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ABSTRACT In the scenarios of non-cooperative wireless communications, automatic modulation
recognition (AMR) is an indispensable algorithm to recognize various types of signal modulations before
demodulation in many internet of things applications. Convolutional neural network (CNN)-based AMR
is considered as one of the most promising methods to achieve good recognition performance. However,
conventional CNN-based methods are often unstable and also lack of generalized capabilities under varying
noise conditions, because these methods are merely trained on specific dataset and can only work at the
corresponding noise condition. Hence, it is hard to apply these methods directly in practical systems. In this
paper, we propose a CNN-based robust automatic modulation recognition (RAMR) method to recognize
three types of modulation signals, i.e., frequency shift key (FSK), phase shift key (PSK), and quadrature
amplitude modulation (QAM). The proposed method is trained on a mixed dataset for extracting common
features under varying noise scenarios. Simulation results show that our proposed generalized CNN-based
architecture can achieve higher robustness and convenience than conventional ones.

INDEX TERMS Automatic modulation recognition, deep learning, convolutional neural network, the
Internet of Things.

I. INTRODUCTION
Automatic modulation recognition (AMR) is an essen-
tial technology in non-cooperative communication sys-
tems or internet of things applications for demodulation tasks
of unknown signals, and it has various applications in mili-
tary and civilian strategies [1]–[9]. In the aspect of modern
military applications, AMR is a key step to recover the inter-
cepted signals in electronic warfare (EW) [10]. In civilian
scenarios, AMR can also act as an assistance to interference
signal analysis or spectrum sensing [11] in heterogeneous
network communications [12]–[16] and direction of arrival
estimation [17]–[19].

There are two common AMRmethods are mainly based on
likelihood and features, respectively. In the likelihood-based
method, AMR can be formulated as a hypothesis testing
problem [5]. It is necessary to design correct likelihood
function to evaluate likelihood for each modulation type
within hypothesis pooling. Then, the likelihoods of each
modulation type are compared to make a final decision.
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However, likelihood-based AMR methods excessively
depend on channel state information (CSI). In the feature-
based method, AMR is modeled as a pattern recognition
problem and it consists of three steps: pre-processing, feature
extraction, and classifier design [20]. Various AMR methods
have been developed using instantaneous features (or signal
spectral-based features), wavelet transform-based features,
high-order statistics-based features, cyclic spectrum analysis-
based features and so on. To realize modulation type classi-
fication by extracted features, they usually adopt classifiers,
such as support vector machine (SVM), decision tree (DT),
k-nearest neighbor (KNN) and multilayer perception (MLP).
In recent years, deep learning (DL) is considered as a

powerful tool, because it is expert in automatic feature extrac-
tion from huge amounts of data, instead of the complex and
difficult design of man-made features [21]–[24]. For this
reason, DL has been successfully applied in network traf-
fic prediction [25]–[28], physical layer wireless techniques
[30]–[35] and internet-of-things [31], [36]–[39]. In addition,
DL has been applied in multiple input and multiple output
(MIMO) [40], non-orthogonal multiple access (NOMA), and
cognitive radio (CR). For example, Paper [41] proposed a fast
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beam forming technology for downlink MIMO based on
unsupervised learning. Paper [30] applied a long short-term
memory (LSTM) network into typical NOMA system for
enhancing spectral efficiency. Papers [42], [43] introduced
deep learning into resource allocation in CR and achieved
great success.

Moreover, state-of-the-art DL-based AMR methods have
been developed in recent two years. Paper [44] proposed a
convolutional neural network (CNN)-based AMR, which is
realized by training CNN on the in-phase and quadrature (IQ)
component of signals. Paper [45] transformed the modu-
lated signals into constellation diagrams, and then generative
adversarial network (GAN) was applied to distinguish these
constellation diagrams. Paper [46] proposed a lightweight
and fast CNN-based AMR method for edge devices on
their previous works [45], [47]. Paper [48] proposed com-
bined IQ sample-based CNN and constellation diagram-
based CNN method to recognize different modulation
types.

Although these CNN-based AMR methods have been pro-
posed to demonstrate better performance than traditional
methods, most of them are trained by dataset with single
signal-to-noise (SNR). It means that these CNNs can just
achieve satisfying performance at the corresponding single
SNR rather than all SNR scenarios. These independent CNNs
are termed as the fixed CNNs, and are hard to be generalized.
If we adopt these CNNs in practical applications, we must
train various CNNs with dataset collected from different
SNR conditions, and choose correct CNN-models accord-
ing to actual communication environments, which is not
convenient.

In this paper, a generalized CNN-based automatic modu-
lation recognition (RAMR) method with higher generalized
capability under varying noise conditions is proposed, and it
achieves higher convenience and robustness for actual project
applications at a slight cost of recognition accuracy. Com-
pared with fixed CNN-based AMR methods, our proposed
method has two obvious advantages, which are listed as
follows:

1) PRECISE SNR ESTIMATION IS UNNECESSARY IN
OUR PROPOSED METHOD
Fixed CNN-based AMR methods rely on precise SNR esti-
mation, because fixed CNNs are trained on samples with
single SNR. For multiple CNNs-based solution, precise SNR
estimation is essential to assist systems in selecting correct
CNN from trained fixed CNNs. If SNR cannot be esti-
mated precisely, these methods may be ineffective. Unlike
these conventional methods, generalized CNN is trained on
a mixed dataset containing different signals with SNR ∈
{−5 dB, 0 dB, 5 dB}. Unknown signals with SNR rang-
ing from −5 dB to 5 dB can be recognized by the same
CNN. It means that we just need to determine whether the
SNR is in the range from −5 dB to 5dB before recogniz-
ing, and then directly apply generalized CNN without other
operations.

2) OUR PROPOSED METHOD CONSUMES LESS
DEVICE MEMORY
When SNR is ranging from −5 dB to 5 dB with interval
1 dB, far more than one fixed CNN should be trained for
responding to different SNR condition in fixed CNN-based
AMR methods. However, our proposed method just need to
train one CNN in actual project applications. In the case of the
same network structures, our method just requires less device
memory than fixed CNN-based AMR methods.

The rest of this paper is organized as follows.
Section II includes system model, signal model and dataset.
In Section III, we propose a generalized CNN-based AMR
methods. In Section IV, various experiment results are pro-
vided to compare their performance under AWGN and
Rayleigh channels, respectively. Finally, we conclude this
paper.

II. SYSTEM MODEL, SIGNAL MODEL AND DATASET
A. SYSTEM MODEL
A typical non-cooperative communication system is consid-
ered, where transmitters transmit digital modulation signals
through wireless channel with multipath fading and additive
white Gaussian noise (AWGN), and receiver does not get any
priori information about modulation types, symbol rates and
so on. Receiver detected these signals, and then the system
makes preprocessing, including down conversion, low pass
filtering and analog-to-digital conversion. After preprocess-
ing, we can get baseband signals, which are fed into an AMR
module to identify modulation types. AMR-based receiver is
shown in Fig. 1.

In this paper, we focus on the feature-based AMR meth-
ods, and they generally consist of three steps: processing,
feature extraction and classification [20]. In traditional AMR
methods, the most difficult part is the design of effec-
tive manmade features, and classifiers are usually based
on machine learning or simple threshold detection, which
is shown in Fig. 2(a). Unlike the traditional methods, DL
methods, e.g., CNN or recurrent neural network (RNN),
can simultaneously achieve feature extraction and classifica-
tion. Moreover, the proposed DL-based RAMR method can
get rid of complex and different manmade feature design.
The framework of the DL-based RAMR method is depicted
as Fig. 2(b).

B. SIGNAL MODEL
C. DATASET GENERATION
The received sequence is defined as R, and is shown as

R = {r (1) , r (2) , . . . , r (N )}, (1)

which is a complex matrix with dimension 1× N and the
value of N is 128. Then, we separate real part real (R) and
imaginary part imag (R) of R. Next, real (R) and imag (R)
are combined into a matrix with dimension 2× N , and it
is one sample for training or testing. In addition, the real
part and imaginary part are also in-phase (I ) component and
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FIGURE 1. AMR-based receiver in a non-cooperative communication system.

FIGURE 2. Feature-based AMR methods: (a) The structure of traditional
AMR method. (b) The structure of the proposed DL-based AMR method.

quadrature (Q) component of signal, respectively. So this
training or test sample is denoted as IQ sample, which is
shown in (2).

IQ =
[
real(R)
imag(R)

]
=

{
real[r(1)], real[r(2)], . . . , real[r(N )]
imag[r(1)], imag[r(2)], . . . , imag[r(N )]

}
. (2)

In this paper, we prepare two independent datasets for
training and testing, and the number of each modulation
type at each SNR can reach up to 6000 in both training
dataset and test dataset. DL-based AMRmethod applies these
dataset for training and testing, respectively. In order to com-
pare DL-based RAMRmethod with traditional AMRmethod

fairly, the training and test of typical machine learning-based
classifiers depend on extracted manmade features from train-
ing dataset and testing dataset, respectively.

III. CNN-BASED AMR METHODS AND OUR
PROPOSED RAMR METHOD
In this section, a generalized CNN-based RAMR method is
proposed with better generalization performance under vary-
ing noise condition. The better generalization performance
benefits from a mixed training dataset and different training
strategies, so it is stated from two aspects of neural network
structure, and training and testing methods. In addition, tra-
ditional AMRmethods, based on classical manmade features
and typical machine learning-based classifiers, are first intro-
duced as a comparison.

A. TRADITIONAL AMR METHODS
For the purpose of highlighting the performance of DL-based
AMR method, we adopt one of traditional AMR methods as
a comparison. The structure of traditional AMR method is
shown in Fig. 2(a). Unknown signal must pass through pre-
processing and the system needs to estimate SNR for the
choice of suitable classifier. Then we can extract manmade
features from pre-processed signal, and suitable classifier can
recognize modulation type. In this paper, we choose instanta-
neous features [49] and high-order cumulants (HOC) [49] as
classical manmade features, which are listed as follows.

1) INSTANTANEOUS FEATURES
The instantaneous features are mostly extracted from instan-
taneous amplitude and instantaneous phase, which can
respectively represent as:

a (n) =
√
real2 [r (n)]+ imag2 [r (n)], (3)

θ (n) = artan
imag [r (n)]
real [r (n)]

. (4)

The four instantaneous features in this paper has been
applied in paper [49], and they are respectively:

VOLUME 8, 2020 117691



T. Zhang et al.: DL for RAMR Method for IoT Applications

FIGURE 3. The structure of generalized CNN method.

Maximum value of the power spectral density of the
normalized-centered instantaneous amplitude:

γmax = max
{∣∣∣DFT [ac2 (n)]∣∣∣} /N , (5)

where ac (n) =
a(n)
ma
− 1, ma = 1

N

N∑
n=1

a (n), N is the number

of sampling points, and DFT(·) is discrete Fourier transform.

2) HOC
We apply the estimation of second-order, fourth-order, and
sixth-order cumulants, and combine them into seven fea-
ture values, which are proposed in [20]. The estimation
value of the O-th moment M̂mk can be denoted as M̂mk =∑N

n=1 r
m−k (n)r∗k (n)
N , where O = m + k and r∗ (n) is the

conjugate of r (n). So the estimation values of HOC can be
describe as:

Ĉ20 = M̂20, (6)

Ĉ21 = M̂21, (7)

Ĉ40 = M̂40 − 3M̂2
20, (8)

Ĉ41 = M̂41 − 3M̂21M̂20, (9)

Ĉ42 = M̂42 −

∣∣∣M̂20

∣∣∣2 − 2M̂2
21, (10)

Ĉ60 = M̂60 − 15M̂20M̂40 + 30M̂3
20, (11)

Ĉ63 = M̂63 − 9M̂42M̂21 − 6M̂3
21, (12)

The seven feature values based on HOC are shown as
follows:

f1 =

∣∣∣Ĉ40

∣∣∣∣∣∣Ĉ42

∣∣∣ , f2 =

∣∣∣Ĉ41

∣∣∣∣∣∣Ĉ42

∣∣∣ , f3 =
∣∣∣Ĉ42

∣∣∣∣∣∣Ĉ21

∣∣∣2 , f4 =
∣∣∣Ĉ60

∣∣∣∣∣∣Ĉ21

∣∣∣3 ,

f5 =

∣∣∣Ĉ63

∣∣∣∣∣∣Ĉ21

∣∣∣3 , f6 =

∣∣∣Ĉ60

∣∣∣2∣∣∣Ĉ42

∣∣∣3 , f7 =
∣∣∣Ĉ63

∣∣∣2∣∣∣Ĉ42

∣∣∣3 . (13)

We combine the eleven feature values from instantaneous
features and HOC into a eleven-dimension feature vec-
tor

[
γmax , σaa, σap, σdp, f1, f2, f3, f4, f5, f6, f7

]
, and two typi-

cal machine learning-based classifiers of SVM and DT are
applied to recognize the modulation type of this signal,
relying on these feature vectors. Hence, these traditional
AMR methods are adopted as SVM-based AMR method and
DT-based AMR method, respectively.

B. THE PROPOSED CNN-BASED RAMR METHOD
1) THE STRUCTURE OF GENERALIZED CNN METHOD
The CNN consists of four parts: input, output, convolutional
layer and fully-connected layer, and its structure is depicted
in Fig. 3. Input is dataset with samples and corresponding
labels. Output is a probability distribution, which contains the
possibility of each modulation type. Convolutional layer is to
automatically extract features and contains two convolutional
layers. In convolutional layer, the convolutional kernel size
1 × 4 and 1 × 8, and it is designed according to input data:
IQ sample, the dimensionality of which is 2×128. The fully-
connected layer is fundamentally a classifier with three dense
layers.

Rectified linear unit (ReLU ) plays the role of activation
function following behind each available layers except the
last dense layer, where Softmax is applied. Assuming xi is
the output of the i-th neuron in certain layer, the function of
ReLU and Softmax can be described as follows:

fReLU (xi) = max (0, xi) . (14)

fSoftmax (xi) =
exi∑
j e
xj
. (15)

In addition, we also introduce dropout layers to avoid over-
fitting and Adam as the optimizer. Categorical cross entropy
(CCE) function is applied as loss function, considering that
AMR is essentially a muti-class classification task. CCE loss
function is also called Softmax loss function, due to that CCE
is a combination of Softmax activation and cross entropy
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loss function. The function of CE is shown as

yCE = −
∑
C

yclog(̂yc), (16)

where yc is the ground truth vector, and it can be achieved
through one-hot encoding of sample label. yc is the predicted
vector. C is the number of the samples’ types. On the basis of
CE and Softmax, the CCE loss function is given as follows.

yCCE = −
∑
C

yclog(fSoftmax (xi)), (17)

2) TRAINING AND TEST STRATEGIES
In Section I, we have introduced the weak generalized capa-
bility of existing fixed CNN-based AMR methods. In this
paper, we propose a generalized CNN-based RAMRmethod,
and it has generalized ability to against varying noise condi-
tion with different SNRs. The structure of generalized CNN
and fixed CNN are the same, which has been shown in Fig. 3,
and the differences between them are training and testing
strategies.

The fixed CNN is often trained on data with single SNR,
but SNR of received signals is unchangeable. So we must
train various fixedCNNs for varying noise conditions. In real-
ity, fixed CNN-based AMR can be applied in this system,
the structure of which is shown in Fig. 4(a). When receiving
unknown signal, on the one hand, system should make pre-
processing and convert signals into IQ samples; on the other
hand, system also need to precisely estimate the SNR. Then,
system chooses certain trained CNN model according to the
estimated SNR, and the IQ samples are fed into chosen CNN
to be recognized.

Fixed CNN-based AMR method requires precise SNR
estimation to select a trained model, but the generalized
CC-based RAMR method only needs to determine whether
SNR is in the range of−5 dB to 5 dB. Hence, the training and
test method of the generalized CNN is different. Before train-
ing, we need to proportionally mix three datasets with SNRs
of −5 dB, 0 dB and 5 dB. Then, the mixed dataset is divided
into training dataset and validation dataset by 7 : 3 in random.
Training dataset is fed into generalized CNN for training
and validation dataset is applied to measure the performance
of trained CNN after each epoch. The trained generalized
CNN can be employed into modulation type recognition of
unknown signals with SNR ranging from −5 dB to 5 dB.
The detailed training steps are given in TABLE 1. It is

worth noting that early-stopping is adopted into training to
avoid overfitting, and it means that if the performance of the
generalized CNN cannot be improved on validation dataset,
training will stops automatically. We choose five epochs for
AWGN channel and ten epochs for Rayleigh fading channel,
as intermittent cycle, respectively. The curves of accuracy and
cross entropy loss changing in training generalized CNN are
shown in Fig. 5. The epoch times for training generalized
CNN are set as 40 in AWGN channel, but 55 training epoch
times are required for generalized CNN in Rayleigh fading
channel. The loss of training generalized CNN cannot be

FIGURE 4. The flow chart of actual application: (a) Fixed CNN-based AMR
method where SNR = j dB) is trained on samples with SNR = j dB; (b) The
proposed CNN-based RAMR method where is trained on mixed dataset
with three SNR regimes: {−5 dB, 0 dB, 5 dB}.

TABLE 1. The training of the proposed CNN-based RAMR method.

improved after the 35 epoch and 45-th epoch for AWGN
channel and Rayleigh fading channel, respectively. Hence,
the training is terminated.
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FIGURE 5. The changing of accuracy and cross entropy loss in training
generalized CNN: (a) AWGN channel, (b) Rayleigh fading channel.

Generalized CNN-based RAMR method can be applied
into actual applications according to Fig. 4(b). Compared
Fig. 4(a) and Fig. 4(b), there are two differences between gen-
eralized CNN-based RAMR method and fixed CNN-based
AMR method. The first difference is that we just need to
train one CNN model in generalized CNN-aided system.
The second one is that generalized CNN-based system just
needs to make rough SNR estimation rather than precisely
estimate SNR. That is to say, fixed CNN-based AMRmethod
requires precise SNR estimation to select a trained model,
but generalized CNN-based RAMR method only needs to
determinate whether SNR is in the range of −5 dB to 5 dB.

3) IMPLEMENTATION
The experiment, especially network trimming, requires pow-
erful computing resources, so it conducted in the platform
with one NVIDIAGTX 1080Ti GPU and the implementation
of the network relies on Keras 2.2.2 with Tensorflow 1.10 and
Python 3.6.5 as the backend. Moreover, Matlab R2018a is
applied to build our datasets.

FIGURE 6. The performance of various AMR methods: (a) AWGN channel,
(b) Rayleigh fading channel.

IV. EXPERIMENT RESULTS
A. PERFORMANCES OF VARIOUS AMR METHODS
In this paper, correct classification probability PCC is adopted
to measure the performances of these AMR methods, which
is given as (18)

Pcc(j) =
Scc(j)
S(j)

, (18)

where S(j) is the number of all test samples at SNR=j dB
(where j ∈ [−5 dB, 5 dB]) and S(j) = 18000. Scc(j) is the
number of test samples at SNR=j dB, which are correctly
classified. These performances are measured on the indepen-
dent IQ testing dataset, and the test data of the traditional
AMR methods are a set of feature vectors extracted from the
IQ test dataset.

The performances of various AMR methods in AWGN
channel and Rayleigh channel are depicted in Fig. 6.
From these experiment results, we can observe that AMR
algorithms, based on SVM or DT, have unsatisfactory
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performances in the two channels (i.e, AWCN channel and
Rayleigh channel). Here, both fixed CNN and generalized
CNN-based RAMR algorithm can work perfectly in the
two kinds of channels. The Pcc in AWGN channel can
reach almost 100% when SNR > −3 dB, and similar
performances can be achieved in Rayleigh channel when
SNR > −1 dB.
For the purpose of evaluating the performances of the two

CNN-based AMR algorithms, Pgapcc (j) is proposed to measure
the performance gap, which is defined as follows.

Pgapcc (j) = PfixedCNNcc (j)− PgeneralizedCNNcc (j), (19)

where PfixedCNNcc (j) and PgeneralizedCNNcc (j) are the correct clas-
sification probabilities of fixed CNN and generalized CNN
for SNR = j dB (j ∈ [−5 dB, 5 dB]), respectively. The
calculated Pgapcc (j) is shown in Fig. 7. There are almost no
performance loss in AWGN channel, and performance loss
in Rayleigh channel ranges from 1% to 2%, and most of
losses are around 1%. In addition, the method cannot promise
the optimal performance at each SNR, but presents a global
performance optimization for SNR ranging from −5 dB
to 5 dB. Thus, the performance losses at varying SNR are
different.

FIGURE 7. The performance gap between fixed CNN and generalized CNN.

B. GENERALIZED CAPABILITIES UNDER
VARYING NOISE CONDITION
To compare the generalization capabilities between the fixed
CNN and generalized CNN under varying noise conditions,
we depict three curves of fixed CNN trained at different SNRs
(i.e., −5 dB, 0 dB, 5 dB) in Fig. 8, and we tested them
at SNRs ranging from −5 dB to 5 dB. These three fixed
CNNs perform well the testing when SNRs are close to j
dB, but the training SNRs performance gets worse at other
SNRs, which means that the fixed CNN does not have higher
robustness and generalization capabilities. On the contrary,

FIGURE 8. Generalized capabilities under varying noise condition:
(a) AWGN channel. (b) Rayleigh fading channel.

Fig. 8 demonstrates that generalized CNN can work effec-
tively at all the testing SNRs.

V. CONCLUSION
In this paper, we have proposed a generalized CNN-based
RAMR method with better robustness under varying noise
conditions. Compared with the traditional AMR methods,
the classification accuracy of the proposed method is far
beyond not only in AWGN channel but also in Rayleigh
fading channel. Besides, it is more robust than fixed CNN-
based AMR method at the cost of negligible performance
loss, because the generalized CNN, trained by a mixed IQ
dataset containing received signals with SNRs of −5 dB,
0 dB and 5 dB, can be applied to recognize modulation
types of signals with uncertain SNR from −5 dB to 5 dB,
while the fixed CNN is trained on fixed SNR and can just
be applied to identify signal modulation types for precisely
estimated SNR. Moreover, our proposed method is more
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convenient for deployment than the fixed CNN-based AMR
methods, because precise SNR estimation is unnecessary in
our method.We just need to determine whether SNR is within
the range from−5 dB to 5 dB before recognizing. In addition,
we just have to train one generalized CNN model rather
than many fixed CNN, which means fewer device memory
assumption. Hence, our proposed generalized CNN-based
RAMR method is meaningful for practical applications.
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