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ABSTRACT State of health (SOH) monitoring and remaining useful life (RUL) prediction are the key
to ensuring the safe use of lithium-ion batteries. However, the commonly used models are inefficient in
predicting accuracy and do not have the ability to capture local regeneration of battery cells. In this paper,
a temporal convolutional network (TCN) based SOHmonitoring model framework of lithium-ion batteries is
proposed. Causal convolution and dilated convolution techniques are used in the model to improve the ability
of the model to capture local capacity regeneration, thus improving the overall prediction accuracy of the
model. Residual connection and dropout technologies are used to improve the training speed of themodel and
avoid overfitting in deep network. The empirical mode decomposition (EMD) technology is used to denoise
the offline data in RUL prediction, so as to avoid RUL prediction errors caused by local regeneration. The
proposed model is verified on two kinds of datasets and the results show that it has the ability to capture
local regeneration phenomena in Lithium-ion batteries. Compared with the commonly used models, it has
higher accuracy and stronger robustness in SOH monitoring and RUL prediction.

INDEX TERMS Lithium-ion battery, state of health, remaining useful life, local capacity regeneration,
temporal convolutional network.

I. INTRODUCTION
As a new type of high energy storage battery, the lithium-ion
battery has been widely used in portable electronic devices,
electric vehicles and unmanned aerial vehicles due to its fast
charging speed, low self-discharge, long life, high energy
density and no memory effect [1]. For lithium-ion batteries,
safety and reliability are very important in the recycling pro-
cess. As an important part of the lithium-ion battery manage-
ment system (BMS), state of health (SOH) essentially reflects
the aging and damage of lithium battery. Therefore, effective
monitoring directly affects the performance and safety of the
system. Secondly, in order to track the aging degree of the
battery cell in real time and then get the remaining useful life
(RUL) of the battery cell. It is necessary to design a method
to predict the SOH and RUL of the battery cell effectively,
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so as to take measures before the battery cell causes a system
failure.

Due to the degradation of chemical components, the per-
formance of lithium-ion batteries will deteriorate with recy-
cling, resulting in the decline of capacity [2]. Therefore, most
researches use the degradation of capacity to represent the
aging and deterioration degree of lithium-ion batteries in
long-term use. However, the capacity of the battery cell can-
not be directly measured. There are many factors that affect
battery cell aging. In addition to the internal chemistry of the
battery cell, the most specific manifestation is the significant
increase in the internal resistance and impedance of the bat-
tery cell. But accurate measurements of impedance are dif-
ficult and expensive, whereas sensor measurements are easy
to collect. So a lot of indirect measurements have been used
to predict SOH and RUL for lithium-ion batteries. Currently,
these methods are grouped into two categories: model-based
and data-driven. The model-based methods mainly include
the electrochemical model and the equivalent circuit model
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[3]–[6]. The electrochemical model can accurately estimate
the health state of the battery cell by studying the electro-
chemical reaction process inside the battery cell, However,
the health estimation based on the electrochemical model is
difficult to model and difficult to apply in practice. Torai S
et al proposed a model for expressing the differential capacity
characteristics of the LiFePO4/graphite battery cell for the
SOH prediction. This is directly related to the phase transition
behavior of active materials [7]. But the model was tested at
an experimental temperature of 25 degrees Celsius, without
taking temperature into account. Lyu C, et al. restructured the
parameters of the single particle model to reduce the model
parameters that were too complicated to 10. And a series
of specially designed current activations are applied to the
battery cell during parameter identification to decouple the
overvoltage from the measured terminal voltage. The param-
eter identification method based on activation and response
is simplified to fill the gap between electrochemical model
and field research [8]. The disadvantages of this approach
are also apparent. It does not account for thermal effects,
and there is no evidence that it applies to other types of
battery cells. In addition to the electrochemical model, the
equivalent circuit model has also been studied and improved.
Yang J et al. proposed a second order equivalent circuit
model based on resistance-inductance network. The main
purpose is to use inductance to characterize the current when
charging at constant voltage so as to capture the dynamic
characteristics of the current in constant voltage mode. Then,
multiple inductors connected in parallel are used to improve
the fidelity of the model. Finally, the nonlinear least squares
is used for parameter identification [9]. This model is only
implemented on LiFePo4, failing to consider the temperature
factor, and there is much room for improvement. In addition
to the improvement of the circuit model, parameter iden-
tification of impedance and open circuit voltage is also a
key technique in the equivalent circuit model. Cui Y et al.
proposed a non-destructive method to identify the dynamic
impedance parameters of equivalent circuits and an open-
circuit voltage measurement method based on short, low
current pulses to achieve real-time and rapid measurement
of open-circuit voltage. Finally, the least square method is
used to update the parameters [10]. This is a relatively simple
SOH monitoring method, but the accuracy improvement is
limited. In a nutshell, the equivalent circuit model simulates
the battery cell characteristics by using electronic compo-
nents to form a circuit. It is less difficult to model than the
electrochemical model. This model has strong realizability
and strong dynamic response-ability, but the essence of the
equivalent circuit is approximate processing, and the param-
eter deviation of some models will cause larger prediction
errors.

From the above description, it can be seen that model-
based methods need to build complex mathematical models
to achieve certain accuracy. With the popularity of data, data-
driven methods can be used to achieve relatively simple pre-
diction on the premise of ensuring accuracy. The data-driven

approach includes three main techniques. The first is machine
learning techniques, such as neural networks and support
vector machines (SVM); the second is statistical techniques,
such as Bayesian linear regression and Gaussian Process
Regression (GPR); the third is time series technology, such as
autoregressivemodel and so on. Shen S et al. took the voltage,
current and capacity of the discrete segment as input and
deduced the unknown capacity from the local charging cycle
through the deep convolutional neural network. Experiments
show that this method has higher accuracy than SVM, but the
effect of temperature on capacity is ignored [11]. Choi et al.
compared the voltage factor only with the multi-channel volt-
age, current, and temperature, proving that the predictionwith
multi-channel is more accurate [12]. It is worth noting that in
addition to improving the prediction accuracy and efficiency,
we find that more improvements have been made in health
feature extraction in recent years. Yang D et al. extracted four
features from the charging curve, analyzed the correlation
degree with grey correlation, and then predicted with GPR,
and improved the model from similarity measure and covari-
ance function design. The model had strong robustness [13].
Guo et al. extracted relevant health features from the charging
voltage, current, and temperature curves. From the extracted
features, 9 features with the highest correlation were selected
and dimensionality was reduced through principal compo-
nent analysis. Finally, relevance vector machine was used
as the prediction model. This method is not affected by the
discharge conditions and takes into account the influence of
temperature. The accuracy is very high, but there is still a lot
of room for improvement due to lack of data [14].

In addition to the improvement in feature extraction, many
current models fail to capture the phenomenon of local
regeneration of lithium-ion battery capacity [15]. This local
regeneration phenomenon is explained as the self-charging
of the lithium battery. During the battery cell charging and
discharging process, side reactions between the electrolyte
and the electrode cause the battery’s chemical performance to
decline. However, when the battery cell is in a resting state,
the electrochemical performance will be restored to a certain
extent, so a local peak phenomenon will occur to change the
trend of the capacity decline curve. In view of this prob-
lem Yu et al. used empirical mode decomposition (EMD) to
decouple local regeneration phenomena and used multi-scale
logistic regressive and GPR to monitor SOH. However, such
methods were greatly influenced by the starting point [16].
Therefore, Pang et al. put forward improvements for this
kind of problems, using wavelet decomposition technology to
separate the global trend and local regeneration part, and then
improve the prediction accuracy through nonlinear autore-
gressive neural network, and prove that the starting point has
little impact [17]. For a singlemodel, there are some problems
such as low generalization ability and insufficient precision.
Sun et al. proposed a hybrid prediction method based on
extreme learning machine (ELM) and particle filter (PF).
ELM was used to simulate the decreasing trend of battery
capacity, and PF was used to update random parameters in
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real time. The hybrid model achieves higher accuracy on the
dataset than before the model was mixed [18]. In addition,
the hybrid prediction model of the serial or parallel con-
nection between long short-term memory (LSTM) network
and Convolutional neural network (CNN) models, as well as
the hybrid Elman neural network and LSTM network have
achieved high accuracy in related fields [19]–[21]. However,
whenmonitoring SOH, thesemodels cannot avoid using tech-
niques such as wavelet decomposition technology to improve
the prediction accuracy of local regeneration phenomena. The
reason is that the model itself does not have the ability to
capture local regeneration phenomenon. Although the hybrid
model has improved prediction accuracy, the training speed
of the model will decrease. This is also one of the signif-
icances of this paper. In summary, the data-driven method
does not need to consider the battery’s chemical mechanism
but needs sufficient data as support. In recent years, most of
the improved models are mainly LSTM models and gated
recurrent unit (GRU) models that have proven to be excellent
in battery cell prediction [22]–[26]. Another significance of
this study is to provide new ideas for improvement.

For most deep learning-based sequence prediction tasks,
recurrent neural network (RNN) is often the first choice.
However, the performance of the convolution architecture
is better than RNN in some recent translation and audio
synthesis tasks, and in the multivariate sequence classifica-
tion task, the network architecture based on full-convolution
network (FCN) has recently achieved the latest results [27].
In view of the current situation in the filed of battery perfor-
mance prediction, which is mostly based on RNN and hybrid
networks, we use a temporal convolutional network (TCN)
model based on causal convolution architecture to predict
the SOH and RUL of lithium-ion batteries with capacity
as the index, and apply some improvements in convolution
architecture in other fields in recent years to the model. After
many experiments and analysis, we find that the TCN model
has the ability to capture local regeneration phenomenon,
and it has higher accuracy and robustness than other baseline
models in SOH monitoring and RUL prediction.

The main contribution of the study can be attributed to the
following three aspects:

1) In this paper, a TCN network based on convolutional
network structure is proposed to realize high-precision
SOH monitoring and RUL prediction of lithium
batteries.

2) At present, RNN or a variety of traditional model com-
binations are commonly used to capture local regen-
eration phenomenon. Considering the effect of local
regeneration phenomenon on the overall SOHmonitor-
ing, a new method and improved thinking are proposed
in this paper, which can solve the problem of battery
performance prediction more simply and effectively.

3) Combined with EMD, the global degradation and local
regeneration of the battery cell capacity were separated
to improve the prediction accuracy of the TCN model
for RUL of lithium-ion battery.

The rest of this paper is organized as follows. The dataset
of lithium-ion battery is analyzed in Section II. In Section III,
we introduce the basic structure of TCN model and the algo-
rithm used in this paper. In Section IV, our model is tested. In
Section V, we give the conclusion of the article.

II. CAPACITY DEGRADATION DATASET
A. THE DEFINITION OF SOH AND RUL
Considering that current, voltage and internal resistance are
used as the input and data acquisition is complicated and
local regeneration is ignored, which leads to low prediction
accuracy, this paper directly takes capacity as the prediction
target. Before introducing the dataset used, we define the
problems that need to be solved. The percentage of available
battery cell capacity is defined as SOH in this study, and the
formula is as follows:

SOH (t) =
Ct
Co

(1)

In (1), Co represents the initial capacity, Ct represents the
capacity of the t-th cycle, and the ratio of the two represents
the current SOH value. The problem that we need to solve is
to predict the value of SOH in the next step through a series of
already obtained SOH values. The definition of battery RUL
is as follows:

RUL (t) = t − tEOL (2)

In (2), tEOL means end-of-life (EOL) is the number of
cycles at the end of battery life, and t is the t-th cycle number.
Get the current battery’s RUL from the difference between
the current capacity and the EOL. The problem that we need
to solve is to realize multi-step prediction of RUL through
offline data [28].

B. DATASET
Two public lithium-ion battery datasets are used in this study,
one from the NASA Ames Prognostics Center of Excel-
lence (PCOE) [29]. The battery cell has a rated capacity
of 2.0Ah. Cyclic charge and discharge at room temperature
of 24 degrees Celsius. Take battery numbers B0005, B0006,
and B0018 as examples. In 1.5A constant current charging
mode until the voltage reaches 4.2V, then constant voltage
charging until the current drops to 20mA. Discharge condi-
tions are constant current 2A discharge until the voltage drops
to 2.7V, 2.5V and 2.2V respectively. Another dataset from
the Center for Advanced Life Cycle Engineering (CALCE)
at the University of Maryland [30]. The battery cell has a
rated capacity of 1.1Ah. Similarly, the charging method of
constant current first and constant voltage later is selected,
but different discharge currents are selected. Three battery
cells with different discharge modes are selected to verify the
performance of the model. Details of the selected lithium-
ion batteries are in Table 1. Through accurate prediction of
these commonly used batteries, it is proved that our model
can accurately predict other unknown batteries with merely a
small amount of capacity training data.
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FIGURE 1. Lithium ion battery capacity degradation curve. (a) NASA
dataset. (b) CALCE dataset.

TABLE 1. Test lithium-ion batteries information.

Generally speaking, in order to ensure the safety perfor-
mance of the system, the life limit is to reduce the capacity
to 70% - 80% of the nominal capacity [31]. NASA’s dataset
defines 30% of rated capacity as EOL, or 1.4Ah. The attenu-
ation curve of battery capacity is shown in Figure. 1(a). The
dataset of CACLE usually defines 20% of the rated capacity
as EOL. In this paper, 0.8Ah is taken, and the battery cell
capacity attenuation curve is shown in Figure. 1(b).

Figure 1 shows that the battery cell capacity decay paths are
very similar at the same discharge rate. Different discharge
rates differ significantly on the decay path, and this differ-
ence is precisely due to various uncertain factors of battery
aging. In systems with a large number of lithium-ion batteries
such as electric vehicles, inconsistent battery performance
can seriously affect the safety performance of the system.
This illustrates the importance of effective SOH monitoring
and RUL prediction for lithium-ion batteries. We will also

find that there is local capacity regeneration phenomenon
for different lithium-ion battery capacity sequences. This is
the common feature of battery capacity sequences, so it is
important to improve the model’s ability to capture local
capacity regeneration phenomenon under different battery
cells and different operating conditions. This is also the key
to improving the accurate monitoring of SOH by the model.

In Figure 1, under different operating conditions,
the capacity attenuation slope of the battery at EOL is also
different, which means that our model must have the ability
to predict long-term in order to achieve high accuracy in
RUL prediction. And the local regeneration phenomenon
in Figure 1 will also affect the accurate positioning of EOL,
and the prediction result of RUL highly depends on the
accurate prediction of battery EOL, so it is necessary to pre-
process the offline data during RUL prediction. The purpose
of preprocessing is to reduce the impact of local fluctuations
on model prediction. This is a way to improve the accuracy
of the model in terms of RUL prediction.

III. MODEL ARCHITECTURE AND ALGORITHMS
In recent years, some convolutional architectures can achieve
the highest accuracy in audio synthesis, machine translation,
and language modelling [32]. Considering that the capacity
sequence is a small sample, combined with the best practices
of modern CNN architecture in other fields, the TCN struc-
ture selected in this paper is simpler and easier to implement
than Wavenet [33]. It removes the gate mechanism and adds
a residual system. The TCN model used has the following
characteristics:

1) Using causal convolution and dilated convolution so
that historical information will not be missed, thus the
prediction of local regeneration phenomena is more
stable.

2) Similar to the RNN model, the TCN model uses one-
dimensional FCN to accept input sequences of any
length and map them to output sequences of equal
length. However, compared with the RNN architecture
of the same capacity, the TCN model parameters are
shared, so the training memory is lower.

3) CNN model uses the same convolution kernel at each
layer, so, the TCN model can process long sequences
in parallel.

4) Unlike the periodic structure, the propagation path of
the TCN model is independent of the time direction,
so there is no gradient explosion.

A. DILATED CONVOLUTION
Using the causal convolution model to consider all the his-
torical capacity sequence information will inevitably lead to
the deepening of the network. The principle is shown in Fig-
ure 2. To solve the problems of training speed and memory
caused by network depth, two solutions are proposed. The
first is a dilated convolution technique [34], and the other
is a skip connection technique. Dilated convolution was first
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FIGURE 2. Visualization of dilated convolution.

proposed to solve the problem of information loss in semantic
segmentation of images. In the original image segmentation,
the pooling layer was used to reduce the image size and
increase the receptive field to represent a large range of input
better, and then upsampling to expand the image size. The
problem of information loss during this period is solved by
not doing the operation of downsampling. However, only
increasing the number of convolutional layers will increase
the calculation amount of the network, and no pooling will be
done to aggregate the features, so the final effect of feature
extraction will be affected. The essence of the problem is
that the receptive field cannot be changed, so the dilated
convolution operation is proposed. In fact, setting the step
size for common convolution operations greater than 1 will
also increase the receptive field, but there is a problem of
reducing the image size. Therefore, dilated convolution is a
major improvement on CNN.

At present, two problems need to be solved for dilated
convolution. The first is that the filter with the same dilation
factor will have a ‘gridding effect’ after multiple iterations;
that is, the continuity of information is lost. Missing infor-
mation leads to sparse input, which is fatal for sequence
prediction tasks. The second problem is the size of the value
of dilation factor, because the larger dilation factor in the
image only works better for larger objects, and it is harmful to
smaller objects. Similarly, for capacity sequences, appropri-
ate dilation factor will affect the accuracy of local fluctuation
prediction. To solve the ‘gridding effect’, the article uses
hybrid dilated convolution (HDC) [35]. HDC is an improve-
ment proposed in [36] and [31] that the value of d should be
of the form (e.g., 2, 4, 6). The structural design for the dilation
factor is d = [r1, r2, . . . , ri, . . . , rn], the filter is k × 1, and
dilation factor needs to meet the following conditions:

1) The convolution dilation factor cannot have a common
divisor greater than 1; otherwise, the ‘gridding effect’
will still appear at the top of the network, which is the
key difference from [36] and [34].

2) Design the dilation factor into a zigzag shape to take
into account the information of different distances, such
as: [1, 2, 5].

3) The formula that defines the maximum distance
between two non-zero values in the filter is:

Mi = max [Mi+1 − 2ri,Mi+1 − 2 (Mi+1 − ri) , ri] (3)

At layer n, Mn = rn, our goal is M2 ≤ k . An example
that does not meet the requirements is d = [1, 2, 9], When
k = 3,M2 = 5 is larger than 3. The purpose of this
requirement is to at least cover all the information with a
dilation rate equal to 1, thereby ensuring that no information
leakage occurs. This is the key to ensuring that our model is
more sensitive to local regeneration, thus improving its ability
to capture local regeneration. We explain the variation of the
causal convolution plus the dilation convolution in Figure 2.

The formula for the expansion convolution of the one-
dimensional volume sequence used in the article is as follows:

F (i) =
K∑
k=1

f (i+ d · k) · h (k) (4)

In (4), i represents the ith element in the sequence. K is the
maximum value of k , which represents the size of the filter.
f (i) is a one-dimensional input sequence, F(i) is an output
sequence, h(k) is a filter of lengthK , and d is a dilation factor.
For a convolution kernel of size k×1, the value of the dilated
filter obtained by inserting a numeric zero operation is kd×1.

kd = k + (k − 1) · (d − 1) (5)

B. RESIDUAL BLOCK
To some extent, deep neural networks will have better expres-
sive ability and predictive performance. The use of skip con-
nections is the second way to solve the problems caused by
the depth of the network. This is also the key to our model’s
ability not only to capture local regeneration but also to be
faster than commonly used hybrid models. The skip connec-
tion originates from the residual network (ResNet) [37]. Its
essence is a new idea and not a new formula, which aims
to solve the problem of network degradation and gradient
disappearance. If the model takes x as the input value, and
F(x) is the output after a linear transformation and activation,
then before the linear transformation on the second layer is
activated, F(x) is added to the input x of the previous layer,
and then the output O is activated. The specific formula is as
follows:

O = Activation (x + F (x)) (6)

Then such a connection process is a skip connection,
and each connection constitutes a residual block, and a plu-
rality of residual blocks connected together is a ResNet.
We design the residual block, as shown in Figure 3 based on
the characteristics of the capacity sequence data. The residual
block consists of two layers of dilated causal convolution,
with ReLU as the activation function and dropout technique
to prevent overfitting [38]. We also introduced an optional
1 × 1 convolution to ensure that the input and output of the
residual block have the same widths. To make our technique
look simpler, we use the same type of legend to explain the
improvement process at each step of our model. The process
of adding skip connections based on the causal convolution
model is shown in figure 4. In figure 5, we use the same type
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FIGURE 3. Visualization of residual block.

FIGURE 4. Skip connection flowchart.

FIGURE 5. Dropout technical flowchart.

to show the changes we made to the model using dropout
technology.

C. EMPIRICAL MODE DECOMPOSITION
EMD is a mathematical time domain decomposition method
proposed for analyzing non-stationary and nonlinear signals
in 1998 [39]. Compared with wavelet decomposition and
Fourier transform, EMD is adaptive based on the time scale
of the signal. EMD can decompose a complex time series into
a series of signals with local characteristics, that is, intrinsic

mode functions (imf) and corresponding residual values (res).
Each of the decomposed imfs contains local characteristics of
different time scales of the original time series, and the global
decay and local regeneration of the battery capacity sequence
should be at different scales. It is reasonable to consider it as
a multi-scale mixed signal and to process it with EMD. Each
imf of EMD should meet the following conditions:

1) The number of zero-crossing and local extreme points
must be equal, or at most differ by 1 in the entire time
range.

2) At any point in time, the average of the local maximum
envelope and the minimum local envelope must be 0.

The process of EMD decomposition based on this condi-
tion is as follows:

1) Find the local extreme values of the original time series
X (t), and then use cubic spline interpolation to obtain
the upper envelope sequence value Xmax(t) of the orig-
inal time sequence X (t), which is the maximum value
line and the lower envelope sequence value Xmin(t),
which is the minimum value line.

2) Find the instantaneous average value of the upper and
lower envelope sequences at eachmoment, that is,m(t):

m(t) =
mmax(t)+ mmin(t)

2
(7)

3) Subtract the instantaneous average value m(t) from the
original time series X (t) to obtain a new series h(t):

h(t) = X (t)− m(t) (8)

If the number of extreme points and zero-crossing
points of the new sequence h(t) is equal or at most one
difference, then h(t) is the imf component. Otherwise,
the above steps are repeated until the condition of the
imf is obtained.

4) Subtract imf1(t) from the original sequence after find-
ing the first natural modal function imf1(t) to get the
remaining sequence r1(t):

r1(t) = X (t)− imf1(t) (9)

5) Then repeat the above steps with r1(t) as the new orig-
inal sequence, and extract the nth imfn(t) in sequence.
In the end, rn(t) becomes a monotonic sequence.

FIGURE 6. Res of B0005.
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FIGURE 7. Visualization of TCN model.

6) The original sequence X (t) can be obtained by super-
posing the components after decomposition.

X (t) =
n∑

k=1

imfk (t)+ r(t) (10)

Taking the B0005 battery cell used in the article as an
example. The original capacity sequence of battery cell
B0005 and the res extracted by EMD are shown in Figure 6.
From the figure, we can see that res fits the overall down-
ward trend well and effectively removes local fluctuations.
Therefore, using res instead of the real value is more suit-
able to capture the overall degradation trend of the battery.
In general, res can reflect the true degradation trend of the
battery, avoiding the interference of local fluctuations on the
RUL prediction, and can improve the accuracy of the RUL
prediction. At present, in the field of battery cell performance
prediction, EMD is usually combined with hybrid model to
improve the prediction accuracy of lithium battery SOH, but
the training speed of this method is very slow. To highlight the
superiority of our model over these hybrid models. We also
did not use CEEMDAN [40], an improved EMD technology.
First, there is no research on whether improved techniques
like CEEMDAN can improve the prediction accuracy of
RUL. Most of the current studies only show that the cor-
relation with the capacity curve can be improved, and this
increase is small for the capacity curve. Secondly, we found
through the experiment that when we used EMD technology
to decompose the capacity curve into three imfs and res,
we set the parameter max_imf=3 for our experiment. At this
point, it can be found from the Pearson correlation compari-
son in table 2 that EMD can obtain a higher correlation than
CEEMDAN [26]. Therefore, we use EMD as a de-noising
tool for RUL prediction, and its adaptive decomposition can
not only remove local regeneration phenomenon, but also
be more consistent with the simplicity and high efficiency
of our model compared with other complex decomposition
technologies.

D. EVALUATION INDEX
To verify the performance of the model in SOH monitoring
and RUL prediction, this paper uses root mean squared error

TABLE 2. Pearson correlation between EMD and CEEMDAN.

(RMSE), mean absolute error (MAE), and RUL absolute
error to show that the TCN model has better prediction per-
formance than other models:

RMSE =

√√√√1
n

n∑
i=1

(yi − ŷi)2 (11)

MAE =
1
n

n∑
i=1

∣∣(yi − ŷi)∣∣ (12)

RULError =
∣∣RULTrue − RULprediction∣∣ (13)

In (11) and (12), yi represents the true value of the capacity
series, and ŷi represents the predicted value of the capac-
ity series. RMSE is used to measure the deviation between
the predicted value and the true value. MAE can better reflect
the actual situation of the predicted value error. The smaller
the two, the higher the prediction accuracy. In (13), RULTrue
is the real RUL, RULprediction is the predicted RUL, and
RULError is the absolute error between the two. The smaller
the absolute error, themore accurate themodel is in predicting
the RUL.

E. INTRODUCTION TO THE OVERALL PREDICTION
PROCESS
In this section we mainly introduce the algorithms used. The
overall framework of lithium-ion battery health prediction
combined with all algorithms is given in Figure 8, and the
improvement process of the TCN model we used is shown
in figure 7. When battery cell capacity data are available,
we can take the acquired battery capacity as input to the
network. On the basis of one-dimensional causal convolution
network, the dilated convolution, residual connection, and
dropout technology are added to form the TCN model used
in this paper. The TCN model is used as the core to cap-
ture the local regeneration phenomenon, thereby achieving
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FIGURE 8. System framework for battery health prognostics.

high-precision SOH monitoring. At the same time, EMD
technology is used to perform noise reduction processing on
offline data, which can also perform effective RUL prediction
on online data.

IV. RESULTS AND DISCUSSION
The article mainly verifies the reliability of the model from
the following aspects:

1) Compare the effects of different model structures and
parameters on the prediction results, and choose the
structure that is most suitable for the capacity series
prediction in this paper.

2) Verify the performance of TCN model in SOH mon-
itoring and local regeneration phenomenon capturing
compared with existing baseline models.

3) Verify the performance of the TCN model in terms
of RUL prediction with offline data compared to the
baseline model.

4) Verify the reliability of the model on different batteries
under different discharge conditions.

The monitoring of SOH in the experiment is mainly to
maintain the battery in advance. Therefore, choosing the
starting point according to the actual use situation can better
explain the reliability of the model. The prediction of RUL
is more inclined to replace the battery in practice, so an
accurate prediction of the failure point is more important.
The experimental analysis models in this article are written
in Python 3.6, and the experiments are run on a laptop. The
computer configuration is as follows: the CPU is i5-7300, and
the GPU is NIVIDA 1050Ti.

A. MODEL STRUCTURE ANALYSIS
The model parameters and structure are experimentally ana-
lyzed based on the capacity series data used in the article.
Monitor the SOH of the battery from the 60th cycle of battery
B0005. That indicates the first 60 cycles are known as the
training set, and the rest are known as the prediction set.
We use a mechanism similar to sliding window to contin-
uously add the predicted new values into the window, and
predict the next SOH value through a series of obtained SOH

FIGURE 9. Comparison of results from different architectures.

values until all the test set data are predicted. The selection of
model parameters is mostly obtained by the control variable
method, which is also the most commonly used method for
neural network to determine the optimal parameters. That
means we can only change one parameter at a time to tune
the model. Taking RMSE,MAE, and training time as criteria,
a TCN model structure suitable for the data in this paper
was selected after many experiments. To make the results
more obvious, the basic parameters of the model used are
configured as follows:

Number of iterations: 1000
Mini batch size: 128;
Size of the kernel: 3× 1;
number of convolution kernels:256
Dilation factor: [1, 2, 4, 8, 16, 32, 64];
Optimizer: adam.
The comparison results are shown in Table 3. It is not diffi-

cult to see from the table that using skip connect will greatly
improve the training speed of deep networks, compared with
11s faster without skip connect. In addition, dropout used
by the model does not use the commonly used 0.5. For the
experiments on this dataset, 0.2 has better accuracy, which
means that 80% of the neurons are retained in each layer
of the network. In contrast, the prediction accuracy of the
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FIGURE 10. SOH monitoring of B0005. (a) Start at 30-th cycle. (b) Start at 60-th cycle. (c) Start at 90-th cycle.

FIGURE 11. SOH monitoring of B0006. (a) Start at 30-th cycle. (b) Start at 60-th cycle. (c) Start at 90-th cycle.

FIGURE 12. SOH monitoring of B0018. (a) Start at 30-th cycle. (b) Start at 60-th cycle. (c) Start at 90-th cycle.

TABLE 3. Comparison of model structure.

network without dropout is poor, and the model is overfit-
ting. There is no obvious speed increase in the dataset by
dilated convolutions, but expanding the receptive field allows
more information to be integrated at less cost. In partic-
ular, the battery capacity sequence we deal with is multi-
scale sequence, which can capture multi-scale information by
using dilated convolutions to better capture local regeneration
phenomena. As shown in Figure 9, the model that does not
use dilated convolution is not sensitive to local regeneration

phenomenon, and the prediction curve tends to be smooth,
resulting in low overall prediction accuracy. The table also
compares the global average pooling (GAP) used in many
CNN models [41]. GAP is mainly used to solve the problem
of overfitting caused by too many parameters in the fully con-
nected layer, and it performs well in many classification and
regression scenarios. For the capacity series, GAP can well
predict the overall degradation trend, but the performance of
local fluctuation prediction is worse than the fully connected
layer, so the model still uses the fully connected layer for
prediction.

B. VALIDATION OF SOH MONITORING PERFORMANCE
Effective monitoring of SOH means that the model has a
small error in predicting the next SOH value, thus laying
a foundation for RUL prediction. In addition, the earlier
SOH is effectively estimated, the better the battery can be
maintained in advance. Therefore, SOH monitoring is con-
ducted from the 30th cycle in order to be closer to the actual
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TABLE 4. SOH monitoring performance comparison.

usage. In addition, SOH monitoring results at different start-
ing points were analyzed to better verify the accuracy and
robustness of the model in SOH prediction. The prediction
capabilities of the TCNmodel for the three different batteries
under the 30th cycle, the 60th cycle, and the 90th cycle are
analyzed in Table 4 and compared with the current commonly
used methods. In order to accurately compare the perfor-
mance of the model, LSTM model, GRU model and CNN
model all have two hidden layers. During the prediction pro-
cess, the parameter structure of the model is not changed and
the optimal value is obtained through multiple experiments.

From Table 3, we can see that the model is not affected by
the predicted starting point. For deep networks, the prediction
accuracy will be higher when there is more training data. Fig-
ure 10, 11, and 12 are visualizations of battery cells B0005,
B0006, and B0018 under different models and at different

TABLE 5. Comparison of RUL prediction results for B0005 batteries.

starting points. Figure 10, 11, and 12 also show that the TCN
model better fits the overall degradation trend of the capacity
series than the currently usedmodels, and effectively captures
the local regeneration phenomena.

C. VALIDATION OF RUL PREDICTION PERFORMANCE
This section is mainly to verify the performance of the TCN
model in RUL prediction compared with other models in
the presence of offline data. Accurate prediction of RUL
is the key to ensure timely battery replacement and system
stability and safety. In this paper, EMD technology is used
to reduce the prediction error caused by local fluctuations.
The res of battery B0006 and B0018 after EMD denoising
are used as offline training data, and battery B0005 with 168
cycles is used as test data. Different starting points are set
and compared with different models to verify the accuracy of
the TCN model. In the actual prediction process, the trained
model is fine-tuned by combining some of the online data
already given in order to improve the prediction accuracy of
the model. The experimental results are the optimal values
obtained from multiple experiments. From Table 5, we can
find that the CNN model does not perform as well as the
LSTM model in terms of RUL prediction. As an improved
model of CNN, TCN model is not the best in terms of overall
prediction accuracy in the early stage, but it always has the
best effect in terms of RUL prediction. Moreover, the closer
the starting point of the prediction is to the failure point,
the more accurate the prediction result will be. In practical
application, the accurate prediction of RUL in the later period
is more important than the accurate prediction of RUL in
the earlier period. In particular, the prediction accuracy of
the TCN model for RUL in the 90th cycle can reach 0,
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FIGURE 13. RUL prediction of B0005. (a) Start at 30-th cycle. (b) Start at 60-th cycle. (c) Start at 90-th cycle.

TABLE 6. Comparison of RUL prediction results for B0006 batteries.

indicating the excellent performance of the TCN model in
RUL prediction. In Figure 13, we can also find that the TCN
model almost completely matches the degradation trend of
volume sequence at the 90-th cycle. The RUL prediction for
B0006 and B0018 is the same principle. We also present
the predicted results for the two types of batteries as shown
in figure 14 and figure 15. Table 6 and table 7 show the com-
parison of prediction accuracy. From the perspective of the
effective prediction of lithium batteries with three different
degradation trends, our model can realize the RUL prediction
of lithium batteries with high efficiency and stability.

D. VERIFY THE RELIABILITY OF THE MODEL
In this section, to verify the reliability of the model, experi-
mental analysis is conducted on battery cells with CS2 dis-
charge current of 0.5C and 1C, that is, the model is also
verified to have good prediction accuracy in the case of more
cycles. The starting point is selected as the middle position
so as to evaluate the prediction accuracy of the model more

TABLE 7. Comparison of RUL prediction results for B0018 batteries.

TABLE 8. SOH monitoring under different discharge current.

reasonably. The SOH and RUL of the battery cell are pre-
dicted from the 360th cycle. The monitoring results of SOH
are given in Table 8. From the perspective of RMSE and
MAE, themodel also achieves high prediction accuracy under
different working conditions. We can also find this point
from Figure 16. Combining online data to make a single-step
prediction model can capture local fluctuations while fitting
the overall trend.

The predicted results of RUL are given in Table 9. After
EMD de-noising, the data is taken as the input of the model,
and the data of two battery cells are taken as offline data
for training, while the other data is taken as the prediction.
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FIGURE 14. RUL prediction of B0006. (a) Start at 30-th cycle. (b) Start at 60-th cycle. (c) Start at 90-th cycle.

FIGURE 15. RUL prediction of B0018. (a) Start at 30-th cycle. (b) Start at 60-th cycle. (c) Start at 90-th cycle.

FIGURE 16. SOH monitoring under different working conditions.

TABLE 9. RUL prediction performance.

This paper only gives the prediction results of two kinds of
battery cells, because CS_37 is inconsistent with the dis-
charge conditions of the other two batteries. If there are
enough training data of different conditions, it can also be
predicted accurately. As can be seen from Figure 17, although
the offline training data is limited, the model can also be
predicted accurately after some online data are fine-tuned.

V. CONCLUSION
In recent years, the prognostic and health management
(PHM) of lithium-ion batteries has received increasing atten-
tion. SOH monitoring and RUL prediction is a key tech-
nology in PHM. Effective SOH monitoring is conducive to
prolonging battery life, while accurate RUL prediction is an

FIGURE 17. RUL prediction. (a) RUL prediction of CS2_34. (b) RUL
prediction of CS2_35.

essential means to ensure system security. Therefore, we need
to take measures to make effective predictions for both.

In this paper, we propose a TCN model suitable for SOH
monitoring and RUL prediction. Dilated convolution and
residual connection techniques that perform well in other
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fields are used to increase the model’s sensitivity to local
regeneration phenomenon. It solves the problem that the
overall prediction accuracy of the traditional network model
due to the local regeneration phenomenon is not high, and
other methods need to be combined to complicate the SOH
monitoring process. At the same time, this study aims at the
recent phenomenon that LSTM model and GRU model are
the main methods in SOH monitoring and RUL prediction
of lithium-ion batteries. The TCN model is used for the first
time to complete the prediction task of lithium batteries, and
the monitoring of SOH of lithium batteries and the prediction
ability of RUL of lithium batteries are verified by the TCN
model, thus providing a new improved route for the prediction
task of lithium-ion batteries.

Through a large number of experiments and comparisons
on two commonly used lithium battery dataset, we find
that the proposed model can well monitor SOH with online
data and accurately capture local regeneration phenomenon.
Compared with the problems of traditional networks that are
greatly affected by the starting point, on the NASA dataset,
the average RMSE accuracy of the TCN model is about
5% higher than that of the traditional network at different
starting points. For the RUL prediction task, in the case of
offline data, the offline data can be de-noised by EMD and
then combined with some online data to fine-tune the model
to achieve high-precision RUL prediction. Compared with
other models, the average RULError is nearly 8 cycles higher.
Therefore, compared with LSTM, GRU, and CNN models,
TCN model has the characteristics of less influence from
the starting point, higher prediction accuracy and stronger
robustness.
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