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ABSTRACT When planning the trajectory of a mobile robot, it is usually necessary to use sensors to collect
a large amount of position information. Because traditional computing methods cannot effectively use huge
data sources, an edge computing that implements edge intelligent services on the side of network edge near
the data source is proposed, which speeds up the process of data processing. However, the data collected
through sensors may contain gross errors. In general, the influence of gross errors on state estimation are
rarely considered when using particle filter algorithms for state estimation. In fact, the measurements of
dynamic systems are often affected by different types of gross errors in the actual application process.
Therefore, it is a problem worth studying that how to detect and compensate for different types of gross
errors. In this paper, an improved particle filter algorithm is proposed for the position estimation of mobile
robot dynamic system. Firstly, the gross error identification method is used to identify the types of gross
errors, and then the various gross errors are compensated. Finally, the particle filter algorithm based on the
measurements compensation is obtained. Simulation experiments on the position estimation of mobile robots
are carried out to verify the effectiveness of the proposed method in solving the measurements with gross
errors. The precise position estimation of the mobile robot is achieved. Through the simulation experiments
on the position estimation problem of mobile robots, it is verified that the proposed method is effective in
solving the measurements with gross errors. And the accurate position estimation of the mobile robot is
realized.

INDEX TERMS Particle filter, gross error, mobile robot, position estimation, CPSS, edge computing.

I. INTRODUCTION
With the deepening of networked applications, especially
the rapid development of the Internet of Things, big data,
cloud computing and edge computing, the integration of
information and physical systems has become closer, and
the network has become increasingly connected with human
society [1]–[6]. Therefore, a social physical information sys-
tem integrating people, machines, and information has been
formed [7], [8]. In the tracking and positioning system of
the mobile robot, sensors are used to collect position infor-
mation [9], [10], and various algorithms are used to process
the collected data. Among various algorithms, particle fil-
ter (PF) algorithm has become an important signal processing
tool in solving nonlinear system tracking problems in recent
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years [11]. PF is a filter based on the Monte Carlo method for
any form of state spacemodel. It approximates the probability
density function by finding a set of random samples propagat-
ing in the state space, and replaces the integral operation with
the sample mean to obtain the minimum variance estimate
of the system state [12]. It uses a series of finite particles
to approximate its conditional probability density and allows
these particles to self-propagate to simulate the evolution of
conditional probability. When the number of particles tends
to infinity, the approximate conditional probability density
will also tend to the true conditional probability density [13].
The superiority of PF technology in nonlinear non-Gaussian
systems makes it widely used in many fields. In the economy,
it is applied to economic data forecasting. It is used for radar
tracking of airborne objects, passive tracking of air-to-air
and air-to-ground in the military. And it is used for video
surveillance of cars or people in traffic control. In the era of
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rapid development of big data and artificial intelligence, it is
also used for the global localization of robots [14]. In view
of the superiority of particle filter algorithm in real-time state
estimation of nonlinear systems, this paper uses PF algorithm
to estimate the position of mobile robots. In the process of
estimating the state of the system by using PF, the collec-
tion of measurement data is an important basis for weight
distribution. If the measured data is disrupted by sudden
major disturbances—outliers, systematic biases and drifts—
that is, affected by gross errors, the results of state estima-
tion obtained using such measurements are inaccurate [15].
Therefore, when estimating the position of the mobile robot,
the measurements containing the gross errors should be pro-
cessed and then used for the update of the weights. There
are also some scholars who propose various methods on
how to detect and compensate for the measurement of gross
errors. Vaghefi et al. used six data mining methods to iden-
tify outliers in flow experiments, and verified the effects of
various methods for detecting outliers [16]. Based on the
mathematical model of the sun’s trajectory, Xie et al. used
the traditional time-controlled algorithm to track the sun’s
trajectory, analyzed the main factors of the system tracking
statics generated by the tracking device, and designed and
designed a correctable tracking system for tracking biases.
The method of static elimination is used to track the running
track of the sun [17]. The method can improve the power
generation efficiency of the photovoltaic system in the field
of photovoltaic power generation. Wang et al. proposed a
novel residual generator structure, which used fault detec-
tion mechanism and iterative estimation method to eliminate
the tracking performance of sensor drift faults in unknown
dynamic digital PID systems based on the estimated fault
correction tracking error signal [18]. Zhang et al. proposed
a new particle filter algorithm based on measurements detec-
tion for data correction and gross error detection of dynamic
systems. When there are outliers in the obtained measure-
ments, the method can effectively perform data correction
and simultaneously detect whether the measurement data has
gross error [19]. Maiz et al. proposed an outlier detection step
to deal with the target tracking problem in the nonlinear state
space model for the problem of outliers in nonlinear time
series [20]. According to the above research literature, all
the proposed methods propose corresponding solutions for
a certain type of gross error, but there may be more than
one gross error in the actual application system. Therefore,
it is important for system state estimation by taking into
account other different types of gross errors. With the rapid
development of big data and artificial intelligence, mobile
robots have achieved rapid development and wide application
due to their large working space and strong adaptability [21].
And the efficient work of mobile robot is more dependent
on the reliability of the self-localization algorithm [22]. For
the position estimation of mobile robot, many scholars use
different methods to improve the accuracy of positioning.
Alatise et al. used Extended Kalman Filter (EKF) to fuse the
data of the inertial sensors and the camera to estimate position

of mobile robot for accurate positioning [23]. Dobrev et al.
used extended Kalman filtering radar, ultrasonic and ranging
sensors to achieve 3D position estimation of mobile robot for
indoor applications [24]. However, extended Kalman filter-
ing cannot be used for strong nonlinear systems, otherwise
position estimation will not be accurate enough. Therefore,
the particle filter algorithm can be used to process the position
data when performing state estimation of nonlinear system.
For example, Adrian et al. used wireless sensors and parti-
cle filter algorithms to improve the performance of position
systems of mobile robot [25]. Gao et al. used particle fil-
ter algorithm to realize path planning of mobile robot and
improve the global adaptability of robot [26]. Hsu et al.
analyzed the signal characteristics and antenna effects of the
received signal indicator, and designed a particle filter based
on the current state of mobile robot to improve the positioning
accuracy of the mobile robot in the wireless sensor network
environment [27]. The literature [25]–[27] solve the problem
of position estimation for nonlinear mobile robot system.
However, the measurement data involved in estimating the
position by using the particle filter algorithm is generally
affected by the random errors by default, and did not consider
the influence of the gross errors on the position estimation.
However, there are gross errors in the actual state estimation,
so we need to consider how to achieve accurate position
estimation when the measurement data is affected by gross
errors. Xu et al. proposed a two-dimensional lidar-based
mobile robot pose estimation method [28]. The data points
scanned by each frame of the radar were divided into clusters,
and the RANSAC algorithm was used to remove the outliers
in the non-complete matching clusters. This method achieved
satisfactory results in the pose estimation of mobile robots
in a dynamic indoor environment. Aghili et al. proposed
integrating two real-time dynamic global positioning system
units (GPS) and inertial measurement units (IMUs) in an
adaptive kalman filter to compensate for errors in estimated
orientation due to gyroscope drift and its paranoia, and use it
for drift-free estimation of 3D vehicle pose and position [29].
Wang et al. proposed a mobile robot position estimation
algorithm based on probability statistics and grey system
theory [30]. When there were errors and outliers, the estima-
tion accuracy was comparable to the particle filter algorithm,
which was better than the extended kalman filter algorithm.
When estimating a mobile robotic system, The literature [28]
and [30] provided a treatment for outliers as to how to deal
with gross errors in the system. literature [29] designed a
drift-free estimation method for 3D vehicle attitude and posi-
tion for system drift problems. However, no corresponding
solution was given for how to solve the problem of two
or more system errors in the system. Therefore, combining
the superiority of PF in the process state estimation of non-
linear systems, this paper focuses on the different types of
gross errors in the obtained measurements, such as outliers,
biases and drifts when the particle filter algorithm deals
with the mobile robot position estimation. The framework
of this paper is divided into five parts as follows. Firstly, the
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application of particle filter algorithm and the position esti-
mation of mobile robot dynamic system are briefly described.
Secondly, the principle of particle filter algorithm for position
estimation is introduced. And when there are gross errors in
the measurements, it is introduced how to identify and com-
pensate these measurements in order to obtain an accurate
position estimation. After that, the mobile robot system is
modeled to describe the position estimation. The simulation
experiment is used to verify the superiority of the proposed
method in solving the problem of mobile robot position esti-
mationwith gross errors. Finally, summarize the effectiveness
of the method used in this paper.

II. PRINCIPLE DESCRIPTION OF PARTICLE
FILTER ALGORITHM
A typical dynamic system state space model consists of the
state equation and the measurement equation as follows:

xk = f (xk−1, uk−1)+ vk−1 (1)

yk = h(xk , uk )+ wk (2)

where xk ∈ RNx denotes the vector of states to be estimated at
time step k. yk ∈ RNy is the vector of measurements at time
step k. Nx is the dimension of the vector of states and Ny is
the dimension of the vector of measurements. f : RNx →
RNx denotes the nonlinear transition function, which defines
the evolution of the vector of states as a first-order Markov
process. h : RNx → RNy denotes the measurement function,
which defines the relationship between the vector of states
xk and the vector of measurements yk . uk is the vector of the
inputs. vk−1 ∈ RNx andwk ∈ RNy are thewhite noise sequences
for the process states and measurements.

Particle filter is based on sequential Monte Carlo approach
and recursive Bayesian filter [31]. And particle filtering gen-
erally consists of two phases: the prediction phase and the
update phase. Specifically, the system model (Equation 1) is
used in the prediction phase to predict the prior probability
density of the state, which means guessing the future state
through the prior knowledge, that is p(xk |xk−1) During the
update process, the prior probability density is corrected
using the latest measurements in order to obtain the posterior
probability density, which is to correct the previous guess.

First, a set of random samples is obtained from
p(xk |xk−1),called particles {x ik , i = 1, . . . ,N }, and i denotes
the ith particle. In the prediction phase, these particles at
time k − 1 are used to calculate a priori sample set at time
k according to the state transition equation (3).

x ik = f (x ik−1, uk−1)+ v
i
k−1 (3)

where vik−1 is independent samples extracted from the system
probability density function (PDF) with noise.

In the update phase, the weight of each particle {wik , i =
1, . . . ,N } is calculated from the measurement data yk and the
prior samples. wik = p(yk |x ik ), where p(yk |x

i
k ) is likelihood

probability. The weights are normalized in order to uniform
distribution of the samples.Equation (4) gives the posterior

distribution after the update.

p(xk |y1:k ) ≈
N∑
i=1

wikδ(xk − x
i
k ) (4)

where δ(x) is the Dirac function.
Since p(xk |y1:k ) is not a regular PDF, direct sampling is not

possible. Therefore, the importance sampling is introduced to
obtain the joint weight of the particle group. By defining an
importance density q(xk |y1:k ), the joint weight is expressed as
equation (5).

wik ∝
p(x ik |y1:k )

q(x ik |y1:k )
(5)

Use the state transition probability function as the
suggested distribution, which means q(x ik |x

i
k−1, yk ) =

p(xk |xk−1), then

wik ∝ wik−1p(yk |x
i
k ) (6)

The formula (6) is normalized to obtain the formula (7).

w̃ik =
wik∑N
i=1 w

i
k

(7)

During the iterative process, due to particle degradation,
the covariance of importance weights will increase, which
will adversely affect the accuracy of state estimation. There-
fore, the resampling is introduced. And parent particles with
big weights (x ik ) are copied as child particles, and the parent
particles with small weights are discarded. Set the effective
number of particles (Neff) to measure the degradation degree
of the particle weights, as shown in equation (8).

N̂ eff ≈
1∑N

i=1(w
i
k )

2
(8)

After resampling, the posterior estimate of the child parti-
cles is as shown in equation (9).

p̃(xk |y1:k ) =
1
N

N∑
i=1

N i
kδ(xk − x

i
k ) (9)

where N i
k denotes the number of child particles after

resampling.
The state estimation vector is as shown in equation (10),

and the correction measurement is calculated as shown in
equation (11).

x̂k =
1
N

N∑
i=1

N i
kx

i
k (10)

ŷk = h(x̂k , uk ) (11)

The principle of the generalized particle filter algorithm is
as follows:

1) Input: x ik−1; w
i
k−1; yk ;

2) Particle initialization: Get the particles {x ik , i = 1,
. . . ,N } from p(xk |xk−1), and set the initial weight of particles
to be w0 =

1
N ;
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3) Calculating the likelihood probability: p(yk |x ik );
4) Calculating weight: wik ∝ wik−1p(yk |x

i
k );

5) Weight normalization: w̃ik =
wik∑N
i=1 w

i
k
;

6) Calculating posterior estimation: p̃(xk |y1:k ) =
1
N

∑N
i=1 Nkδ(xk − x

i
k );

7) Calculating state estimation vector x̂k = 1
N

∑N
i=1 N

i
kx

i
k

and corrected measurement ŷk = h(x̂k , uk );
8) Calculating measurement residuals rk = yk − ŷk and

testing the measurements;
9) Detecting and identifying gross errors;
10) Compensated measurement y′k = yk − Cm,k , update

the corresponding weights: wik ∝ wik−1p(y
′
k |x

i
k ). And then

resampling;
11) Updating state estimation and residuals;
12) End.

III. GROSS ERRORS TYPE DETECTION AND
MEASUREMENTS COMPENSATION
Because random errors exist in any system measurements,
and the existence of random errors can cause errors between
the measured variables and the true values. In previous stud-
ies, it was generally assumed that the measurement data
obtained from the system was only disturbed by random
errors. However, in practical systems, measurement data
may also be affected by non-random events, that is gross
errors. And the gross errors are generally caused by single
or multiple reasons, such as instrument failure, measure-
ment equipment correction errors, sensor damage, analog-
to-digital conversion errors, and process defects. It can be said
that the existence of random errors reduces the accuracy of
the measurement information, while gross errors introduce
inaccurate information. Therefore, obtaining accurate mea-
surement data is of great significance for the evaluation of
state estimation.

A. GROSS ERRORS CLASSIFICATION
This paper studies the gross errors of the three types of
outliers, biases, and drifts. figure 1 shows the measurement
data with different gross errors based on the performance
characteristics of these three gross errors. figure 1.(a) shows
the measurements with outliers. figure 1.(b) shows the mea-
surements with biases. figure 1.(c) shows the measurements
with drifts. And the hollow dots denotes true value, yellow
dots denotes measurements without gross errors, and red dots
denotes measurement data with gross errors.

1) OUTLIERS
As shown in figure 1(a), the outliers have several burst peaks
in the measurements. If the outliers occur in the mth mea-
surement of the k0 step, then its observation function can be
expressed as shown in Equation (12) below:

yk = h(xk , uk )+ wk , k 6= k0

yk = h(xk , uk )+ wk +

 0
Om,k0
0

 , k = k0
(12)

where Om,k0 denotes the magnitude of the mth outlier of the
k0 step.

2) BIASES
Biases are also known as residual errors. They refer to the
residual deviations after thecompletion of the transition pro-
cess, that is, the difference between the stable value of the
controlled variable and the given value. And the values can
be positive or negative, which are the important indicators of
accuracy. The requirement of biases in production is limited
to a small allowable range near a given value.

FIGURE 1. Measurements with different gross errors, (a)outliers,
(b) biases, (c)drifts.

As can be seen from figure 1(b), the systematic biases are
often represented by continuous and relatively stable errors
on the measured device. In the case of the deviation of the
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FIGURE 2. State estimation system framework based on particle filtering.

FIGURE 3. Improved particle filter algorithm based on gross error.

mth measurement, the observation function becomes:

yk = h(xk , uk )+ wk +

 0
Bm
0

 (13)

where Bm is the biases of the mth measurement.

3) DRIFTS
Drifts reflect the ability of a measuring instrument to con-
tinuously or incrementally change its measurement charac-
teristics over a period of time under specified conditions,
maintaining its constant measurement characteristics for a
certain period of time. Drifts are often caused by external
factors such as pressure, temperature, humidity and unstable
internal factors of the instrument’s own performance. There-
fore, preheating, isothermal and other measures should be
taken to reduce drifts before using the measuring instrument.
As can be seen from figure 1(c), if the measurement error is
drift, it will be difficult to correct. Measurement errors with
drifts are much more complicated than the other two types of
errors. When the mth measurements drift, the measurement

FIGURE 4. The nonlinear system description of the mobile robot.

FIGURE 5. The dynamic model of mobile robot.

FIGURE 6. Overall operation of the mobile robot.

function becomes:

yk = h(xk , uk )+ wk +

 0
Dm(k)

0

 (14)

whereDm(k) is a function describing the drift variation of the
measurement errors, which may be a linear, nonlinear or even
periodic function. And it is assumed here that the function is
continuous and locally linearizable.

Since gross errors have a negative impact on state estima-
tion, they should be detected in state estimation based on
particle filter in order to achieve accurate state estimation.
figure 2 shows the framework of a state estimation system
based on particle filtering. It consists of three parts: detecting
measurements, identifying gross errors, and measurement
compensation.
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FIGURE 7. Position estimation in the case of outliers.
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B. THE METHOD OF GROSS ERRORS DETECTION
When measurements with gross errors, the measurement
function can be expressed as:

yk = h(xk , uk )+ wk + Ck (15)

where Ck = [C1,k ,C2,k . . . ,CNy,k ]
T represents the gross

error vector at time k . And Cm,k represents the gross error
information of the mth measurements at time k .

Cm,k =


0 no gross error
Om,k0 outlier
Bm bias
Dm(k) drift

(16)

According to the running system in figure 2 and the for-
mula (11) of correctedmeasurements, it can be concluded that
the residual rk of the system can be expressed as:

rk = yk − h(x̂k , uk ) = yk − ŷk (17)

When there is no gross error in the measurements,
the residual rk is equal to zero or close to zero. Conversely,
when the measurements with gross errors, the residual rk
will be significantly different from 0. This means that the
residual should be independent of the systematic input or
output, so that rk = wk should satisfy two assumptions:
(1) the expectation of wk is E(wk ) = 0; (2) The covariance of
wk is known, E(wkwTk ) = R.

Tamhane and Mah used measurement test (MT) method
for data correction and gross error detection in steady-state
systems [32]. In this paper, MT is extended to dynamic
systems for gross error detection. And the residual can be
used to test for the possibility of gross errors. A statistical
method of hypothesis testing is used to determine whether
has gross error between themeasurements and the true values.
WhetherC(m, k) is zero or not, the null hypothesisH0 and the
alternative hypothesis H1 of r(m, k) are set.{

H0 : rm,k = no gross error
H1 : rm,k 6= no gross error

The formula used for the hypothesis test is:

Zm,k =
1
√
Rmm
|rm,k | (18)

where Z(m, k) obeys the standard Gaussian distribution
N (0, 1) under the null hypothesis H0, and Rmm is the diag-
onal vector of R. When the detection statistic ym,k satisfies
ym,k < Zα/2, H0 is accepted. Where Zα/2 is the standard
Gaussian distribution of percent, and Zα/2 is not equal to zero
but depends on the value of α. This hypothesis test means
that when the significance level α is selected, most of the
measurement errors will fall within the interval of (1 − α).
Therefore, any measurement that falls outside the area will
be considered a gross error. The probability that a gross error
does not exist and is misjudged as being present is less than
or equal to the prescribed significance level α.

FIGURE 8. Position estimation in the case of outliers.

1) OUTLIERS
Since the outliers are mainly in the form of independent and
accidental peaks, the outliers at a certainmoment are often not
associated with other moments. The detection of the outliers
are performed using a distance scale based on the measured
residual vector r and the response time point k . For example,
if the mth measurement data contains a gross error at time kc,
then the residual point is (fc, rm,kc ). And its minimum distance
Dmin from all other measured residual points k ′c, rm,k ′c can be
expressed as:

Dmin(m,kc) = min(|kc − k ′c| + |rm,kc − rm,k ′c |) kc 6= k ′c (19)

Since the biases and drifts are manifested in many contin-
uous data points, and the outliers are composed of several
isolated burst peaks. So the Dminof biases and drifts are
significantly lower than outliers. When there is no outlier in
the measurements, all Dmin points and Dmin(m,kc) should sat-
isfy the random distribution. In order to test this hypothesis,
the following hypothesis in the test procedure should satisfy
the Gaussian distribution.{

H0 : (kc, rm,kc ) 6= outlier
H1 : (kc, rm,k ) = no outlier

When the testing statistic Dmin satisfies Dmin < Z(α/2),
H0 is accepted, that is, ym,k is considered not to be an outlier.
Conversely, when the alternative hypothesis H1 is satisfied,
ym,k is considered to be an outlier. And the outlier can be
expressed as:

Cm,k = Om,k0 = rm,k (20)

2) BIASES
The biases are the continuous and relatively stable errors on
the measuring device. In this paper, the residual time series
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FIGURE 9. Position estimation in the case of outliers.

rm,1, rm,2, . . . , rm,k of the measurement m are used to esti-
mate the errors of measurements including biases. As shown
in Equation (21) and Equation (22), the mean and variance of
the data points rm,k−W+1, rm,k−W+2, . . . , rm,k is calculated
using a time window in which the span is W .

r̄m,k =
1
W

W∑
i=1

rm,k −W + i (21)

S2 =
1

W − 1

W∑
i=1

(rm,k−W+i − r̄m,k )2 (22)

Since the interference wk obeys the white noise sequence
and the variance S2 obeys the F distribution, so an appropriate
threshold can be selected to identify which measurements are
currently most relevant to the two gross errors of biases or
drifts. The variance of S2 can be obtained by the following
hypothesis test: {

H0 : S2 ≤ Rmm
H1 : S2 > Rmm

According to the characteristics of biases and drifts,
the systematic biases will produce stable continuous errors,
so the variance of these latestW points will be much smaller
than points where the drift occurs. The one-sided hypothesis
test for the statistic S2 is obtained based on the F-distribution.
When the variance S2 is smaller than the predefined thresh-
old ε, the data point corresponding to the mth measurement
is determined to be a bias, otherwise it is classified as a drift.
The size of the mth measurement with bias is estimated as
follows:

Cm,k = B̂m = r̄m,k (23)

3) DRIFTS
When describing the drift function Dm(k), the method of a
linear regression based on residuals is used to analyze the
trend. And then the slope and intercept after fitting are used
to estimate the variance. So the mth measurement with drift
is calculated as follows:

Cm,k = Dm(k) ≈ am,kk + bm,k (24)
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C. GROSS ERROR COMPENSATION
The existence of gross errors can adversely affect the result
of state estimation. Therefore, after detecting gross errors and
determining their size, they should be eliminated to compen-
sate for the measurements. The compensated measurements
y′k can be expressed as:

y′k = yk − Cm,k (25)

Updating the corresponding weights as follows:

wik ∝ wik−1p(y
′
k |x

i
k ) (26)

The updated weights are used in resampling of particle
filter, and the state variable estimate x̂k and the corrected
measurement ŷk are derived. Themeasurement residual infor-
mation is obtained by updating the measurements by rk =
yk−(ŷk ).Since Cm,k is estimated from the measuring residual
time series, the updated measurement residual can be used to
improve subsequent measurements compensation.

After considering the gross errors, the principle of the
improved particle filter algorithm based on gross errors is
shown in figure 3.

IV. MOBILE ROBOT POSITION ESTIMATION
In this paper, the mobile robot is used as the research object,
and the particle filter algorithm is used for its position
estimation pro. Considering the problem that the collected
measurements contain gross errors, the improved algorithm
of the third chapter is used to realize the accurate position
estimation of the mobile robot.

A. MODELING A MOBILE ROBOT
The nonlinear system description of the mobile robot is
shown in Figure 4. 

ẋ = v cos(θ )
ẏ = v sin(θ )
θ̇ = w

(27)

where v denotes the linear velocity of the robot, w is the
steering angular velocity, and x, y and θ denote the position
and posture, which can be obtained by the GPS of the mobile
robot. Due to the existence of noise, there are errors in both
measurement and control, that is, noise information exists in
both v and w.

Put this model into the coordinate system and establish its
dynamic model as shown in Figure 5.

Based on the kinematics model, a state space model of
the particle filter algorithm (including state equations and
measurement equations) is established. The state spacemodel
includes six state variables, which are: x, y, θ, vx , vy, vθ .
Where vx and vy represent the linear velocities of the
x-axis and the y-axis, respectively. And vθ represents the
steering angular velocity, that is, vθ = w. As shown in
equations (29), the state space model can be obtained by

FIGURE 10. Overall operation of the mobile robot.

combining equations (27), (28) and (29).

xk =



x1(k)
x2(k)
x3(k)
x4(k)
x5(k)
x6(k)

=



x1(k − 1)− (
v
w
) sin θ (k − 1)+

(
v
w
) sin(θ (k − 1)+ w ∗1T );

x2(k − 1)+ (
v
w
) cos θ (k − 1)−

(
v
w
) cos(θ (k − 1)+ w ∗1T );

x3(k − 1)+ w ∗1T + γ1T ;

[−(
v
w
) sin θ (k−1)+(

v
w
) sin(θ (k−1)

+w ∗1T )]/1;

[(
v
w
) cos θ (k − 1)− (

v
w
) cos(θ (k − 1)

+w ∗1T )]/1T ;

w+ γ ;
(28)

yk = h(xk , uk )+ wk = xk + wk (29)

where x1(k) ∼ x6(k) represents the above six state variables.
v and w are measured variables with random noise, and γ is
random noise added to the steering angular velocity.

B. MOBILE ROBOT SIMULATION EXPERMENT
In the simulation experiment, the initial position of themobile
robot is set to move from the origin. The sampling time is 20s,
the sampling interval is 0.05s, and the number of sampling
particles is 5000.
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FIGURE 11. Position estimation in the case of biases.

1)Add outliers at different times and compare the accu-
racy of the position estimates before and after compensation.
The overall operation of the mobile robot in the area is
shown in Figure 6. The black part is the area blocked by
the house, indicating that no measurement signal is received
in this area. The red line indicates the true pose of robot,
and the black square line indicates the estimated pose of the
robot.

Figure 7 shows the operation of the mobile robot by adding
outliers at 2.5s, 2.95s, 3.7s and 15.5s. Figure 7(a) is an
uncompensated position estimation trajectory. Figure 7(b) is
a compensated position estimation trajectory. figure 7(c) is a
partial enlarged view of (a). figure 7(d) is a partial enlarged
view of (b). Figure 7(e) shows the tracking error RMS of the
PFwhich is not compensated after adding outliers. Figure 7(f)

shows the tracking error RMS of the PF which is com-
pensated after adding outliers. The black star-shaped dotted
line denotes measurments, the blue star-shaped dotted line
indicates the state corrected state values, and the red circled
dotted line indicates true values. The range indicated by the
ellipse is that outliers are added at 2.5s (that is, the number of
iterations is 50th) and 2.95s (that is, the number of iterations
is 59th).

2)Add the systematic biases at different times, and com-
pare the accuracy of the position estimation before and
after the compensation of measurements. The overall oper-
ation of the mobile robot in the area is shown in Figure 8.
The black part is the area blocked by the house, indicat-
ing that no measurement signal is received in this area.
The red line indicates the true pose of the robot, and
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the black square line indicates the estimated pose of the
robot.

Figure 9 shows the operation of the system after adding
biases over a period of time. Figure 9(a) is an uncompensated
position estimation trajectory. Figure 9(b) is a compensated
position estimation trajectory. Figure 9(c) shows the tracking
error RMS of the PF when biases are not compensated.
Figure 9(d) shows the tracking error RMS of the PF when
biases are compensated. The black star-shaped dotted line
indicates the measurements, the blue star-shaped dotted line
indicates the corrected state values, and the red circled dotted
line indicates the true values.

3)The drift is added to the mobile robot system. And
compare the accuracy of the position estimation before and
after the compensation of measurements. The overall opera-
tion of the mobile robot in the area is shown in Figure 10.
The black part is the area blocked by the house, indicat-
ing that no measurement signal is received in this area.
The red line indicates the true pose of the robot, and
the black square line indicates the estimated pose of the
robot.

Figure 11 shows the operation of the system after adding
drifts over a period of time. Figure 11(a) is an uncompensated
position estimation trajectory. Figure 11(b) is a compensated
position estimation trajectory. Figure 11(c) shows the track-
ing error RMS of the PF when drifts are not compensated.
Figure 11(d) shows the tracking error RMS of the PF when
drifts are compensated.

The black star-shaped dotted line indicates the measure-
ments, the blue star-shaped dotted line indicates the corrected
state values, and the red circled dotted line indicates the true
values.

It can be seen from the rootmean square error of three gross
errors that using the improved particle filter algorithm to deal
with the gross errors will make the position estimation of the
mobile robot more accurate.

V. CONCLUSION
The improved particle filter algorithm is used to identify
and compensate for the gross errors in measurements. And
the influence of gross errors on the accuracy of the position
estimation in the dynamic state estimation of the mobile robot
is solved. In the simulation experiment, three kinds of gross
errors are set in the case of compensation and uncompen-
sation. The magnitude of the root mean square error of the
mobile robot’s position estimation is compared, which shows
that the improved particle filter algorithm has superiority in
processing the mobile robot system. This proves the effec-
tiveness of the proposed method in estimating the position of
mobile robots.

REFERENCES
[1] X. Wang, L. T. Yang, X. Xie, J. Jin, and M. J. Deen, ‘‘A cloud-edge

computing framework for cyber-physical-social services,’’ IEEE Commun.
Mag., vol. 55, no. 11, pp. 80–85, Nov. 2017.

[2] X. Wang, L. T. Yang, L. Kuang, X. Liu, Q. Zhang, and M. J. Deen,
‘‘A tensor-based big-data-driven routing recommendation approach for
heterogeneous networks,’’ IEEE Netw., vol. 33, no. 1, pp. 64–69,
Jan. 2019.

[3] X. Deng,M.Xu, L. T. Yang,M. Lin, L. Yi, andM.Wang, ‘‘Energy balanced
dispatch of mobile edge nodes for confident information coverage hole
repairing in IoT,’’ IEEE Internet Things J., vol. 6, no. 3, pp. 4782–4790,
Jun. 2019.

[4] X. Deng, L. T. Yang, L. Yi, M. Wang, and Z. Zhu, ‘‘Detecting confident
information coverage holes in industrial Internet of Things: An energy-
efficient perspective,’’ IEEE Commun. Mag., vol. 56, no. 9, pp. 68–73,
Sep. 2018.

[5] B. Wang, Q. Yang, and X. Deng, ‘‘Energy management for cost mini-
mization in green heterogeneous networks,’’ Future Gener. Comput. Syst.,
vol. 105, pp. 973–984, Apr. 2020.

[6] L. Ren, Y. Laili, X. Li, and X. Wang, ‘‘Coding-based large-scale task
assignment for industrial edge intelligence,’’ IEEE Trans. Netw. Sci. Eng.,
early access, Sep. 18, 2019, doi: 10.1109/TNSE.2019.2942042.

[7] X. Wang, L. T. Yang, H. Li, M. Lin, J. Han, and B. O. Apduhan, ‘‘NQA:
A nested anti-collision algorithm for RFID systems,’’ ACM Trans. Embed-
ded Comput. Syst., vol. 18, no. 4, pp. 1–21, Jul. 2019, doi: 10.1145/
3330139.

[8] J. Cui, L. Ren, X. Wang, and L. Zhang, ‘‘Pairwise comparison learning
based bearing health quantitative modeling and its application in ser-
vice life prediction,’’ Future Gener. Comput. Syst., vol. 97, pp. 578–586,
Aug. 2019.

[9] X. Deng, Y. Jiang, L. T. Yang, M. Lin, L. Yi, and M. Wang, ‘‘Data fusion
based coverage optimization in heterogeneous sensor networks: A survey,’’
Inf. Fusion, vol. 52, pp. 90–105, Dec. 2019.

[10] M. Wang, X. Wang, L. T. Yang, X. Deng, and L. Yi, ‘‘Multi-sensor fusion
based intelligent sensor relocation for health and safety monitoring in
BSNs,’’ Inf. Fusion, vol. 54, pp. 61–71, Feb. 2020.

[11] J. Xiao, ‘‘Improvement of particle filter algorithm and its application
research,’’ East China Jiaotong Univ., Nanchang, China, 2017.

[12] N. Zhao, ‘‘Research and improvement of particle filter algorithm,’’ Harbin
Eng. Univ., Harbin, China, 2009.

[13] Y. F. Han, ‘‘Research on particle filtering and improved algorithm in multi-
carrier CDMA system,’’ Harbin Eng. Univ., Harbin, China, 2011.

[14] K. Zhang, Y. Zhu, S. Maharjan, and Y. Zhang, ‘‘Edge intelligence and
blockchain empowered 5G beyond for the industrial Internet of Things,’’
IEEE Netw., vol. 33, no. 5, pp. 12–19, Sep. 2019.

[15] Z. Zhu, Z. Meng, Z. Zhang, J. Chen, and Y. Dai, ‘‘Robust particle filter for
state estimation using measurements with different types of gross errors,’’
ISA Trans., vol. 69, pp. 281–295, Jul. 2017.

[16] M. Vaghefi, K. Mahmoodi, and M. Akbari, ‘‘Detection of outlier in 3D
flow velocity collection in an open-channel bend using various data mining
techniques,’’ Iranian J. Sci. Technol., Trans. Civil Eng., vol. 43, no. 2,
pp. 197–214, Jun. 2019.

[17] F. P. Xie and W. G. Jiang, ‘‘Tracking biases analysis and elimination
of concentrating photovoltaic biaxial daily tracking system under time-
controlled algorithm,’’ Renew. Energy, vol. 35, no. 10, pp. 1471–1478,
2017.

[18] J.-S. Wang and G.-H. Yang, ‘‘Data-driven compensation method for sensor
drift faults in digital PID systems with unknown dynamics,’’ J. Process
Control, vol. 65, pp. 15–33, May 2018.

[19] Z. Zhang and J. Chen, ‘‘Simultaneous data reconciliation and gross error
detection for dynamic systems using particle filter and measurement test,’’
Comput. Chem. Eng., vol. 69, pp. 66–74, Oct. 2014.

[20] C. S. Maiz, E. M. Molanes-Lopez, J. Miguez, and P. M. Djuric, ‘‘A
particle filtering scheme for processing time series corrupted by out-
liers,’’ IEEE Trans. Signal Process., vol. 60, no. 9, pp. 4611–4627,
Sep. 2012.

[21] S. M. Malagon-Soldara, E. D. Avalos-Rivera, and E. A. Rivas-Araiza,
‘‘Localization for indoor applications with a cheap sonar by particle filter
estimation,’’ in Proc. 8th Euro Amer. Conf. Telematics Inf. Syst. (EATIS),
Apr. 2016, pp. 1–8.

[22] J. X. Shou, Z. M. Zhang, and Y. Q. Su, ‘‘Design and implementation of
indoor mobile robot positioning and navigation system based on ROS and
Lidar,’’ Machinery Electron., vol. 36, no. 11, pp. 76–80, 2018.

[23] M. Alatise and G. Hancke, ‘‘Pose estimation of a mobile robot based on
fusion of IMU data and vision data using an extended Kalman filter,’’
Sensors, vol. 17, no. 10, p. 2164, 2017.

VOLUME 8, 2020 56369

http://dx.doi.org/10.1109/TNSE.2019.2942042
http://dx.doi.org/10.1145/3330139
http://dx.doi.org/10.1145/3330139


Z. Zhu et al.: Accurate Position Estimation of Mobile Robot Based on CPSS

[24] Y. Dobrev, S. Flores, and M. Vossiek, ‘‘Multi-modal sensor
fusion for indoor mobile robot pose estimation,’’ in Proc.
IEEE/ION Position, Location Navigat. Symp. (PLANS), Apr. 2016,
pp. 553–556.

[25] A. Canedo-Rodriguez, J. Rodriguez, V. Alvarez-Santos, R. Iglesias, and
C. Regueiro, ‘‘Mobile robot positioning with 433-MHz wireless motes
with varying transmission powers and a particle filter,’’ Sensors, vol. 15,
no. 5, pp. 10194–10220, 2015.

[26] Y. Gao, S. Sun, D. Hu, and L. Wang, ‘‘An online path planning approach
of mobile robot based on particle filter,’’ Ind. Robot, Int. J., vol. 40, no. 4,
pp. 305–319, Jun. 2013.

[27] C.-C. Hsu, S.-S. Yeh, and P.-L. Hsu, ‘‘Particle filter design for
mobile robot localization based on received signal strength indica-
tor,’’ Trans. Inst. Meas. Control, vol. 38, no. 11, pp. 1311–1319,
Nov. 2016.

[28] Y. Xu, C. Zhang, and W. Bao, ‘‘A robust pose estimation algorithm for
mobile robot based on clusters,’’ in Proc. Int. Conf. Intell. Robot. Appl.,
vol. 5314. New York, NY, USA: Springer-Verlag, 2008, pp. 1003–1010.

[29] F. Aghili and A. Salerno, ‘‘Driftless 3-D attitude determination and posi-
tioning of mobile robots by integration of IMU with two RTK GPSs,’’
IEEE/ASME Trans. Mechatronics, vol. 18, no. 1, pp. 21–31, Feb. 2013.

[30] P. Wang, Q.-B. Zhang, and Z.-H. Chen, ‘‘A grey probability measure set
based mobile robot position estimation algorithm,’’ Int. J. Control, Autom.
Syst., vol. 13, no. 4, pp. 978–985, Aug. 2015.

[31] D. C. Lv, J. T. Fan, and G. W. Han, ‘‘Overview of particle filtering,’’
Astronomical Res. Technol., vol. 10, no. 4, pp. 397–409, 2013

[32] A. C. Tamhane and R. S. H. Mah, ‘‘Data reconciliation and gross error
detection in chemical process networks,’’ Technometrics, vol. 27, no. 4,
pp. 409–422, Nov. 1985.

56370 VOLUME 8, 2020


	INTRODUCTION
	PRINCIPLE DESCRIPTION OF PARTICLE FILTER ALGORITHM
	GROSS ERRORS TYPE DETECTION AND MEASUREMENTS COMPENSATION
	GROSS ERRORS CLASSIFICATION
	OUTLIERS
	BIASES
	DRIFTS

	THE METHOD OF GROSS ERRORS DETECTION
	OUTLIERS
	BIASES
	DRIFTS

	GROSS ERROR COMPENSATION

	MOBILE ROBOT POSITION ESTIMATION
	MODELING A MOBILE ROBOT
	MOBILE ROBOT SIMULATION EXPERMENT

	CONCLUSION
	REFERENCES

