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ABSTRACT Compared to the traditional machine learning models, deep neural networks (DNN) are known
to be highly sensitive to the choice of hyperparameters. While the required time and effort for manual tuning
has been rapidly decreasing for the well developed and commonly used DNN architectures, undoubtedly
DNN hyperparameter optimization will continue to be a major burden whenever a new DNN architecture
needs to be designed, a new task needs to be solved, a new dataset needs to be addressed, or an existing
DNN needs to be improved further. For hyperparameter optimization of general machine learning problems,
numerous automated solutions have been developed where some of the most popular solutions are based
on Bayesian Optimization (BO). In this work, we analyze four fundamental strategies for enhancing BO
when it is used for DNN hyperparameter optimization. Specifically, diversification, early termination,
parallelization, and cost function transformation are investigated. Based on the analysis, we provide a simple
yet robust algorithm for DNN hyperparameter optimization - DEEP-BO (Diversified, Early-termination-
Enabled, and Parallel Bayesian Optimization). When evaluated over six DNN benchmarks, DEEP-BO
mostly outperformed well-known solutions including GP-Hedge, BOHB, and the speed-up variants that use
Median Stopping Rule or Learning Curve Extrapolation. In fact, DEEP-BO consistently provided the top,
or at least close to the top, performance over all the benchmark types that we have tested. This indicates that
DEEP-BO is a robust solution compared to the existing solutions. The DEEP-BO code is publicly available
at https://github.com/snu-adsl/DEEP-BO.

INDEX TERMS Deep neural networks, hyperparameter optimization, Bayesian optimization, diversifica-
tion, early termination, parallelization, cost function transformation.

I. INTRODUCTION
Hyperparameter Optimization (HPO) aims to find the global
optimum x∗ of an unknown black-box function f where
f (x) can be evaluated for any arbitrary x ∈ X . That
is, x∗ = argmaxx∈X f (x), where X is a hyperparameter
space that can contain categorical, discrete, and continuous
variables. To automatically solve HPO problems, a vari-
ety of approaches have been adopted. Among them, ran-
dom search [1] and Bayesian Optimization (BO) [2] are the
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most basic and popular solutions, and they have been inten-
sively studied mainly for traditional Machine Learning (ML)
problems [3], [4], [20].

Recently, HPO of Deep Neural Network (DNN) has
emerged as an important topic. Compared to the traditional
machine learning, deep learning with human tuning has
dramatically reduced the required level of human effort by
shifting the central work from feature engineering based on
domain knowledge to DNN architecture design and tuning
based on data and task types. DNN performance, however,
is known to be highly sensitive to the hyperparameter setting,
and deep learning researchers often spend long hours trying
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FIGURE 1. HPO performance comparison for three different DNN tasks (the lower, the better): (a) LeNet model on MNIST (b) LSTM model on PTB
(c) ResNet model on CIFAR-10. Each plot compares the minimum function value of six HPO algorithms as the optimization time t increases. The shaded
areas show 0.25σ , where the variance is σ2. Clearly, none of the algorithms universally perform well over the three tasks, and the best performance is
achieved by RF-EI-LCE, BOHB, and GP-EI-MSR, respectively.

to tune the hyperparameters. Therefore, it would be natural
to use an automatic procedure for configuration tuning. Deep
learning with HPO is capable of further reducing the required
level of human effort by shifting the essential work from
DNN architecture design and tuning to the selection of base
architecture and X . It is important to recognize that the use
of HPO does not imply a complete elimination of human
effort at the cost of computation power, but rather it means
yet another level of reduction in the required level of human
effort.

There are numerous examples of improving DNN per-
formance with HPO. For instance, it was reported in [4]
that their HPO outperformed human experts by tuning seven
hyperparameters of a CNNmodel. Deep learning researchers,
however, are often reluctant to use such an automated proce-
dure for a few reasons. A well-known reason is the utilization
of domain knowledge and experience. Researchers typically
prefer to perform manual tuning and utilize one’s knowledge
for deciding what to try next. Most of the existing automated
procedures are not capable of utilizing the previously learned
knowledge, and there is a significant on-going effort for
absorbing such previously learned knowledge into the hyper-
parameter optimization framework. Some of the recent works
are [6], [7] and [8] where transfer learning and meta learning
are considered. While this subject is an important topic, it is
not in the scope of this work. Another reason is the pos-
sibility of a disastrous failure. When running an automated
procedure onDNN, even a single sequence of hyperparameter
optimization can take hours or days before an exit condition
is met. Therefore, it is important to minimize the risk of a
disastrous failure and to improve the worst-case performance
(or equivalently the chance of a successful hyperparameter
optimization). This is an important topic to address in the field
of DNN hyperparameter optimization, and the main subject
of this work.

While many new HPO algorithms have been introduced
recently, none seems to be universally effective over DNN
benchmark problems. In Fig. 1, we show performance

for three different DNN benchmark tasks using the fol-
lowing well-known HPO algorithms: random search [1],
Gaussian Process (GP-EI) [4], an adaptive GP algorithm
GP-Hedge [9], two speed-up BOs using Median Stopping
Rule (GP-EI-MSR) [10] and Learning Curve Extrapola-
tion (RF-EI-LCE) [11], and a hybrid bandit based approach
BOHB [12]. The minimum function values are considered to
be the standard and conventional metric in the hyperparam-
eter optimization literature. The results show that an HPO
algorithm’s relative performance can be highly dependent
on the specific choice of task, and none of the algorithms
robustly work well over the three tasks. In this regard, no free
lunch theorem in [13] provides insightful proof that there
exists no optimization algorithm that universally performs
best. Also, [14] shows a similar result with practical ML
benchmarks.

In addition to the minimum function value that is used
in Fig. 1, we also use two new metrics for evaluating HPO
algorithms. Because it is important to design an HPO algo-
rithm that can achieve a target goal within the given time
budget of t , success rate is defined as the first metric. Assum-
ing that an HPO algorithm takes time τ , a random variable,
to achieve a target performance (e.g. accuracy) c, the algo-
rithm’s success rate at time t can be defined as successfully
finding a x̂ such that f (x̂) > c before reaching time t .
It can also be simply expressed as P(τ ≤ t). An alternative
metric is expected time to achieve a target performance (e.g.
accuracy), and it can be expressed asE[τ ]. While both are not
the standard metrics in the literature yet, they provide easily
interpretable values because they are based on a fixed-target
approach [15].

Our goal is to empirically identify the basic BO strate-
gies that work well specifically for DNN tuning. HPO of
DNN has important and distinct aspects when compared to
the traditional ML. Firstly, DNN’s architecture design can
significantly affect the performance and it has many hyperpa-
rameters that can be considered for the design. For instance,
the number of neurons in each layer can be a hyperparameter.
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Therefore, DNN problems tend to have a much larger X
than the traditional ML problems. We will address this issue
further in Section III. Secondly, the performance curve from
the first epoch to the last epoch of DNN training can be
drastically affected as new techniques are introduced. For
instance, the introduction of batch normalization [16] has
made it more difficult to use an early epoch performance to
predict a later epoch performance. We will address this issue
further in Section V. With these aspects in mind, we focus
on automated procedures that are based on BO and show
how basic enhancement strategies can be used altogether
to improve the chance of a successful hyperparameter opti-
mization. To be specific, we mainly focus on developing
useful insights on diversification, early termination, paral-
lelization, and cost function transformation. Then, we pro-
pose a simple yet robust BO algorithm based on the basic
strategies. The algorithm is called DEEP-BO (Diversified,
Early-termination Enabled, Parallel Bayesian Optimization),
and we empirically show that DEEP-BO can consistently
and robustly achieve relatively high performance over six
representative DNN benchmarks.

II. BAYESIAN OPTIMIZATION
Bayesian Optimization (BO) is a sequential approach for
parameter optimization of any black-box function f (x).
BO was shown to be useful for algorithm configuration first
in [17], and now it has become a popular state-of-the-art
solution. Introduction to BO can be found, for instance,
in [18] and [2]. BO incorporates prior belief for estimating
a response surface function f̂ (x), uses f̂ (x) for selecting the
next configuration xn to try, evaluates f (xn) using the true
black-box function, calculates posterior belief using the eval-
uated performance f (xn), and repeats the process in sequence
until a stopping criterion is met. A pseudocode of BO is
shown in Algorithm 1.

Algorithm 1 Bayesian Optimization

Inputs: black-box function f , BO algorithm f̂ , parameter
space X
H← ∅
for n = 1, 2, . . . do

Select xn ∈ argmaxx∈X f̂ (x;H)
Evaluate yn← f (xn)
UpdateH← H ∪ (xn, yn)
Check for exit criteria

end for

For building the response surface of f̂ (x), the three most
popular choices for ML problems are Tree-structured Parzen
Estimator, Gaussian Process [19], and Random Forest regres-
sor. They were used in [3], [4], [20], respectively. The algo-
rithms utilize acquisition functions that can provide a tradeoff
between exploration and exploitation, and the three most
popular choices for the acquisition functions are Probability

of Improvement (PI) [21], Expected Improvement (EI) [17],
and Upper Confidence Bound (UCB) [22].

In our work, the black-box function f (x), which represents
the performance (usually prediction accuracy or error) of a
DNN with a model configuration x, is highly non-convex.
Also, f (x) can be evaluated at an arbitrary point x, but even
a single evaluation can take a considerable amount of time
because the evaluation of f (x) requires performing the entire
training procedure of the DNN.

III. SIX DNN BENCHAMARKS AND PRE-EVALUATION
For evaluating HPO algorithms, a variety of tasks have been
used as benchmarks. For the ML domain, [14] collected
twelve traditional and popular benchmarks and created a
library. Modern DNN benchmarks were also considered in
a few works including [4] and [23]. The DNN benchmarks,
however, were often limited in one way or another. Some
benchmarks had only four hyperparameters (which can be
considered to be too small for fully tuning a modern DNN),
some benchmarks excluded categorical hyperparameters, and
some benchmarks used old architectures such as Deep Belief
Network (DBN).

A. SIX DNN BENCHMARKS
To overcome the limitations, we have created six DNN
benchmarks using currently popular deep learning datasets
(MNIST, PTB (Penn Treebank), CIFAR-10, and CIFAR-100)
and commonly used DNN architectures (simple CNN,
LeNet [24], ResNet [25], and LSTM [26]). The six bench-
marks are summarized in Table 1.

TABLE 1. Six DNN benchmarks.

Practically, the number, type, and range of hyperparam-
eters are important factors, too. Except for the CIFAR10-
ResNet benchmark, ten hyperparameters were chosen such
that a sufficiently large X could be used as the search space.
For CIFAR10-ResNet, we had to limit the number of hyper-
parameters to seven because the training time was an order
of magnitude larger than the other benchmarks. The hyper-
parameters considered were related to architecture, optimiza-
tion, and regularization, and all of discrete, continuous, and
categorical types were included. We note that the learning
rate, that is most important for tuning DNN, is included in
all the benchmarks and its range and sampling scheme were
carefully designed. We discuss this further in Section XI. The
details of the six benchmarks can be found in Table 2–7. Even
though not included in this work, we have also experimented
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TABLE 2. MNIST-LeNet1 benchmark.

TABLE 3. MNIST-LeNet2 benchmark.

TABLE 4. PTB-LSTM benchmark.

TABLE 5. CIFAR10-CNN benchmark.

with smaller and larger numbers of hyperparameters (four to
seventeen) and the findings were similar.

B. PRE-EVALUATED CONFIGURATIONS
The performance of an HPO algorithm for a specific task is
not deterministic. That is, an HPO algorithm would output a

TABLE 6. CIFAR10-ResNet benchmark.

TABLE 7. CIFAR100-CNN benchmark.

different result for each trial of hyperparameter optimization.
Therefore, repeated experiments are necessary to estimate
the success rate P(τ ≤ t) and expected time E[τ ] in a
credibleway. However, each trial of a singleHPO run requires
a considerable number of DNN training (typically a few
hundreds of DNN training), and thus it would be extremely
time-consuming to repeat the experiments over multiple algo-
rithms. In this regard, [27], [28] suggest that surrogate bench-
marks are cheaper to evaluate and closely follow real-world
benchmarks.

To utilize surrogate benchmarks, we pre-selected a rep-
resentative set of model configurations, pre-evaluated all
the selected configurations, and saved their DNN training
results (including the evaluated test performance and the
consumed time) into a database. This process takes a con-
siderable amount of time to complete, because we need to
complete DNN training of all the configurations. Therefore
we carefully chose the number of maximum epoch for each
benchmark, where it was chosen to be sufficiently large but
not unnecessarily large. We had 20,000 configurations for
five benchmarks and 7,000 for CIFAR10-ResNet, and thus
a total of 107,000 DNN training had to be completed for the
six benchmarks. We utilized eight computing machines that
have multiple NVIDIA GPUs. The information on training
time can be found in Table 8. Though the performance of
PTB-LSTM is originally provided as perplexity, the val-
ues were transformed to be in the same range as accuracy.
Because a lower perplexity means a better performance,

VOLUME 8, 2020 52591



H. Cho et al.: Basic Enhancement Strategies When Using Bayesian Optimization for Hyperparameter Tuning of DNN

TABLE 8. Statistics of pre-evaluated configurations.

we transformed the value of perplexity as below.

y = 1.0−perplexity/1000.0 (1)

In the tables, the single best accuracy is shown together with
two carefully chosen accuracy targets - difficult target accu-
racy and easy target accuracy. When evaluating HPO algo-
rithms, we repeated the experiments over the two targets such
that we can understand the algorithm behavior for both easy
and difficult accuracy targets. The difficult target was chosen
as the 10th best performance from the 20,000 pre-evaluated
configurations, and the easy target was chosen as the 500th
best performance from the 20,000 pre-evaluated configu-
rations (7,000 for CIFAR10-ResNet). Figure 2 shows the
distribution of the pre-evaluated test accuracy values sorted
from the best to the worst.

FIGURE 2. Test accuracy distribution of the pre-evaluated configurations.
Note that the performance of PTB-LSTM was scaled to match the range of
accuracy. Performance was sorted before plotting. The leftmost
configuration number corresponds to the largest test accuracy.

After completing the pre-evaluations, we were able to
repeatedly perform HPO experiments using the database
without requiring actual DNN training. With the
pre-generated database, proper book-keeping was performed
to expedite the experiments. Using this methodology,

we were able to evaluate each HPO algorithm 100 times for
each benchmark task. All the performance results presented
in this work were created by repeating each task 100 times.

For selecting ‘a representative set of configurations’
from the given X (i.e. 20,000 or 7,000 configurations
from X ), we have used the Sobol sequence [29]. Sobol is a
quasi-random low-discrepancy sequence in a unit hypercube,
and its samples are known to be more evenly distributed in a
given space than uniform random sampling.

IV. DIVERSIFICATION STRATEGY
Diversity is a widely used concept in the algorithm stud-
ies, and ensemble might be the most relevant diversification
example for this work. Ensemble is a popular diversification
technique in machine learning [30]. Ensemble employs a set
of learned models instead of using only a single model, and
the inferences from the individual models are combined to
generate the overall inference. While a homogeneous ensem-
ble produces all the individual models using a single type
of base learner algorithm (e.g., random forest), a heteroge-
neous ensemble uses many different types of learner algo-
rithms (e.g., stacking). In both cases, the diversity among the
individual models can greatly contribute to the performance
improvement.

Typically, a single model is repeatedly used over the entire
sequence of HPO. Such a single model HPO is inherently
vulnerable because the chosen HPO algorithm might work
well for one task but then perform very poorly for another
as was demonstrated in Fig. 1. This vulnerability can be
a serious limitation for the hyperparameter tuning of deep
neural networks because we cannot afford to try manymodels
one by one where each trial can take days or even months.
As an essential strategy to overcome this limitation, we pro-
pose to adopt diversification at the model level just as in
the ensemble. In this section, we study simple and basic
implementations of diversification using BO models. Thanks
to the inherently sequential nature of BO, we can simply
use many different models in turn. In addition to the simple
strategy, adaptive strategies are studied, too.

A. SIMPLE DIVERSIFICATION
While a typical BO uses a single model f̂ to approximate
the true black-box function f , diversification makes use of
N different models (f̂1, . . . , f̂N ). The N models can be cho-
sen in many different ways, for instance, in a homogeneous
way (all are based on a single base model but with minor
variations) or in a heterogeneous way. In fact, any state-of-
the-art HPO models can be used as the individual models.
In this study, however, we restrict our focus to the most
popular BO models. Once the N algorithms are chosen,
we can repeatedly rotate over the N algorithms. We name the
sequential diversification strategy as S-Div. Obviously, there
are many different ways to implement simple diversification
other than S-Div. For instance, it is also possible to randomly
choose one of the N models in each turn. When evaluated
over the benchmarks, the randomization strategy performed
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comparably well as S-Div. Nonetheless, we have chosen to
limit our study to S-Div because it makes fair and determinis-
tic use of N individual models and thus, elimination variance
from random selection.

FIGURE 3. Effects of diversification on two DNN benchmarks. Success
rate P(τ ≤ t) for difficult target are shown for (a) PTB-LSTM and
(b) MNIST-LeNet2. Six individual BO models, S-Div, Hedge, and ε-greedy
are shown. The plots were generated by repeating HPO 100 times for
each model.

The effects of model diversification are shown in Fig. 3.
For discussing the benefits of simple diversification, we focus
on six individual models and S-Div only. Hedge and ε-greedy
will be addressed in the next subsection. N = 6 individual
models were used for S-Div (GP-EI, GP-PI, GP-UCB, RF-EI,
RF-PI, and RF-UCB), and the single model performance is
also shown for each of the six individual models. In Fig. 3a
(PTB-LSTM benchmark), it can be seen that the three GP
models performmuch better than the three RFmodels. In par-
ticular, the performance of RF-UCB turns out to be disas-
trous. While the performances of individual models show
large variations, S-Div was able to avoid the worst cases
simply by adopting diversification. Typically, a disastrous
case occurs when a model fails to predict promising hyperpa-
rameter spaces for a long time. S-Div is able to escape from
this problem as long as one of the individual models predict

well, and hence it is important to combine individual models
that can predict well for a variety of deep neural network
tasks. In Fig. 3b (MNIST-LeNet2 benchmark), now the three
RF models perform much better than the three GP models,
and the previously disastrous RF-EI is the best performing
singlemodel for this task. For this benchmark, S-Divwas able
to perform better than the GP models as expected. In fact,
S-Div was able to do much more than avoiding the poor
performance, and it actually performed even better than the
best performing singlemodel. For this benchmark, each better
performing single model not only made sure to choose a
promising hyperparameter candidate xn during its turn, but
it also constructed a better dataset H to use for poorly per-
forming models. When a good dataset is provided to a single
model, the model performance can be significantly improved.
We will provide an additional explanation on diversity gain in
Section VI.
As we will show in Section X, empirical results show

that what has been observed in Fig. 3b is more typical than
what has been observed in Fig. 3a. Then, it can be seen
that trying many HPO models one by one is not necessary
as long as S-Div is used and at least some of the chosen
individual models happen to perform well for the given task.
As the end result, the productivity of the DNN hyperparam-
eter optimization process can be dramatically improved with
diversification. For this reason, we believe diversification is
one of the most basic and important enhancement strategies
that should be considered all the time.

B. ADAPTIVE DIVERSIFICATION
A natural extension of S-Div is to adapt the model selection
of the n’th iteration. While such an adaptation has been often
treated as aMulti-ArmedBandit (MAB) problem in the previ-
ous HPOworks, we would like to clarify that it is not a simple
stationary MAB because of H. Each model selection affects
howH will be expanded, and subsequently, the performance
of all individual models for the n + 1’th iteration is affected
through the dataset H. Thus, the problem can be understood
as a contextual bandit problem [31].

To perform basic investigation on the effects of adaptation,
we have considered two adaptation schemes - Hedge and
ε-greedy. As in S-Div, the same six models were used as
the individual arms, and negative log error was chosen as
the reward after trying several options. For ε-greedy, ε was
linearly decreased from 1.0 to 0.1 as the evaluation step n
increased. The results are shown in Fig. 3. To our surprise,
neither Hedge nor ε-greedy showed a meaningful differ-
ence from S-Div for both benchmarks. Therefore, a further
analysis on arm selection ratio was performed. In Table 9,
the arm selection ratio over the six individual models are
shown for S-Div, Hedge, and ε-greedy. As expected, S-Div
equally selected from the six models. Hedge that selects
the individual model with the best average reward during
iterations 1 to n − 1 also ended up selecting the six models
almost equally. This indicates that none of the six models
clearly and consistently outperformed due to the sharing ofH.

VOLUME 8, 2020 52593



H. Cho et al.: Basic Enhancement Strategies When Using Bayesian Optimization for Hyperparameter Tuning of DNN

TABLE 9. The individual model selection ratio in % (µ± σ ). In the second column, the best performing strategy is marked in bold. In the third column, the
most frequently selected individual models are marked in bold and the best-performing individual model is highlighted in green.

Unlike Hedge, ε-greedy ended up choosing GP-PI and RF-PI
most frequently for PTB-LSTM and MNIST-LeNet2 bench-
marks, respectively. For the first benchmark, GP-PI turns out
to be the best performing single model. For MNIST-LeNet2,
however, RF-PI turns out to be one of the best performing
single models but not exactly the best one. The best per-
forming one is RF-EI, and it was selected only 10.6% of
the time on average. Overall, the results in Table 9 indicate
that naïve adaption schemes fail to outperform S-Div because
the main benefit comes from the sharing of H and not from
the adaptation itself. More sophisticated adaptation schemes
might be able to outperform S-Div, but we adopt S-Div
as the diversification choice when designing DEEP-BO in
Section VIII.

C. EXISTING WORKS
There are existing works where multiple models are consid-
ered together. GP-Hedge algorithm in [9] focuses on adaptive
selection from a portfolio of acquisition functions governed
by an online multi-armed bandit strategy where the base
model is restricted to GP. The basic Hedge model in our
experiment was based on the ideas of GP-Hedge with the
concept extended to the model level. In [4], it is shown that
certain choices for the nature of the GP (such as the type
of kernel and the treatment of its hyperparameters) can play
a crucial role for optimizing machine learning algorithms,
and MCMC is adopted to blend acquisition functions arising
from samples from the posteriors. Reference [32] explicitly
focuses on constructing a novel kernel between models to
explain a given dataset. Reference [33] introduces an auto-
mated BO approach that dynamically selects promising mod-
els for explaining the observed data using BO in model space.

While all of the works above are relevant, all of them have
the viewpoint of choosing or approaching a single best BO
model to explain the data. For instance, the single model
might be an integration of multiple models where selection,
sampling, or adaptive blending of acquisition function and/or
kernel is performed according to the observed data. Our
viewpoint is that model level diversity should be recognized
in a way analogous to the ensemble technique where the N
models bring different characteristics and strengths of their
own. Unlike ensemble, however, the N models interact with
one another through the datasetH. This interaction can often
make even a poorly performing model to be as useful as
the best performing model for the given task. With our best

knowledge, we are the first to explicitly consider model level
diversity and experiment the interaction through H, espe-
cially for the modern DNN benchmarks.

V. EARLY TERMINATION STRATEGY
The configuration xn chosen by HPO often results in a perfor-
mance f (xn) that is much worse than the best configuration
found so far. If such a configuration can be identified in
the early phase of DNN training (i.e. after training only a
small number of epochs), it would be ideal to terminate the
training and move on to the next candidate. This is a natural
approach for DNN. For training DNN, typically early stop-
ping is utilized to prevent performance degradation from an
excessive training [36]. To enforce early stopping, validation
performance is checked many times before completing the
full training of max epoch E . Therefore, the training and
validation performance samples over the course of training
are made available (collectively called learning curve), and
the samples can be used to predict what will be the final per-
formance if the training is continued. This straightforward but
effective idea has been studied in [10], [11], [23], [34], [35],
and we call it Early Termination Rule (ETR) to distinguish it
from early stopping.

Most of the previous works make certain assumptions
on the characteristics of DNN’s learning curve, introduce a
probabilistic model, and perform extrapolation to predict the
future performance. A common assumption is that the slope
of a learning curve is initially large and gradually decreases
with training. The assumption serves as the base for a variety
of methods ranging over heuristic rules [10], probabilistic
modeling [11], and regression [35]. In [23], envelope func-
tions are adopted to provide theoretical bounds.

While suchmethods are valid and can be significantly help-
ful, especially when the max epoch E is set to a value much
larger than what is really needed, they can also harm the per-
formance of HPO by making undesirable early terminations.

A. RISK OF EARLY TERMINATION
Deep neural network is an active area of research. New
techniques are continuously developed and popularized.
For instance, dropout and batch normalization (batchnorm)
became essential tools for designing new architectures.
Whenever a new technique is introduced, the characteristics
of learning curves are affected. As an example, analysis of
training CIFAR10-CNN is shown in Fig. 4. First, the two best
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FIGURE 4. Training of CIFAR10-CNN. (a) Learning curve examples of the top performing configurations. Blue curve is with batch normalization on, and
orange is with batch normalization off. (b) Histogram of performance during 0–13 epochs of training. Clearly the configurations with batch
normalization tend to perform worse. (c) Histogram of performance during 38-50 epochs of training. The best performance is achieved when batch
normalization is on. The results in (b) and (c) were generated using only 200 configurations in the surrogate dataset, where they end up as the
top-200 configurations after full training.

performing configurations out of the 20,000 pre-evaluations
were identified with batch normalization on and off, and their
learning curves are shown in (a). In fact, the blue curve is the
best configuration because it performs better than the orange
curve. While the orange curve shows a strong correlation
between the early phase of training and the later phase of
training, the blue one shows an abrupt improvement around
epochs 10–15. If the early termination rule is such that an
early termination is decided for the blue curve, the best
performing configuration will have no chance of being found
by the HPO algorithm. This is an example of how a common
assumption on learning curve can become completely wrong
with an introduction of a new technique. Second, we have
identified the top-200 configurations and generated their per-
formance histogram for the early phase in (b) and later phase
in (c). Clearly, all the high performance configurations with
batchnorm on have poor performance in the early phase. The
effect is less pronounced for dropout, though.

FIGURE 5. The correlation between validation performance during
training and the best one found after completion.

As another example, training of MNIST-LeNet1 is con-
sidered in Fig. 5. For the top-K performing configurations,
we have calculated the average Spearman rank correlation.
For epoch i, the correlation was calculated between the

performance of epoch i and the final performance after the
full training (E epochs). For the top-10000, the correlation
is high even for the early phase. As K is increased, the cor-
relation starts to become smaller. For the top-10, the cor-
relation for epochs between 1 and 6 is definitely not high
where its values is calculated to be 0 or less. More exam-
ples on the characteristics of DNN learning curves can be
found in [37].

Overall, it is still unclear what assumptions on DNN learn-
ing curves are and will be reasonable. The existing works
focused on only a limited set of DNN tasks or datasets,
and therefore it was possible to find a common assumption
that worked well. With the assumption, early termination
rules tended to be aggressive to maximally save the com-
puting resources. When we investigated our six benchmarks,
however, it was easy to identify counterexamples of the
assumptions. This is similar to the problem of inductive bias
design in machine learning. As long as tasks, datasets, and
the component techniques of DNN are evolving, it will be
impossible to come up with a common assumption on learn-
ing curve. The limitation is an important one to remember
when designing early termination rules. Ideally, the early ter-
mination rule should be smart enough to learn a proper rule as
more candidate configurations are evaluated. In this section,
we provide the basic design elements of ETR and provide a
conservative design. A further discussion is provided in the
Section XI.

B. DESIGN ELEMENTS FOR EARLY TERMINATION
We surveyed the termination rules in the existing works, and
they are summarized in Table 10. The common framework is
to define an observation period, a time point for making an
early termination decision, and a threshold for termination
decision. We extracted four essential design elements and
they are listed below.
• Start point s: It refers to the time point when the learn-
ing curve observation begins. The observations are used
as the input to the termination decision.
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TABLE 10. Early termination designs in previous works.

• End point e: It refers to the time point when the learning
curve observation ends. If s = e, the performance at the
time point only is used as the observation.

• Checkpoint j: It refers to the time point when the obser-
vations are evaluated and a termination decision is made.
Typically, j is set to be the same as e.

• Threshold h: It refers to the knob that controls the
aggressiveness of termination at the checkpoint j.
h ∈ [0, 1] where h = 0 means no termination at all and
h = 1 means unconditional termination.

A single termination decision consists of four elements
(s, e, j h). The number of checkpoints is also a design element,
but typically only one checkpoint is used. When multiple
checkpoints are used, one can use less aggressive settings
in the early phase and use more aggressive settings in the
later phase. The followings are the design principles that we
recommend.
• Use a small number of checkpoints to keep ETR simple.
• The first checkpoint j should be sufficiently delayed to
prevent unnecessary and harmful early terminations.

• To reduce the variance of estimation, s should be earlier
than e (s 6= e).

• A model-free approach can be more robust to the
changes in tasks, datasets, and techniques [10].

• When approaching the max epoch E , an aggressive
threshold can be desirable.

Based on the principles, we provide a simple termination rule
that will be later integrated into DEEP-BO.

C. COMPOUND RULE
We have designed a termination rule based on the above prin-
ciples. We call it Compound Rule (CR) because it evaluates
learning curves at two different checkpoints with adjustable
thresholds. CR was designed to be conservative because
ultimately we are interested in finding the top-level config-
urations and we should not eliminate any candidate unless
confidence is very high.

We define two functions (l and t) that determine check-
points and thresholds, respectively. These functions are rep-
resented withA,H,E, β, whereA is a learning curve whose
validation accuracy is typically observed for every epoch,

H is the search history, E is max epoch, and β is the termina-
tion aggressiveness parameter.

Firstly, we introduce two formulaic tools for computing the
above functions.

FX (x) = P(X ≤ x) (2)

f̄i:j(x) =
1
j

j∑
k=i

fk (x) if i ≤ j (3)

FX (x) refers to the cumulative distribution function for the
distribution of a given random variable X . Secondly, we show
l which returns the two checkpoints’ epoch locations (epoch
j1 and j2).

l(E, β) = {b0.5Ec, b(1− β)Ec} = {j1, j2} (4)

S = {s ∈ H | for A ∈ s, n(A) > j1} (5)

We note that j1 is set to be larger than the nearest integer to
E/2 tomake CR low-risk.We hypothesize that this choice can
decrease the occurrences of false positives which distract BO.
Thus, we save less resources compared to using a smaller j1
value for some single configuration but we save resources
frequently using multiple checkpoints. This approach would
be more resource-efficient in aggregate since BO might be
able to find more desirable configurations based on a more
reliable history. Thirdly, we show t which returns one of two
thresholds. If j ≤ j1, t returns threshold h1 for epoch j1, and
otherwise returns threshold h2 for epoch j2.

t(j,A,H, β) =
{
F−1X (β) if j ≤ j1
F−1X (1− β) otherwise

for,

X =

{
{x | x = f̄1:j1 (x) for x ∈ H} if j ≤ j1
{x | x = f̄j1:j2 (x) for x ∈ S} otherwise

(6)

The S holds the history for configurations that survived the
checkpoint j1 computed by the function l.

Fig. 6 illustrates that the learning curves of hyperparameter
configurations can be categorized into one of three types:
untrainable, desirable, or the rest. CR is motivated to be more
error-proof by ignoring the rest. Dual checkpoints support
the understanding that the clearly untrainable ones are much
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FIGURE 6. Illustration of learning curves evaluated by the Compound
Rule. Note that c is the current best accuracy.

easier to spot with lesser resources compared to the truly
desirable. These checkpoints are comprised by thresholds h1,
h2, and epochs j1, j2 which are determined by the percentile
β ∈ (0.0, 0.5] and max epoch E .
• Checkpoint-1 aims to discard untrainable configura-
tions. It terminates the training of the current kth config-
uration xk at epoch j1, 0 < j1 < E , if its until-then best
performance is worse than threshold h1. Checkpoint-1
exclusively terminates them with a low threshold h1.

• Checkpoint-2 aims to spare desirable configurations
likely to outperform the current best. xk that survives
checkpoint-1 is stopped at epoch j2, j1 < j2 < E , if its
until-then best performance is below threshold h2.

The β is yet another hyperparameter that may be tuned
based on practical user constraints to max epoch E . Because
the checkpoints and thresholds are expressed respectively
by β and (1 − β) in an inversely proportional relationship,
untrainable/desirable configurations can be determined more
convincingly when β is smaller. The performance of CR can
be highly dependent on the choice of max epoch E , and it will
be discussed further in Section XI.

VI. PARALLELIZATION STRATEGY
Parallelization is an important strategy for handling compu-
tation intensive deep neural network problems. For instance,
hundreds of machines were used to reach state-of-the-art
performance in [38] and [39]. It is also important for
the hyperparameter optimization of deep neural networks
because HPO is one of the most time-consuming DNN
problems.

For many of the traditional BO problems, the evaluation
time of f (xn) is fixed and not dependent on the choice of xn.
In such cases, it is natural to run M evaluations in parallel
over M processors, update H with the newly obtained M
results, choose the next batch ofM configurations to evaluate,
and repeat from the beginning. In this case, the core problem
becomes the selection of the next batch configuration withM
candidates to evaluate. Many related works exist where some
also provide theoretical analysis [40]–[45].

The time for DNN training, however, can signifi-
cantly vary depending on the chosen configuration xn.
Then, synchronous parallelization is not desirable because
many of the processors will need to stay idle until the last
processor completes the training. For this reason, practical
BO algorithms like [3], [4] assume asynchronous paralleliza-
tion, and we also only focus on asynchronous parallelization
in this work. For an asynchronous case, solving batch con-
figuration becomes very difficult because even the concept
of a batch cannot be well defined. Instead, we treat the situ-
ation as a single sequential selection problem with pending
evaluations.

A. HANDLING PENDING EVALUATIONS
When H is shared asynchronously among parallel proces-
sors (workers), the most fundamental issue is handling the
pending evaluations. The most straightforward policy is to
ignore the others and include only the completed results
into H. The downside of this strategy is that it can result in
a duplicate selection where the chosen x∗ is already being
evaluated by another worker. To avoid duplicates, [3] uses
the next candidate available among the ones that are not
being evaluated. In this study, we consider the following three
simple heuristics when x∗ is chosen as one of the pending
evaluations:
• random: randomly select a new candidate
• next candidate: choose the next best candidate that is not
pending

• in-progress: temporarily add the premature results of the
pending evaluations toH and calculate x∗

DNN is almost always trained with Stochastic Gradient
Descent (SGD), and the validation performance is frequently
evaluated before completing the training. Therefore, prema-
ture performance evaluations become available during DNN
training, and in-progress takes advantage of them. Appar-
ently, the use of a premature evaluation can be harmful if the
final evaluation result is quite different from the premature
evaluation. The negative effect, however, is self-corrected
after completing the training because the final result can be
used to replace the premature result inH.

TABLE 11. Expected time E[τ ] for three duplicate handling strategies
(µ± 0.25σ hours). Over M = 6 processors, GP-EI was run for the difficult
targets.

We evaluated the expected time E[τ ] using the three dupli-
cate handling strategies, and the results are shown in Table 11.
For all six benchmarks, we can see that in-progress achieves
the best E[τ ].
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B. PER-PROCESSOR EFFICIENCY
It would be ideal if the calculation speed is increased by
M times by using M processors, i.e., the normalized speed
remains at one regardless of M . For the asynchronous paral-
lelization, the selection of x∗ needs to be made whileM−1 of
the evaluations are pending. Compared to the single processor
case, this means H will be less informative with M − 1 data
samples missing. Therefore, we can expect the normalized
speed to decrease asM is increased. This loss in per-processor
efficiency can be especially large at the beginning of BO
because all of the firstM candidates need to be chosen while
H remains empty.

FIGURE 7. Normalized performance (
E1[τ ]

MEM [τ ] ) as the number of

processors is increased. CIFAR10-ResNet benchmark with the difficult
target was evaluated using GP-EI.

An experiment result is shown in Fig. 7 where normalized
performance E1[τ ]

MEM [τ ] is plotted with respect to the number
of processors (E1[τ ] is E[τ ] for one processor and EM [τ ] is
E[τ ] forM processors). For the experiment, in-progress turns
out to outperform the other two options and the normalized
performance is around 0.8 for M = 6 and around 0.4 for
M = 18. Though not shown in the figure, we have exper-
imented with the other benchmarks and similar shapes of
per-processor efficiency were observed. The result in Fig. 7 is
for the difficult target. For the easy target, HPO is completed
much faster than for the difficult target. Therefore, the inef-
ficiency in the beginning of BO can have a bigger impact on
the overall performance.

C. DIVERSIFICATION UNDER PARALLEL PROCESSING
A natural way of implementing model level diversification
under asynchronous parallelization is to have N models take
turns as in S-Div whenever a processor becomes available.
We call this simple extension as P-Div. For the special case
of N = M , each model is assigned to a processor at any time.

When rotating over N models, a neat side effect is that the
n’th model will choose the candidate x∗ = argmaxx∈X f̂n(x)
where x∗ is unlikely to be same for the other models even for
the same H. Therefore, the chance of duplication becomes
smaller. When N < M , some of the models might be concur-
rently used and therefore a duplicate handing strategy needs
to be adopted.

D. ADDITIONAL EXPLANATIONS ON DIVERSIFICATION
Now that we have addressed both diversification and paral-
lelization, we provide additional explanation on diversifica-
tion here. For an HPO algorithm, we can define its failure
rate as pf = 1 − Pc(τ ≤ t) where τ is a random variable
representing the algorithm’s time to achieve the target accu-
racy c. If the algorithm is run overM parallel workers without
sharing their histories, the chance of all M attempts failing
is simply pMf because τ forms an i.i.d. process. Therefore,
we can see that M ’th order diversity gain (increase in the
exponent of the failure rate) is achieved at the cost ofM times
increase in resources.

FIGURE 8. An illustration of diversity gain. Success rate is plotted for
MNIST-LeNet2 benchmark with the difficult target. For S-Div and P-Div,
N = 6 was used (GP-EI, GP-PI, GPUCB, RF-EI, RF-PI, and RF-UCB).

In Fig. 8, success rate curves are shown for MNIST-
LeNet2 benchmark with the difficult target accuracy. RF-EI
was the best performing individual model as was shown
in Fig. 3b. The success rate of RF-EI(M = 1) is equal to
1− pf . Theoretical(M = 6) is a synthetic curve generated by
plotting 1−p6f . The success rate of Theoretical(M = 6) ramps
up much faster than RF-EI(M = 1) which demonstrates the
power of order six diversity. S-Div(M = 1) also utilizes
diversity over the six models, but it suffers from resource
sharing (taking turns) and performs only as well as the best
performing single model, RF-EI(M = 1). P-Div(M = 6)
utilizes six processors and also blends the six individual
models through {H}. As a result, it performs as well as
Theoretical(M = 6). In fact, P-Div(M = 6) performs even
better than Theoretical(M = 6) after passing 70 minutes.
This indicates that P-Div(M = 6) is not only capable of
realizing order six diversity over RF-EI(M = 1) but also
capable of bringing an extra enhancement. A large portion
of this substantial extra enhancement is due to the mix of
N = 6 individual algorithms with different modeling char-
acteristics. This comes in two-fold. The first is the different
characteristics of the N algorithms, where at least one will
likely work well. This itself is another type of diversification
effect that is different from the pMf effect, and basically says
that at least one of pf ,1, . . . , pf ,N will likely be small over
the N individual models for any given task. The second is the
cooperative nature of the diversified algorithm thanks to the
sharing of {H}. When an individual model A is not capable of
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FIGURE 9. The error rate distributions are shown for three benchmarks. (a) In the low error range (left side of the figure), the green curve shows
visually recognizable change for different configurations, but orange and blue look flat. The blue curve stays very close to zero for a wide range.
(b) Log transformation can amplify the performance difference when the error rate is very close to zero. (c) Hybrid approach is a compromise where
log transformation is applied only when the error rate is between 0 and α. A new hyperparameter α needs to be introduced, though.

TABLE 12. Expected time E[τ ] for three benchmarks (µ± 0.25σ hours). GP-EI was used for the evaluations with the difficult target.

selecting good target candidates for exploration and is stuck
in bad regions, some of the other models might make better
selections that serve as exploratory samples to the model A.
Then the poorly performing model A can escape from the bad
cycle and start to perform well.

VII. COST FUNCTION TRANSFORMATION STRATEGY
Another important topic to consider is the cost function trans-
formation. Hyperparameter tuning of deep neural networks
is often applied to classification tasks where the performance
value is an error rate. When the target error rate is close to 0,
it becomes difficult tomodel the small performance change of
f (x) if a linear scale is used to represent the target error rate.
In such cases, it can be advantageous to use a log transfor-
mation that is known to be effective for modeling nonlinear
and multimodal functions [46]. When the error rate is large
and far from 0, however, using log-transformation may be
harmful, too. Therefore, we introduce hybrid transformation
where log transformation is applied only when the error rate
is between 0 and α, and the original linear scale is used when
the error rate is larger than α. When f (x) of BO is error rate
and its value is err , hybrid transformation can be expressed
as below.

g(err, α) =

{
err if err > α

log(err)+ (α − log(α)), otherwise
(7)

Note that (α − log(α)) needs to be added to make g(err, α)
continuous at err = α. When α = 0, the hybrid transfor-
mation does not have any effect. When α = 1, the hybrid
transformation becomes the same as the log transformation.
When the cost is not error rate, such as in regression tasks,

the data can be pre-processed to have its target range adjusted
between 0 and 1 as we have done so for the PTB-LSTM
benchmark. The overhead for such a manual pre-processing
might or might not be worth the effort depending on the data
and task.

Fig. 9 shows how cost function transformation reshapes
the values of the response surface for three of the bench-
marks. Table 12 shows how the choice of α affects the
HPO’s E[τ ] performance for the same three benchmarks.
For MNIST-LeNet1 benchmark, the best accuracy is 0.9939,
difficult target accuracy is 0.9933, and easy target accuracy
is 0.9903 (see Table 8). The corresponding error rates are
0.0061, 0.0067, and 0.0087, respectively. Because the error
rates are very close to 0, we can expect log transformation to
be beneficial and the results in Table 12 confirm the expec-
tation. In fact, E[τ ] for no transformation is about 6 times
worse than E[τ ] for log transformation. One can do even
better by adopting hybrid transformation and tuning it, and
α = 0.1 turns out to be a good choice. Also, choosing any
of 0.1, 0.3, 0.5, 0.7, and 0.9 turns out to be better than both
no transformation and log transformation. For PTB-LSTM
benchmark, the corresponding error rates are 0.0992, 0.1007,
and 0.1065, respectively, and the values are somewhat far
from 0. For the benchmark, log transformation turns out to
be quite harmful where it increases E[τ ] by more than four
times. Hybrid transformation is helpful with α = 0.3 as the
best choice. As in MNIST-LeNet1, all the other choices of α
under hybrid transformation happened to be helpful for the
PTB-LSTM benchmark. For the CIFAR10-CNN benchmark,
the corresponding error rates are 0.1948, 0.2164, and 0.3815,
respectively, and the values are even farther from 0 than the
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PTB-LSTM benchmark. CIFAR10-CNN corresponds to the
green curve in Fig. 9 and it is the easiest one to visually
recognize the performance difference for the low error rate
configurations. For this benchmark, it turns out that all the
configurations produce comparably good results.

Clearly, cost function transformation can be essential for
HPO as empirically shown with the MNIST-LeNet1 bench-
mark. However, the cost function transformation should be
carefully chosen because its effect can be different for differ-
ent tasks. Based on the empirical results above, it might be
prudent to choose hybrid transformation and avoid extreme
choices such as no transformation or log transformation.

VIII. DEEP-BO
So far, we have introduced four basic strategies to enhance
performance and robustness of DNNHPO. Here, we combine
S-Div/P-Div, CR, in-progress, and hybrid transformation and
design a new BO algorithm named DEEP-BO (Diversified,
Early-termination Enabled, Parallel Bayesian Optimization).
The algorithmwas specifically designed to address the tuning
of deep neural networks, and the pseudocode is shown in
Algorithm 2.

IX. EXPERIMENT SETTINGS
We evaluated DEEP-BO and several well-known HPO algo-
rithms using the six DNN benchmarks. The HPO algorithms
are summarized below.
• The random algorithm in [1]. It is often used to replace
grid-search.

• The six individual BO algorithms - GP-EI, GP-PI,
GP-UCB, RF-EI, RF-PI, and RF-UCB. The two popular
modeling algorithms (GP, RF) [4], [20] are combined
with three acquisition functions (Expected Improve-
ment, Probability of Improvement, and Upper Confi-
dence Bound).

• GP-Hedge introduced in [9], where GP-EI, GP-PI,
GP-UCB are used as the three arms of a multi-armed
bandit setting. We used η = 0.1 for the coefficient of
gain update.

• RF-EI with Learning Curve Extrapolation (LCE) [11].
• GP-EI with Median Stopping Rule (MSR) [10]
• BOHB that allocates resources using an infinite
bandit-based approach as in Hyperband (HB) [23].
Unlike Hyperband, BOHB utilizes density estimation
algorithm [3], whereas Hyperband randomly chooses
the next candidates [12].

• Our algorithm, DEEP-BO.
HPO algorithms have their own hyperparameters. The fol-

lowing is the list of hyperparameters and their values that
were used for the experiments. DEEP-BO’s number of pro-
cessors M = 1 or 6, diversification level N = 6 (GP-EI,
GP-PI, GP-UCB, RF-EI, RF-PI, and RF-UCB), CR termi-
nation percentile β = 0.1, in-progress option for duplicate
handling ofM = 6, and hybrid transformation with α = 0.3.
We did not try to adjust the details of DEEP-BO because we
wanted a robust and general solution for tuning a broad range

Algorithm 2 DEEP-BO Diversified, Early-Termination-
Enabled, and Parallel Bayesian Optimization

Inputs: True black-box DNN f , base models f̂1, . . . , f̂N ,
processors p1, . . . , pM , hyperparameter space X , target
accuracy c, early termination functions t and l, early ter-
mination parameter β, hybrid transformation g, hybrid
transformation parameter α, max epoch E .

H← ∅
for i = 1, 2, . . . do

n← mod (i,N )+ 1
m← mod (i,M )+ 1
# ===============================
# m processes of the following part are run in parallel
Select x∗ ∈ argmaxx∈X f̂n(x;H)
A← ∅, y∗← 0
for j = 1, . . . ,E do

Train f for one epoch on pm
Evaluate yj ← fj(x∗) where fj(x∗) is accuracy

evaluated after training f for j epochs
A← A ∪ (j, yj)
y∗← max(y∗, yj)
if j = 1 then

UpdateH← H ∪ (x∗, g(1.0− y∗, α),A)
else

Replace H’s element that contains x∗ with
(x∗, g(1.0− y∗, α),A)

end if
if j ∈ l(E, β) then

if y∗ < t(j,A,H, β) then
break # early termination

end if
end if

end for
# ===============================
if y∗ > c then # any termination rule can be used

break # terminate if desired accuracy
end if

end for

of deep neural networks. Therefore, all the design decisions
were intended for robustness. A further improvement should
be possible by choosing a better and more diverse set of N
models, by tuning threshold values for the given data and task
(in a light manner before running DEEP-BO), and so on.

For the termination criterion of LCE and MSR, we chose
their j values to be the same as the j1 of CR, i.e., 1/2E . In this
way, we made sure that LCE and MSR do not behave too
aggressively. Maximum epoch E for each benchmark can be
found in Table 1. We chose the predictive model setting of
LCE to be conservative and to terminate when the posterior
probability of a configuration is greater than the threshold
h described in Table 10. In this case, the time to build
a probabilistic model was also added when it terminated.
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FIGURE 10. Performance plots for MNIST-LeNet1 using a single processor.

FIGURE 11. Performance plots for MNIST-LeNet2 using a single processor.

FIGURE 12. Performance plots for PTB-LSTM using a single processor.

In the case of BOHB, their hyperparameters were tuned for
our benchmarks, and the following values were used. The
scaling parameter η = 3, the number of samples used to
optimize the acquisition function is 64, the fraction of purely
random configuration ρ = 0.33, the minimum budget is 1,
and the maximum budget is E . These settings, except the
minimum and maximum budgets, turned out to be the same
as the values used in [12] for the MNIST dataset.

We repeated a full episode of HPO 100 times for each
algorithm. As mentioned in Section III, we chose two target
goals for each benchmark (easy and difficult targets). As we
will show in the result section, some HPO algorithms work

better for easy targets and some others for difficult targets.
To have a fair evaluation, we have included both easy and
difficult targets.

X. EXPERIMENT RESULTS
In this section, the experiment results are presented.

A. PERFORMANCE FOR SINGLE PROCESSOR
The experiment results for M = 1 are shown
in Fig. 10–15. In the left column, performance is shown using
the standard metric of min function value. In the middle
and right columns, performance is shown using success
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FIGURE 13. Performance plots for CIFAR10-CNN using a single processor.

FIGURE 14. Performance plots for CIFAR10-ResNet using a single processor.

FIGURE 15. Performance plots for CIFAR100-CNN using a single processor.

rate where the middle column is for the easy targets and
the right column is for the difficult targets. The random
algorithm consistently performed very poorly, especially for
the difficult targets. When the hyperparameter space X is
large, random search pretty much fails. DEEP-BO consis-
tently showed top-level performance for all of the six bench-
marks and the two target difficulties. For the difficult targets,
DEEP-BO often outperformed all the other algorithms with a
wide performance gap. Overall, DEEP-BO showed a robust
performance for the cases that we have evaluated. All the

other algorithms failed to show top-level performance in a
consistent way.

In addition to the minimum function value and the success
rate, evaluation was repeated using expected time E[τ ] as the
performance metric. The results are summarized in Table 13.
The E[τ ] tends to have a high variance because of the nature
of HPO problems. Therefore, we show the performance of
E[τ ] with its 0.25 standard deviation that was calculated
using the 100 randomly seeded runs. In general, DEEP-BO
outperformed the other algorithms, and it achieved the best
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TABLE 13. Expected time E[τ ] when using a single processor (µ± 0.25σ hours). Both of the easy and difficult targets were considered.

FIGURE 16. Success rate plots for the difficult targets using six processors.

TABLE 14. Expected time E[τ ] when using six processors (µ± 0.25σ hours). Only the difficult targets were considered.

performance for ten out of twelve test cases. Even for the
two cases, DEEP-BO’s performance was very close to the top
performance.

B. PERFORMANCE FOR SIX PROCESSORS
The results for M = 6 processors are shown in Fig. 16
and Table 14. Only difficult targets were considered because
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TABLE 15. Ablation test results of DEEP-BO with 6 processors. The best performance in each column is marked in bold. In the same column, the results
that overlap with the best are highlighted in green.

the easy targets were too easy with six processors. With
six processors, DEEP-BO clearly outperformed all the other
algorithms for all the experiment cases. The performance
gap to the second best algorithm was usually very large
(48%–200%). From the viewpoint of robustness, the variance
shown in Table 14 can be investigated. For each benchmark,
DEEP-BO’s variance was much smaller than those from the
other algorithms. Even when compared to the second best
HPO algorithm in each benchmark category, DEEP-BO’s
variance gap was 40%–100%.

XI. DISCUSSION
In this section, several important topics are discussed.

A. ABLATION TEST OF DEEP-BO
To understand the effectiveness and importance of the four
basic enhancement strategies, we have performed an ablation
test with DEEP-BO. The results are shown in Table 15. First
of all, we can notice that the performance is severely degraded
when diversification is turned off. We used only the GP-EI
model when diversification is off, and the degradation was
intolerably large for all six benchmarks. This indicates that
diversification is the most important enhancement strategy
among the four.

When diversification is on, the best performing combina-
tion had at least two of the three remaining strategies turned
on. Other than that, no particular pattern was noticeable.
While none of the three strategies might be strongly required
for a high performing solution, the ablation test results indi-
cate that it might be reasonable to use all three strategies.

B. CHOOSING MAXIMUM EPOCH E
Learning rate is known as the most important hyperparameter
of DNN for a successful training. When tuning deep neural
networks with an HPO algorithm, the maximum epoch E is a
very important hyperparameter of the HPO algorithm itself.
When E is too small, HPOwill not be able to reach a satisfac-
tory performance. When E is too large, HPO will be able to
reach a satisfactory performance but it will waste too much
time on training each candidate xn for many extra epochs.

In this regard, ETR is an essential strategy for handling the
case of large E . If an HPO algorithm is not equipped with an
ETR strategy, one can easily choose a large enough E to make
the algorithm’s performance worse than any simple HPO
with ETR.

For our six benchmarks, we did not want the classic
HPO algorithms with no ETR to be unfairly evaluated.
Therefore, we had to perform a manual investigation to
choose a reasonable E for each benchmark (roughly speak-
ing, 1.5–2 times larger than needed for the best performance).
Such an investigation can be efficient if the researcher is
familiar with the task and dataset, but it can also be a difficult
and time consuming pre-HPO work for a completely new
problem.

Ideally, an ETR algorithm needs to be smart enough to
learn the rules and be able to handle this maximum epoch
problem. In this regard, the CR method in Section V is
problematic because the checkpoints were chosen for the
particular E values in the benchmark. Obviously, waiting
until the first check point of E/2 can be unacceptable if E was
chosen to be much larger than what we have in benchmarks.
If E was much larger than what we have chosen, the ablation
test might have indicated that ETR was the most important
strategy.

The proper value of E is dependent on the performance
target. It is well-known that a larger E is needed when one
wishes to reach top-level performance for a DNN. When one
wishes to reach an easily achievable performance, E does not
need to be as large. Related to this, the relative performance of
HPO algorithms can be highly dependent on the performance
target. See Fig. 17 for an example.

C. CHOOSING HYPERPARAMETER SPACE X
Besides the maximum epoch E , there are many other hyper-
parameters. The range needs to determined for each hyper-
parameter, and other decisions might be relevant as shown
in Fig. 18. Ideally, one should be able to list all the relevant
hyperparameters and choose the maximum range to make
sure that the search space X contains the configuration that
we are looking for. The rest should be efficiently handled by
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FIGURE 17. Performance of the first one hour for
MNIST-LeNet2 benchmark. The shaded areas are 0.25σ variance regions.

FIGURE 18. Test accuracy distribution of MNIST-LeNet1 benchmark is
shown in blue. Learning rate was modeled in log-scale and Sobol
sampling was applied to choose the 20,000 configurations. When the
range of learning rate was kept the same but a linear scale was used for
Sobol sampling, the selected 20,000 configurations ended up with a quite
different distribution as shown in orange.

HPO itself. But the state-of-the-art HPO algorithms are not
perfect, and their performance can be greatly affected by the
choice of X .

An HPO algorithm has its own hyperparameters. E and X
are common ones and there can be other hyperparameters that
are specific to each HPO algorithm. Of course, we can think
of another layer of HPO for tuning these hyperparameters
(two tiers of HPOs), but that would be too time consuming
given that it already takes a long time to complete a single
episode of the lower tier HPO.

A possible solution is to mix manual investigation and
HPO. In this case, HPO will never be fully automatic. Rather,
the researcher has the choice on how much to rely on manual
investigation and how much on automatic HPO. As of today,
many of the researchers heavily rely on manual investiga-
tion while utilizing simple grid search or random search as
HPO. In such cases, X is chosen to have at most a few
hyperparameters because the simple HPO algorithm is not
capable of handling more sophisticated problems. Typically,
the manual investigation and HPO need to be iterated many
times. Perhaps a less popular approach is to perform a light
manual investigation before running HPO, where the goal is
to find roughly adequate values of E , X , and others. Then
HPO is run for only one time. Obviously, there can be a
compromise to repeat the process a few times. While less

popular today, we believe the second approach will become
much more popular in time as we start to have better HPO
algorithms and as we understand HPO of DNN better.

Another possible solution is to fully automate HPO.
As mentioned in the introduction, domain knowledge and
experience in other DNN optimization should be integrated
into HPO algorithms. Techniques like transfer learning and
meta learning should be fully integrated into HPO.

D. OVERHEAD OF GP CALCULATION
The evaluation of BOmodel for choosing xn requires comput-
ing time. However, the BO computing time is usually ignor-
able for tuning deep neural networks, because the training
time of f (x) is usually much larger than the time needed to
evaluate BO model. For GP, however, its calculation time
grows as O(n3) and can become a critical bottleneck if an
episode of BO does not terminate after many iterations.
To avoid an excessive effect from the O(n3) increase in
calculation time, [47], [48] considered replacing GP with
DNN where it requires the DNN to be trained. In our work,
we avoided this GP specific problem by limiting the maxi-
mum number of observations used as BO’s input to be 200.
To do so, we have randomly resampled 200 observations
from the history whenever more than 200 observations were
available. This was a reasonable choice for our study, because
our benchmarks required at most several hundreds of obser-
vations before terminating. The time for BOmodel evaluation
was included in all of our results.

E. IMPLEMENTATION DETAILS
We have unified several BO algorithms into a single frame-
work. Specifically, GP is based on Jasper Snoek’s implemen-
tation1 where the automatic relevance determination (ARD)
with Matérn 5/2 kernel and a Monte Carlo estimation of the
integrated acquisitions are used. RF is based on scikit-learn
ML library.2 The number of trees and the minimum number
of items in a split were set to 50 and 2, respectively.

Although the explanations in this study are based on the
accuracy of classification problems, the DEEP-BO imple-
mentation can handle any other cost minimization setting. For
surrogate space modeling, the categorical hyperparameters
were one-hot coded and each hyperparameter was normalized
to have values between 0 and 1. For parallelization, we have
implemented a flexible solution where any number of GPUs
and CPUs over multiple servers can be utilized. Each avail-
able GPU is used as an independent training node. The system
was built onWebOrientedArchitecture (WOA) using Service
Oriented Architecture (SOA) and REST as follows [49]:

WOA = SOA+WWW + REST

REST, which stands for Representational State Transfer, is an
architectural style that defines a set of constraints to be used

1https://github.com/JasperSnoek/spearmint
2https://scikit-learn.org/
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for creating Web services that are interoperable between sys-
tems on the Internet. Further information can be found from
https://github.com/snu-adsl/DEEP-BO/wiki.

XII. CONCLUSION
In this work, we have investigated four basic enhancement
strategies of BO - diversification, early termination, paral-
lelization, and cost function transformation. We have exclu-
sively focused on a deep neural network application where a
large number of hyperparameters need to be optimized. Our
goal was to identify howBO can bemade robust over a variety
of deep neural network tuning problems, instead of designing
an algorithm that works very well for some problems while
failing for some others. In this regard, we have created six
benchmark datasets with pre-evaluated performance over a
range of hyperparameter configurations such that the empiri-
cal evaluation can be made faster. The individual investiga-
tions of the four strategies can be summarized as follows.
First, it is important to adopt diversification over multiple
algorithms because we do not know which one will work
well or fail for a given deep neural network tuning problem.
As long as diversification is implemented, however, even
a simple strategy worked as well as an adaptive strategy.
Second, it is essential to be conservative when employing
an early termination strategy. The validation performance for
a single training can suddenly improve even at a later stage
of the deep neural network training, and thus one should not
early terminate as often as in the traditional machine learning
tasks. Third, when parallelizing over multiple processors or
servers, utilizing the validation performance of incomplete
training can be very helpful. While simple, we have found
this strategy to be important for speed improvement. Lastly,
the cost function can be transformed in a heuristic way such
that the BO’s modeling can be made easier. The transforma-
tion, however, requires an overhead of manual tuning before
the automated BO can be launched. With these enhancement
strategies in mind, we have designed a simple yet very robust
BO algorithm called DEEP-BO. DEEP-BO showed top or
top-level performance over all the benchmarks. For a single
processor, it showed top performance for ten out of twelve
benchmarks. Even for the two benchmarks, its performance
was very close to the top performance. For six processors,
it showed top performance for all of the six benchmarks.
In general, DEEP-BO showed a robust performance, and it
showed a high performance especially for the difficult tar-
gets under the use of multiple processors. Considering that
DEEP-BO is merely a collection of four basic enhancement
strategies, there might be a large additional room for improv-
ing HPO’s speed. Some of the issues, such as choosing the
hyperparameters to optimize, setting the range of each hyper-
parameter to consider, and selecting the maximum number of
epochs, still remain as the limitations of this work.
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