeled samples. In recent years, semi-supervised
feature extraction has attracted increasing research atten-
tion, and many semi-supervised learning methods have been
proposed [25]. Semi-supervised [25]–[27] feature selection
methods [28]–[30] use the label information of labeled data
from cyber traffic and data distribution or local structures of
both labeled and unlabeled data from cyber traffic to evaluate
feature relevance [25]–[31].

In this study, semi-supervised learning [32] is applied to
cyber intrusion prevention, and a cyber intrusion prevention
algorithm based on deep learning and semi-supervised clus-
tering is proposed. The proposed algorithm can efficiently

train the algorithm parameters using a certain amount of
labeled data. In particular, it can improve the classification
error rate using a small amount of labeled data.

The discriminative deep belief network (DDBN) is an
effective semi-supervised approach for cyber intrusion pre-
vention based on deep belief networks (DBNs) [33], [34].
It has the following three characteristics. First, DDBN uses
a new deep architecture to integrate the abstraction capa-
bilities of DBN and the discriminative capabilities of the
loss function. The deep architecture is constructed layer by
layer using greedy unsupervised methods, and the parameter
space is further optimized using the gradient descent super-
vision method. Second, for unsupervised learning, DDBN
inherits the advantages of DBN [35], [36], which preserves
the information effectively from the high-dimensional feature
space to the low-dimensional embedding. Thus, DDBN can
use large-scale unlabeled data to improve the generalization
ability of the system. Third, for supervised learning, through
a well-designed objective function [37], the backpropagation
strategy directly optimizes the classification results for the
training dataset by refining the parameter space [38], [39].
Thus, DDBN can use a small amount of unlabeled data to
achieve good classification results for cyber intrusion pre-
vention. Specifically, when the labeled data are not sufficient,
DDBN can improve the learning ability using a large amount
of unlabeled data. The deep architecture is efficient in repre-
senting most common functions, and it can effectively solve
difficult learning problems.

DDBN simulates the thinking process of the human
brain, extracts abstract cyber traffic features step by step,
and uses the abstract features for classification. The key
aspect of the deep learning algorithm is multi-level learn-
ing. Through multi-level feature extraction, the intrinsic rela-
tionship between the cyber traffic data can be determined.
DDBN can prevent intrusion by discovering hidden attacks
and improving the classification error rate.

The successful application of the deep learning [40] model
to various fields has led to the rapid development of deep
neural networks based on regularization, i.e., regularization
items are added to the objective function (loss function) of
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the final deep learning optimization model, which makes
the final trained features more beneficial for the subsequent
application. However, with regard to classification tasks in
cyber protection, current regularization methods are faced
with major challenge. For example, deep learning algo-
rithms based on local regularization, such as EmbedDBN,
have improved feature discrimination; however, the non-local
properties between samples, which also play an active role in
improving feature discrimination, have been ignored. In view
of the above-mentioned problems, this study designs a novel
regularization method for classification tasks in cyber pro-
tection by integrating the local and non-local constraints of
labeled and unlabeled samples, and extracting abstract fea-
tures that can effectively preserve the separability of classes in
the original sample space by using such information. By inte-
grating local and non-local topological regularization terms
of labeled and unlabeled samples, the proposed discrimi-
nant regularization terms can extract features that are more
suitable for classification.

Local and non-local topological structures based on mani-
fold learning are used to regularize the deep learning model.
This model can obtain the semantic and geometric structure
of the data, which is beneficial for the final classification of
cyber traffic data. The discriminative ability of the model
mainly depends on the design of the local and non-local
weighting matrices between the data samples. As the design
of the weight matrix is directly related to the local and
non-local topological information of the encoded data space,
it is also related to the validity and discrimination of the final
feature [32].

Semi-supervised learning [41]–[43] is a natural choice
in the case of insufficient labeled data. At the same time,
a deep model is a natural choice for difficult AI tasks. Thus,
many current applications can benefit from a combination
of semi-supervised learning and a deep model. Therefore,
deep models based on semi-supervised learning are attract-
ing increasing attention. Some deep learning algorithms use
semi-supervised regularization to extract more expressive and
discriminant feature representations from the original data
space to obtain superior application results. In this paper,
we mainly focus on the application of deep learning based on
semi-supervised regularization to cyber intrusion protection.
In particular, we introduce the concept of ‘‘non-locality’’. For
classification tasks, the introduction of non-locality is nec-
essary because it involves discrimination between different
manifold structures (here, we quantify non-locality by the
distance between different manifolds). We propose local and
non-local regularization for a semi-supervised deep learning
algorithm that considers both the locality and the non-locality
of samples in the process of deep learning model training
and maps the topological structure between samples to the
final feature space to achieve better classification perfor-
mance. More specifically, we construct local and non-local
constraints for each sample to form a topological struc-
ture constraint matrix between samples as a regularization
term.

Although deep learning is widely used in the fields of
pattern recognition, speech recognition, and natural lan-
guage processing, it has few promising applications in
the field of cyber intrusion prevention. The application of
DDBN to cyber intrusion protection is the novelty of this
study [44]–[46].

Currently, many researches have applied semi-supervised
algorithms for training deep models, and the results show
that a combined method is more effective. Ito et al. [47] pro-
posed a semi-supervised learning framework to train a DNN.
Compared with existing DNN-based methods, they obtained
better and more stable results. Tang et al. [48] proposed a
semi-supervised algorithm based on a CNN. Extensive eval-
uations showed that their algorithm outperforms many state-
of-the-art algorithms in completing tasks. Chen et al. [49]
revealed that deep learning-embedded semi-supervised learn-
ing outperforms the deep learning-embedded semi-supervised
learning when labeled data are limited. However, these
studies [47]–[49] did not consider the local and non-local
topological information of unlabeled samples, which is more
intuitive and authoritative for classification. This paper pro-
poses a cyber intrusion prevention technology using DDBN
for large-scale semi-supervised deep learning based on local
and non-local regularization. The proposed cyber intrusion
prevention technology has a lower error rate and wider appli-
cability than other cyber intrusion prevention methods.

The main contributions of this paper are as follows:
(1) A semi-supervised discriminant regularization method

for cyber intrusion protection is proposed to train a deep
neural network, i.e., some topological regularization items
are added to the objective function (loss function) of the
final optimization of the deep model. This method integrates
local and non-local constraints in labeled and unlabeled sam-
ples, and extracts abstract features that can effectively pre-
serve the separability of categories in the original sample
space. For labeled samples, we use class labels to define
local and non-local information and then obtain topological
regularization terms by minimizing the intra-class compact-
ness (locality) and maximizing the inter-class separability
(non-locality). For unlabeled samples, we use the average
distance between one sample and the other samples as a
threshold to determine its neighbor and non-neighbor sam-
ples; then, the topological regularization term maximizes
the non-local divergence and minimizes the local divergence
simultaneously. By integrating local and non-local topologi-
cal regularization terms of labeled and unlabeled samples, our
discriminant regularization terms can extract those features
that are more suitable for classification in cyber intrusion
protection.

(2) Semi-supervised learning combines the characteristics
and advantages of unsupervised learning and supervised
learning. Deep learning has a more accurate detection
effect, and a combination of semi-supervised learning and
deep learning can fully exploit the advantages of semi-
supervised learning and semi-supervised learning. In this
study, deep learning theory and semi-supervised classification
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are applied to cyber intrusion prevention technology, which
effectively increases the detection rate, reduces the false
alarm rate, and improves the performance of cyber intrusion
prevention systems.

In summary, this paper proposes a semi-supervised deep
learning solution based on local and non-local regularization
and a new regularized DDBN deep learning method. The
proposed method is validated on two standard datasets (KDD
Cup99 andNSL-KDD). Through performance evaluation and
comparative experiments, we demonstrated that the features
extracted by our method are more discriminative and have
significant advantages for cyber intrusion protection.

II. DDBN BASED ON SEMI-SUPERVISED LEARNING
Considering the classical learning method, a new semi-
supervised learning method based on DDBN is proposed.
First, the semi-supervised learning problem that needs to
be solved using DDBN is introduced. Next, the structure
of DDBN is described. Then, the supervised and unsuper-
vised learning methods of DDBN are discussed. Finally, the
algorithm flow of DDBN is presented.

A. SEMI-SUPERVISED LEARNING PROBLEM
REPRESENTATION
Let X denote a sample dataset, which can be expressed as

X = [x1, x2, · · · , xL+U ] =


x11 x12 · · · xL+U1

x21 x22 · · · xL+U2
...

...
. . .

...

x1D x2D · · · xL+UD


(1)

where L denotes the number of labeled data, U denotes the
number of unlabeled data, and D denotes the number of
features of each data X . Each column of X represents a data
object. A data object that has all the features can be consid-
ered as a vector in space RD, where the first j coordinates
correspond to the jth feature.

Further, let Y denote the tag dataset corresponding to L,
which can be expressed as

Y = [y1, y2, · · · , yL] =


y11 y21 · · · yL1
y12 y22 · · · yL2
...

...
. . .

...

y1C y2C · · · yLC

 (2)

where C denotes the number of categories in the dataset.
Each column of Y is a vector in space RC , where the first
j coordinates correspond to the jth category.

yij =
{

1 if x i ∈ jth category
−1 if x i /∈ jth category

(3)

In this study, the deep framework uses L labeled data and
U unlabeled data to train the mapping function X → Y .
After training, when the new data X is input, the deep schema
can use the mapping function to determine the corresponding
labeled X of Y .

FIGURE 2. Structure of DDBN.

B. FRAMEWORK OF DDBN
The structure of DDBN is shown in Fig. 2. DDBN consists
of hidden layers from h1 to hN , one input layer x, and one
labeled layer y. The hidden layers hi are constructed using
both labeled and unlabeled data. The function f (hN (x), y) is
learned using the labeled data.

DDBN is a fully connected and directional multilayer
neural network that consists of an input layer h0, N hidden
layers h1, h2, · · · hN , and a label layer at the top. The input
layer h0 has D units, equal to the number of characteristics
of the data x. The label layer has C units, equal to the
number of categories of the labeled data y. Further, W ={
w1,w2, · · ·wN+1

}
is the parameter needs to learned in the

deep framework. The number of hidden layers and number
of nodes in each hidden layer need to be set empirically. The
problem of finding the mapping function X → Y can be
converted into the problem of finding the deep framework
space W .

The DDBN training process is divided into two steps:
(1) DDBN uses (restricted boltzmann machine) RBM as

its basic module, and it uses greedy unsupervised methods to
build the deep architecture layer by layer.

(2) DDBN uses the gradient descent method to train the
deep structure on the basis of the exponent loss function. The
space W is further optimized by L labeled data.

C. UNSUPERVISED LEARNING METHOD OF DDBN
The deep architecture of DDBN is built as layers of RBM.
RBM is a two-layer recurrent neural network [50]. Random
binary inputs are connected to the random binary outputs via
symmetric weights.
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In the deep architecture of DDBN, the energy state is
defined as

E(hk−1, hk ; θ ) = −
Dk−1∑
s=1

Dk∑
t=1

wksth
k−1
s hkt

−

Dk−1∑
s=1

bshk−1s −

Dk∑
t=1

ctht (4)

where θ (w, b, c) denotes the model parameter; wkst is the
symmetric connection parameter between unit s in hidden
layer hk−1 and unit t in hidden layer hk , k = 1, 2, · · · ,N−1;
bs is the sth bias in the hidden layer hk−1; ct is the tth bias in
the hidden layer hk ; andDk is the number of nodes in layer k .
The probability of hk−1 can be expressed as

P(hk−1; θ ) =
1

Z (θ )

∑
hk

exp(−E(hk−1, hk ; θ )) (5)

Z (θ ) =
∑
hk−1

∑
hk

exp(−E(hk−1, hk ; θ )) (6)

where Z (θ ) denotes the normalization constant.
The conditional probabilities for hk and hk−1 are expressed

as

p(hk
∣∣∣ hk−1) =∏

t

p(hk
∣∣∣ hk−1) (7)

p(hk−1
∣∣∣ hk ) =∏

s

p(hk−1s

∣∣∣ hk ) (8)

The probability that the tth unit equals 1 is the logical
function containing hk−1 and wkst :

p(hkt = 1
∣∣∣ hk−1) = sigm(ct +

∑
s

wksth
k−1
s ) (9)

The probability that the sth unit equals 1 is the logical
function containing hk and wkst :

p(hks = 1
∣∣∣ hk ) = sigm(cs +

∑
t

wksth
k
s ) (10)

where the logical function can be expressed as

sigm(η) = 1/(1+ exp(−η)) (11)

The logarithm of the probability of the hidden layer is
derived from the model parameter wk using the contrastive
divergence (CD) method:

∂ log p(hk−1s )

∂wkst
=

〈
hk−1s hkt

〉
P0
−

〈
hk−1s hkt

〉
PM

(12)

where 〈·〉P0 represents the expectation of data distribution and
〈·〉PM represents the data distribution obtained by performing
Gibbs sampling M times after the data input.
The parameter wk can be adjusted by the following

equation:

wkst = ϑw
k
st + η

∂ log p(hk−1)

∂wkst
(13)

where ϑ is the momentum and η is the learning rate.

The above-mentioned procedure is discussed with regard
to sample data x. In the DDBN system, the deep structure
is constructed by training all the labeled and unlabeled data
input into h0 one by one.
The input data build the network from one layer to the next.

At each level, the parameter space wk is constructed using
data calculated by layer k − 1.
After obtaining the parameter wk using the above-

mentioned calculation method, the hidden layer can be calcu-
lated using the following formula after data x is input into h0:

hkt (x) = sigm

ckt + Dk−1∑
i=1

wksth
k−1
x (x)


t = 1, 2, · · · ,Dk ; k = 1, 2, · · · ,N − 1 (14)

As with the classical backpropagation method, the param-
eter space wk is initialized by a random number ccording to
the standard normal distribution:

hNt (x) = cNt +
DN−1∑
i=1

wNsth
N−1
s (x) t = 1, 2, · · · ,DN (15)

D. SUPERVISED LEARNING METHOD OF DDBN
After greedy unsupervised training, hN (x) is the abstract
representation of x. Here, L labeled data are used to optimize
the parameter spaceW so that the deep architecture has better
discriminative capability. This task can be transformed into an
optimization problem:

argmin
w

f (hN (X ),Y ) (16)

where

f (hN (X ),Y ) =
L∑
i=1

C∑
j=1

T (hN (x ij )y
i
j) (17)

In the above-mentioned equation, T indicates the loss func-
tion. The key problem is how to define a proper loss function
to improve the discrimination ability of the classifier.

The following mean square loss function [51] is a natural
choice because it has been widely used in backpropagation
methods:

Tsquare(r) = (r − 1)2 (18)

where r = hN (x ij )y
i
j.

The hinge loss function [52] applied to SVM is another
possible choice:

Thinge(r) = max(1− r, 0) (19)

DDBN uses the exponent loss function [51], which has
been applied to the boosting algorithm. It performs well in
an actual application dataset.

Texp onent (r) = exp(−r) (20)

After the loss function is determined, the gradient descent
method is used to optimize the parameter space of the entire
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deep layer architecture. The random activation mechanism in
the unsupervised learning phase is replaced by the determined
real probability in the supervised learning phase.

E. ALGORITHM FLOW OF DDBN
The algorithm flow of DDBN is as follows.

Input: Dataset X , labeled dataset Y
Hidden layer h, Layer number N , number of units

per layer D1,D1, . . . ,DN , iteration number Q
Parameter space W =

{
w1,w2, · · · ,wN

}
, bias

b, c, momentum ϑ , learning rate η
Number of labeled data L, number of unlabeled

data U
Output: a deep framework containing the trained parameter

space W
(1) Greedy unsupervised method constructs the network

layer by layer
For k = 1; k ≤ N − 1 do

For q = 1; q ≤ Q do
For u = 1; u ≤ L + U do
Calculate the nonlinear forward and reverse states:

p(hkt,u = 1
∣∣∣ hk−1) = sigm

(
ct +

∑
s

wksth
k−1
s,u

)
(21)

p(hk−1t,u = 1
∣∣∣ hk ) = sigm

(
bs +

∑
t

wksth
k
s,u

)
(22)

Update the parameters and offsets:

wkst = ϑw
k
st + η

(〈
hk−1s,u h

k
tu

〉
P0
−

〈
hk−1s,u h

k
s,u

〉
P1

)
(23)

End
End

End
(2) Supervised learning based on gradient descent method

argwmin
L∑
i=1

C∑
j=1

exp(−hN (x ij )y
i
j) (24)

First, the greedy unsupervised method builds the network
layer by layer. RBM is used to build the deep architecture
layer by layer. L + U training data are iterated Q times to
initialize the parameter space w1,w2, · · · ,wN−1. The output
layer WN is initialized using random numbers subject to a
normal distribution. Second, supervised learning based on the
gradient descent method is adopted. In this global optimiza-
tion stage, the stochastic activation mechanism is replaced by
the real determined probability value. The conjugate gradient
algorithm is used to globally optimize the entire network.
Once the training is complete, when new data x in input,
the category of X can be determined according to the value
of the output hN (x) in the deep layer schema [53]–[55].

III. SEMI-SUPERVISED DDBN BASED ON LOCAL AND
NON-LOCAL REGULARIZATION
A suitable feature representation can reveal the implicit struc-
tures in the data. The intrinsic geometric structure of the

data is an ideal implicit structure in feature learning. In other
words, samples with the local neighborhood of the original
data can still be close to each other in the feature space.
Samples in a non-local relationship in the original data should
be kept as far as possible in the feature space. The features
thus obtained can play a positive role in further application
processing. DBN as a powerful learning tool can extract the
characteristics of the original data. However, neither standard
DBN nor regular DBN focuses on the intrinsic geometric
structure of the data or the discriminant structure in the data
space, which are useful for semi-supervised learning tasks.
This paper presents a semi-supervised deep learning solution
based on local and non-local regularization.

The discriminant power of the features obtained by the
model mainly depends on the design of the local and
non-local weight matrices between the data samples. As the
design of the weight matrix is directly related to the local and
non-local topological structure information of the encoding
data space, it is also related to the validity and discrimination
of the final feature.

For the ultimate classification purpose in cyber intrusion
prevention, the objective is to find a series of discriminant
feature representations that preserve the local and non-local
topological structure of the original data.

The objective function of the semi-supervised regulariza-
tion term proposed in this paper can be integrated into the
equation obtained by minimizing the following equation:

J (θ ) = αS(θ )+ βU (θ )

= α(Sw − Sb)+ β(SL − SN )

= αF(FLwFT − FLbFT )+ β(FLLFT − FLNFT )

= αF(Lw − Lb)FT + βF(LL − LN )FT (25)

where α and β are used to balance the scaling parameters of
the corresponding regularization contributions. The first and
second terms in the above-mentioned formula represent the
constraints of labeled and unlabeled samples, respectively,
in the feature space.

Combined with the original objective function of the deep
model, the objective function of the semi-supervised DDBN
based on local and non-local regularization is defined as

θ∗ = argmin
θ

l∑
i=1

l(f (xi), yi)+ J (θ ) (26)

where f ((xi), yi) is the loss function of DDBN, xi is the
input vector of the deep model, yi is the label corresponding
to sample xi, f (xi) is the output of sample xi in the model (the
softmaxmethod is used here), and θ is a parameter of the deep
learning model. Note that the semi-supervised regularization
item is embedded in the supervisory loss function of the
last hidden layer of the DDBN model. Then, the follow-up
backward transfer supervisory training is performed.

The detailed learning process of the proposed method,
as shown in the following algorithm, is roughly the same as
the training process of the traditional DBN, which is divided
into two steps.
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(1) Unsupervised pre-training: The CD method is used to
greedily pre-train the DDBN layer by layer.

(2) Algorithm: Semi-supervised DDBN based on local and
non-local regularization

Input: Training dataset X , including labeled data X l and
unlabeled data Xu

Labeled set Y corresponding to labeled data
Layer number N and epoch number E of DDBN
Labeled data number l
Interclass divergence matrix Sb with labeled data

and intraclass divergence matrix Sw

Local divergence matrix SL and non-local diver-
gence matrix SN for unlabeled data

Initialized weighted connection parameters w,
deviation parameters a and b

Momentum ϑ and learning rates ζw, ζa, and ζb
Scaling parameters α and β corresponding to the

regularization items
Output: Optimal parameters θ∗ = [w∗, a∗, b∗]
Training process:
Greedy unsupervised layer-by-layer pre-training:
For n = 1, . . . ,N , do

For e = 1, . . . ,E , do
Complete an alternate Gibbs sampling to calcu-

late the state of the next layer:

p(hn+1j = 1
∣∣∣ hn) = σ (bnj +∑

i

hni w
n
ij

)
(27)

p(hni = 1
∣∣ hn+1) = σ

ani +∑
j

hnj w
n
ij

 (28)

Update the connection weights and unit
deviations

wnij = ϑw
n
ij + ζw

(〈
hni h

n+1
j

〉
data
−

〈
hni h

n+1
j

〉
recon

)
(29)

ani = ϑa
n
i + ζa

(〈
hni
〉
data −

〈
hni
〉
recon

)
(30)

anj = ϑb
n
j + ζb

(〈
hn+1j

〉
data
−

〈
hn+1j

〉
recon

)
(31)

End for
End for

Supervisory fine-tuning of a neural networkčž
The final objective function is optimized by gradient

descent through backward transfer algorithm, and the optimal
parameters are calculated.

θ∗ = argmin
θ

l∑
i=1

l(f (xi), yi)+ J (θ ) (32)

(3) Supervised fine-tuning of DDBN
The final objective function is optimized by gradient

descent using the backward transfer algorithm, and the opti-
mal parameters are calculated. In this step, the DDBN is
fine-tuned by optimizing the objective function (21) to extract
the effective features that are more beneficial for classifi-
cation. The conjugate gradient method is used to optimize

TABLE 1. Experimental KDD Cup99 dataset for known attacks.

the objective, where the gradient solution is computed by the
backward transfer method [32].

IV. EXPERIMENTAL RESULTS AND SIMULATION
ANALYSIS
A. SOFTWARE AND HARDWARE ENVIRONMENT
OF THE EXPERIMENT
The experiments were performed in the following hardware
and software environments. The processor used was the Intel
i5 8500 with 8.00 GBmemory and a 1000 GB hard disk drive.
Microsoft Windows 10 was used as the operating system.
The effectiveness of the DDBN algorithm was verified via
simulation in MATLAB.

B. EXPERIMENTS ON LARGE-SCALE
NETWORK-CONNECTED INFORMATION SETS
The experimental data (see Table 1) used in this study were
the KDD Cup99 10% dataset and the KDD Cup99 corrected
dataset for known attacks, which include large amounts of
normal cyber traffic and various attacks. The 10% dataset was
used as the training set and the corrected dataset was used as
the testing set. Abnormal data can be categorized into four
types: denial of service (DOS) attacks, unauthorized access
from a remote machine (R2L), unauthorized access to local
superuser privileges (U2R), and surveillance and probing
(PROBE) attacks. In the experiment, the DDBN architecture
was 41-300-300-300-1800-5, i.e., the number of nodes in the
input layer was 41, the number of nodes in the output layer
was 5, and the numbers of nodes in the four hidden layers
were 300, 300, 300, 1800.

As shown in Fig. 3, on the training and test datasets, DDBN
achieved good results with 50 iterations. When the number of
DDBN iterations exceeded 100, as the number of iterations
increased, the cyber intrusion prevention classification error
rate tended to be stable. Thus, the weight matrix of DDBN
was optimized. At this time, if the number of iterations of
DDBN were increased, the classification error rate would not
be improved significantly, whereas the running time of the
program would increase.

The number of training labeled data of cyber traffic was
set as 50, 100, 200, 400, 800, and 1600. Each class had at
least one labeled data object while other large-scale samples
were used as unlabeled data. The Hopfield, SVM, GAN,
and DBN-RFS classifiers were used in the experiment for
comparison with DDBN. The experimental results of each
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FIGURE 3. DDBN iteration number and classification error rate (%).

FIGURE 4. Training error rates on large-scale cyber connection
information sets using different amounts of labeled data.

classifier with different amounts of training labeled data
are shown in Fig. 4. The results indicate that the training
performance of DDBN is better than that of the Hopfield,
SVM, GAN, and DBN-RFS classifiers in terms of network
intrusion prevention. When the number of labeled data was
1600, the training error rate of DDBN was 6.58%.

The number of testing labeled data of cyber traffic was
set as 40, 80, 150, 300, 600, and 1200. The experimental
results of each classifier with different numbers of testing
labeled data are shown in Fig. 5. The results indicate that
the testing performance of DDBN is better than that of the
other classifiers in terms of cyber intrusion prevention. When
the number of labeled data was 1200, the testing error rate of
DDBN was 7.82% and that of DBN-RFS was 11.68%. Thus,
the testing error rate of DDBN was 3.86% lower than that of
DBN-RFS.

Table 2 shows the time performance comparison of differ-
ent classifiers on the KDD cup99 dataset in terms of both the
training error rate and the testing error rate. It can been seen
that the training error rate and testing error rate decrease in
the order of Hopfield, SVM, GAN, DBN-RFS, and DDBN.

FIGURE 5. Testing error rates on large-scale cyber connection information
sets using different amounts of labeled data (KDD Cup99 dataset).

TABLE 2. Time performance comparison of different classifiers on KDD
Cup99 dataset in terms of both training error rate and testing error rate.

FIGURE 6. ROC curves of different methods.

The training time and testing time decrease in the order of
GAN, DBN-RFS, DDBN, Hopfield, and SVM. This method
is shown to achieve high recognition accuracy with relatively
low time consumption.

After many experiments, the ROC curves (Fig. 6) based
on the detection rate and false alarm rate were plotted to
reflect the dynamic effects. The effect of DDBN was found
to be obviously stronger than that of the DBN-RFS, GAN,
SVM, and Hopfield classifiers in terms of cyber intrusion
prevention.

As shown in Fig. 7, the areas under the curves (AUCs) of
the Hopfield, SVM, GAN, DBN-RFS, and DDBN classifiers
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FIGURE 7. AUC of different methods.

FIGURE 8. Comparison of detection results of different methods.

were 0.58, 0.67, 0.77, 0.83, and 0.91, respectively. It can
be seen that the performance of DDBN in terms of cyber
intrusion prevention was better than that of the Hopfield,
SVM, GAN, and DBN-RFS classifiers.

As the labeled data increased, the detection rate and false
alarm rate tended to be stable, which indicates that the system
performance was reliable. In the case of complete marking,
the detection rate and false alarm rate are shown in Fig. 8.
By comparison, the application of the proposed DDBN algo-
rithm to the intrusion prevention system improved the perfor-
mance of the system to a certain extent, effectively improved
the detection rate, and reduced the false alarm rate.

Semi-supervised learning is a method of learning that
relies on a small amount of labeled data and a large number
of unlabeled data. The labeled datasets used in this paper
account for 1/5, 1/4, 1/3, 1/2, and 3/4 of the total datasets.
In the case of dataset 1(1/5 of the total dataset), dataset 2
(1/4 of the total dataset), dataset 3 (1/3 of the total dataset),
dataset 4 (1/2 of the total dataset), and dataset 5 (3/4 of the
total dataset), the classification error rates in terms of cyber
intrusion prevention are summarized in Table 3.

TABLE 3. Detection rate and false alarm rate of different dataset(%).

TABLE 4. Detection rate and false alarm rate of different testing
datasets (%).

The proposed cyber intrusion prevention algorithm is a
semi-supervised clustering algorithm, and the detection rate
and false alarm rate were used to verify the classification
effect.

From the experimental results listed in Table 4, it can be
seen that the detection rate and false alarm rate of the cyber
intrusion prevention algorithm based on deep learning and
semi-supervised clustering are not ideal with less training
data. The reason for this shortcoming is that DDBN cannot
implement the corresponding comprehensive training under
the condition of insufficient data or more disturbed data, and
the weight matrix and bias value obtained are not perfect.
From the training results of datasets 3, 4, and 5, it can be
concluded that the classification effects of the algorithm in
terms of in cyber intrusion prevention are good after more
comprehensive training.

C. DDBN CYBER PROTECTION METHOD FOR
SEMI-SUPERVISED LEARNING BASED ON LOCAL AND
NON-LOCAL REGULARIZATION
In the final optimization of the deep learningmodel, a regular-
ization term is added to the objective function (loss function)
to realize a regularization method for deep learning, but the
intrusion prevention performance of this method is not ideal.

This study designed a novel regularization method that
integrates local and non-local constraint information of
labeled and unlabeled cyber traffic data. Using this informa-
tion, we can extract abstract features for class separability
that are effectively preserved in the original samples. For
labeled data, the class labels can be used to define local
and non-local information. Then, the topology regulariza-
tion term can be obtained by minimizing the compactness
within the class (locality) and maximizing the separability
between classes (non-locality). For unlabeled data, the sam-
ple’s neighbor and non-neighbor samples can be determined
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FIGURE 9. Training error rates using different amounts of unlabeled data
and different loss functions.

FIGURE 10. Testing error rates using different amounts of unlabeled data
and different loss functions.

using the average distance from one sample to another as
a threshold. Then, the topological regularization term maxi-
mizes the non-local divergence andminimizes the local diver-
gence [32].

The experiment investigated the impact of unlabeled data
and different loss functions on semi-supervised deep learn-
ing. Four types of loss functions were used in the experiment:
exponent loss functionwith local and non-local regularization
(exponent with LNR), exponent loss function, square loss
function, and hinge loss function. The number of labeled data
was unchanged (3000) while the number of unlabeled data
took different values, and their error rates were measured.

As shown in Fig. 9 and 10, the training and testing error
rates fluctuated with the increase in the unlabeled data. The
number of iterations in the experiment is 200. The train-
ing and testing error rates obtained using the exponent loss
function with LNR were lower than those obtained using the
exponent, square, and hinge loss functions.

Fig. 11 shows the training and testing times of different loss
functions of the DDBN algorithm. The number of unlabeled
data in the training dataset was 9 × 104 and the number of
unlabeled data in the testing dataset was 7.45 × 104. The
training times of hinge, square, exponent, and exponent with

FIGURE 11. Training and testing times of different loss functions of DDBN
algorithm.

FIGURE 12. Testing error rates using different numbers of hidden layers.

LNR were 2411, 2733, 2545, and 2621 s, respectively, while
their testing times were 2258, 2562, 2336, and 2467 s, respec-
tively. The training time and testing time of the exponent loss
function are 2545 s and 2336 s, respectively, while those of
the exponent loss function with LNR are 2621 s and 2467 s,
respectively. The square loss function took the most time,
while the exponent loss function with LNR took only a little
more time than the exponent loss function.

The next subsection describes experiments conducted
using the exponent loss function with local and non-local
regularization (exponent with LNR).

D. INTRUSION PREVENTION FOR DEEP ARCHITECTURES
OF DIFFERENT DEPTHS
This experiment was performedwith a similar 41-300-1800-5
architecture with two hidden layers, and a hidden layer with
300 nodes was continuously inserted into the deep architec-
ture until the number of hidden layers reached 50 and the
number of hidden layer nodes increased from 2100 to 16500.

The number of fixed labeled data was 3000, and the num-
ber of unlabeled data was 74500. The testing error rates with
different numbers of hidden layers are shown in Fig. 12.
When the number of hidden layers was greater than or equal
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TABLE 5. A deep framework using different numbers of hidden layers
and the same number of nodes.

FIGURE 13. Testing error rate using different numbers of hidden layers
and 4096 nodes.

to 6, the testing error rate obviously decreased. When the
number of hidden layers was 30, the testing error rate of
DDBN was the lowest and the effect was the best. Specifi-
cally, 10500 hidden nodes were used in this case.

E. INTRUSION PREVENTION FOR DEEP ARCHITECTURES
WITH FIXED NUMBER OF NODES AND VARYING DEPTH
OF THE DEEP LAYER
In another experiment, the total number of nodes in the fixed
hidden layer was 4096 and the depth of the deep structure
changed as shown in Table 5.

Fig. 13 shows the testing error rates for different deep
architectures using 3000 labeled data and 74500 unlabeled
data. When the number of hidden layers was 25, the perfor-
mance of DDBN was the best.

Fig. 14 shows the relationship between the number of
hidden layers and the running time when the total number of
hidden layer nodeswas 8192, 6144, and 4096. Thus, DDBN is
effective and efficient in network intrusion prevention. When
the total number of hidden layer nodes was 8192, 6144, and
4096, the running time of DDBN with 10 hidden layers was
2568 s, 2529 s, and 1943 s, respectively. When the total
number of hidden layer nodes was 8192, 6144, and 4096,
the running time of DDBN with 25 hidden layers was 1894 s,
1856 s, and 1658 s, respectively. When the total number of
hidden layer nodes was 8192, 6144, and 4096, the running
time of DDBN with 25 hidden layers was 22.74%, 26.61%,
and 14.67 % shorter than those of DDBN with 10 hidden
layers. The reduced time consumption was not obvious. With
the same scale of the deep architecture and the same amount
of labeled and unlabeled data, the DDBN with 25 hidden

FIGURE 14. Running time using different numbers of hidden layers and
different numbers of nodes.

TABLE 6. Experimental NSL-KDD dataset.

layers consumed less time than the DDBN with 10 hidden
layers, and it achieved better results in terms of cyber intru-
sion prevention. The experimental results also showed that
the running time slightly decreases as the number of hidden
layers increases, especially with 6144 and 4096 hidden layer
nodes.

F. ALGORITHM PERFORMANCE COMPARISONS USING
DIFFERENT DATASETS
The above-mentioned experiments were based on the KDD
Cup99 dataset. Next, we used the NSL-KDD dataset to per-
form some experiments with different methods and compared
the results with those of the KDD Cup99 dataset.

As shown in Table 6, there were 55684 training data and
11974 test data in the NSL-KDD cyber intrusion protection
dataset.

We used the NSL-KDD dataset to test different algorithms.
The number of testing labeled data of cyber traffic was set
as 10, 20, 40, 80, 160, and 320. The experimental results of
each classifier with different numbers of testing labeled data
are shown in Fig. 15. The results indicate that the testing per-
formance of DDBN is better than that of the other classifiers
in terms of cyber intrusion prevention. When the number of
labeled data was 320, the testing error rate of DDBN was
11.53% and that of GAN was 13.84%. Thus, the testing error
rate of DDBN was 2.31% lower than that of GAN.
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FIGURE 15. Testing error rates on large-scale cyber connection
information sets with different numbers of labeled data (NSL-KDD
dataset).

TABLE 7. Detection rate and false alarm rate of different datasets for
different algorithms(%).

Table 7 lists the detection rate and false alarm rate of
different datasets for different algorithms. Using the detection
rate and false alarm rate as indicators for evaluation on the
KDD Cup99 dataset, we found that DDBN has the best
effect, followed by DBN-RFS, GAN, SVM, and Hopfield.
On the NSL-KDD dataset, we found that DDBN has the best
effect, followed by GAN, DBN-RFS, Hopfield, and SVM.
Thus, DDBN achieved the best recognition results in terms
of cyber intrusion protection on both the KDD Cup99 and
the NSL-KDD datasets.

G. RECOGNITION EFFECTS IN UNKNOWN ATTACKS
The KDDCUP99 dataset comprising the test set and training
set (as shown in Table 8 ) was used to test the detection rate
of known and unknown attacks [56].

The number of instances including DOS attacks in the
testing set was 108487, of which 103280 were known attacks,
accounting for 95.2% of the total instances of DOS, while
5207 were unknown attacks, accounting for 4.8% of the total
instances of DOS. The numbers of instances of known and
unknown attacks for the other three types of attacks are listed
in the Table 8.

TABLE 8. Experimental KDD Cup99 dataset for known and unknown
attacks.

FIGURE 16. ROC curve of DDBN cyber intrusion prevention model for
detecting known and unknown attacks.

As can be seen from Fig.16, the DDBN cyber intrusion pre-
vention model achieved high ROC scores in detecting known
and unknown attacks, and achieved good results in terms of
cyber intrusion prevention detection. When the false positive
rate was 4.92%, the true positive rates of known attacks and
unknown attacks were 97.76% and 88.53%, respectively.

V. CONCLUSION
This paper proposed a novel and effective cyber intrusion pre-
vention method using DDBN for large-scale semi-supervised
deep learning based on local and non-local regularization.
Semi-supervised feature selection uses both labeled and unla-
beled cyber traffic data to evaluate feature relevance. Specifi-
cally, deep learning was applied to cyber intrusion prevention
to detect implicit attack behavior based on intrusion data
and to reduce the error rate in cyber intrusion prevention.
DDBN can considerably enhance its learning ability for cyber
intrusion prevention using a large amount of unlabeled data
when labeled data are sparse. Semi-supervised deep learning
with DDBN using the exponent loss function with local and
non-local regularization was found to be more discriminative
with performance advantages in cyber intrusion prevention
tasks. In addition, an ROC comparison showed that the cyber
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intrusion prevention effect of DDBN is better than those
of the DBN-RFS, GAN, SVM, and Hopfield classifiers.
The comparative experiments demonstrated that the proposed
approach can effectively reduce the classification error rate in
cyber intrusion prevention.
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