
Received March 3, 2020, accepted March 12, 2020, date of publication March 16, 2020, date of current version March 26, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2981196

Wingsuit Flying Search—A Novel Global
Optimization Algorithm
NERMIN COVIC , (Member, IEEE), AND BAKIR LACEVIC, (Member, IEEE)
Faculty of Electrical Engineering, University of Sarajevo, Sarajevo 71000, Bosnia and Herzegovina

Corresponding author: Nermin Covic (ncovic1@etf.unsa.ba)

ABSTRACT In this paper, a novel global optimization algorithm – Wingsuit Flying Search (WFS) is
introduced. It is inspired by the popular extreme sport – wingsuit flying. The algorithm mimics the intention
of a flier to land at the lowest possible point of the Earth surface within their range, i.e., a global minimum of
the search space. This is achieved by probing the search space at each iteration with a carefully picked
population of points. Iterative update of the population corresponds to the flier progressively getting a
sharper image of the surface, thus shifting the focus to lower regions. The algorithm is described in detail,
including the mathematical background and the pseudocode. It is validated using a variety of classical
and CEC 2020 benchmark functions under a number of search space dimensionalities. The validation
includes the comparison of WFS to several nature-inspired popular metaheuristic algorithms, including the
winners of CEC 2017 competition. The numerical results indicate that WFS algorithm provides considerable
performance improvements (mean solution values, standard deviation of solution values, runtime and
convergence rate) with respect to other methods. The main advantages of this algorithm are that it is
practically parameter-free, apart from the population size and maximal number of iterations. Moreover, it is
considerably ‘‘lean’’ and easy to implement.

INDEX TERMS Wingsuit flying, metaheuristic search, nature-inspired algorithms, global optimization.

I. INTRODUCTION
A. TYPICAL PROBLEMS OF FINDING A GLOBAL OPTIMUM
A nature has been a primary inspiration for many mod-
ern metaheuristic algorithms. For instance, Genetic Algo-
rithm was inspired by the process of natural selection
that belongs to the larger class of evolutionary algorithms
(EA) [34]. Another popular nature-inspired optimization
algorithm is Particle Swarm Optimization [6]. It is inspired
by the apparent swarm intelligence of bird flocks and fish
schools. Generally, nature-inspired metaheuristic algorithms
have been used in a wide range of optimization problems,
such as the traveling salesman problem, optimal control,
system identification, etc [5], [6], [8], [18], [29], [57]. The
power of almost all modern metaheuristics comes from the
fact that they imitate the best feature in nature.

Many global optimization metaheuristic algorithms,
such as Nelder-Mead’s algorithm (NMA) [40], Pattern-
Search (PS) [15], Simulated Annealing (SA) [21] and Tabu

The associate editor coordinating the review of this manuscript and

approving it for publication was Huaqing Li .

Search (TS) [12] are not always capable of finding global
optimum for challengingmultimodal test functions [36], [44].

It is desirable to acquire a global picture of search space,
which is usually constrained. Thus, the search is more likely
to follow the right direction. For instance, the optimization
of Rastrigin function would benefit should the search is more
oriented towards the center of the search space. On the other
hand, to optimize Holder Table, searching the limits of the
search space may seem a better idea.

Challenging global optimization problems have triggered
an explosion of nature-inspired search algorithms that usu-
ally rely on metaphor-based metaheuristics. Though the
metaphor paradigm has been criticized in the literature (see
e.g., [47]), several algorithms have turned out to be very
efficient in solving complex optimization problems, both in
terms of classical benchmarks (e.g., CEC 2020 [25]) and
real-world engineering scenarios. Instances of these algo-
rithms are: Genetic Algorithm (GA) [34], Simulated Anneal-
ing (SA) [21], Evolution Algorithms (EA) [39], [42], Par-
ticle Swarm Optimization (PSO) [6], Artificial Fish-Swarm
Algorithm (AFSA) [24], Termite Algorithm (TA) [27],
Ant Colony Optimization (ACO) [10] and its improved

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 53883

https://orcid.org/0000-0001-7625-3512
https://orcid.org/0000-0001-6310-8965

N. Covic, B. Lacevic: WFS—Novel Global Optimization Algorithm

versions [9] and [55], Artificial Bee Colony (ABC) [4],
Monkey Search (MS) [38], Cuckoo Search (CS) [60],
Firefly Algorithm (FF) [56], Gravitational Search Algo-
rithm (GSA) [43], Bat Algorithm (BA) [58], Flower
Pollination Algorithm (FPA) [59], Directed Bee Colony
Optimization Algorithm (DBCOA) [20], LSHADE [49],
UMOEA [11], Grey Wolf Optimizer (GWO) [33], Light-
ning Search Algorithm (LSA) [46], Moth-Flame Optimiza-
tion Algorithm (MFOA) [31], Artificial Algae Algorithm
(AAA) [50], Ant Lion Optimizer (ALO) [30], Ele-
phant Herding Optimization (EHO) [52], Whale Optimiza-
tion Algorithm (WOA) [32], Competitive Optimization
Algorithm (COOA) [45], Lion Optimization Algorithm
(LOA) [61], Crow Search Algorithm (CSA) [2], Thermal
Exchange Optimization (TEO) [19], Lévy flight trajectory-
based Whale Optimization Algorithm (LWOA) [26],
LSHADE-cnEpSin [3], LSHADE-SPACMA [35], EBOwith-
CMAR [22], Moth Search (MS) [51], Earthworm Opti-
mization Algorithm (EOA) [54], Butterfly Optimization
Algorithm (BOA) [1], Squirrel Search Algorithm (SSA) [16],
Harris Hawks Optimization (HHO) [14], Monarch Butterfly
Optimization (MBO) [53], etc.

B. CONTRIBUTION HIGHLIGHTS AND
PAPER ORGANIZATION
The main contributions of this paper are as follows:

• The formulation of Wingsuit Flying Search (WFS) – a
novel metaheuristic search algorithm is provided;

• WFS is practically parameter-free, apart from the pop-
ulation size and maximal number of iterations, which
represents the main advantage of this algorithm;

• WFS is considerably ‘‘lean’’ and easy to implement;
• WFS is able to rapidly converge to the global optimum
solution of the related objective function while keeping
the exploration of the search space;

• WFS is suitable for parallelized computation since it
can optimize different parts of the search space indepen-
dently;

• An extensive computational study, based on 30 classi-
cal and 10 CEC 2020 benchmark functions, indicates
promising features of WFS algorithm since it outper-
forms competing methods in most scenarios.

The remainder of the paper is organized as follows. First,
the motivation behind WFS is briefly outlined. Section II
brings a detailed description of the algorithm, including
complete mathematical background and the pseudocode.
Sections III and IV provide a theoretical and numerical
study, respectively, where WFS is compared to related
metaheuristic searchmethods. Finally, Section V brings some
concluding remarks.

C. MOTIVATION BEHIND WFS ALGORITHM
The basic idea is to gain a rough picture of a search space.
Even the rough one may provide a lot of useful informa-
tion. In that regard, this work is inspired by the popular

FIGURE 1. Display of a rough (a) and clear (b) picture of the Earth surface.

sport – wingsuit flying (Fig. 1). When a flier (algorithm)
starts flying (running), she/he sees a rough picture of Earth
surface, which is here treated as the search space. The flier’s
view toward different areas corresponds to a population of
points in the search space. It is assumed that the flier wants to
land at the lowest point (global minimum). Though the flier
cannot see where the minimum is, she/he can roughly see the
valleys. Therefore, large portions of terrain (e.g., mountains)
can be immediately eliminated, so the flier will not likely
return to them. A clear picture of the Earth is not avail-
able immediately, due to human eye imperfections, possible
clouds, fog and other disturbances (Fig. 1a).

After awhile, the flier approaches the valley and the Earth
picture becomes sharper (Fig. 1b). Controlling the flight is
ensured by auxiliary wings located between flier’s arms/legs
and body. Moreover, changing wings’ surface (spreading and
shrinking arms and legs), it is possible to control flying veloc-
ity thus affecting the exploitation-exploration ratio, which
will be discussed later (see Subsection II-B). As of now,
the flier is more likely to clearly see the regions of interest
and stay focused on them. A point at which the flier lands
is called terminating point, i.e., a solution computed by the
algorithm.

II. ALGORITHM DESCRIPTION
The algorithm is essentially a population-based search that
iteratively updates the set of candidate solution points. In the
sequel, we describe the proposed approach in detail. First,
we need to determine how initial set of points is generated.

A. GENERATING INITIAL POINTS
Let N ∗ be the number of points in a single iteration (i.e., pop-
ulation size) of the algorithm and let

N = N ∗ − 2 (1)

53884 VOLUME 8, 2020

N. Covic, B. Lacevic: WFS—Novel Global Optimization Algorithm

FIGURE 2. The layout of N2
0 initial points located in grid nodes (in the

first iteration) in 2D search space.

be the number of initial points in a box-constrained
n-dimensional search space defined as {x = [x1 x2 . . . xn]T ∈
Rn
: xmin � x � xmax}, in which the cost function f : Rn

7→

R needs to be minimized. Condition (1) is imposed since two
more points are added to the search space at the end of each
iteration, which will be discussed later (see subsection II-D).

In the first iteration (m = 1), each point xi, i ∈
{1, 2, . . . ,N }, may be located in a node in n-dimensional grid.
The number of nodes per dimension is

N0 =

⌈
n√N
⌉
, N ≥ 2. (2)

Clearly, if (N0 − 1)n < N < N n
0 than N n

0 − N random
chosen nodes will not contain any points, thus the grid will
be incomplete.

For instance, the case when n = 2 and N = N 2
0 (full

grid) is shown in Fig. 2. The point x(1) is located randomly
into the box constrained with xmin and xmin + 1x(1), where

1x(1) =
[
1x(1)1 1x(1)2 . . . 1x(1)n

]T
is referred to as initial

discretization step, which is defined as

1x(1) =
xmax − xmin

N0
. (3)

Other points are located according to x(1)1 in order to form a
grid (full or incomplete). Then, the cost function is evaluated
at each point and the minimum is selected. This is the end of
the first iteration.

To improve the uniformity of points covering the search
space, a low-discrepancy sequence can be used as an alterna-
tive [23], [41]. For this purpose, we use (scrambled) Halton
sequence [13]. Fig. 3 shows the layout ofN 2

0 points generated
by this sequence. Its low-discrepancy feature becomes more
obvious when N ≈ b(N n

0 + (N0 − 1)n)/2c, when the set of
points would form an incomplete grid.

Note that the step defined in (3) does not apply in generat-
ing points by Halton sequence, yet it will be used in the later
stages of the algorithm (see subsection II-C).

B. DETERMINING NEIGHBORHOOD SIZE
FOR EACH POINT
For m ≥ 2, the points from (m − 1)-st iteration are sorted
in ascending order w.r.t. their solution values. The first point

FIGURE 3. The layout of N2
0 initial points generated by Halton sequence

(in the first iteration) in 2D search space.

FIGURE 4. The neighborhood size for each point in m-th iteration.

is the ‘‘best’’ one, and it is assigned a neighborhood with
the largest number of points P(m)max . The second point will be
assigned a neighborhood with less points. The N (m)-th point
is assigned zero neighborhood points. This is shown in Fig. 4.
Note that N (1)

= 0.
In general, only the first N (m) points are assigned with

neighborhood points. Moreover, there will be
∑N (m)

i=1 P(m)(i)
‘‘new’’ points that are passed to the next iteration. This num-
ber is kept equal toN in order tomaintain the constant number
of cost function evaluations at each iteration. We assume the
linear dependence of the function P(m)(i) w.r.t. point rank i as

P(m)(i) =

⌈
P(m)max

(
1−

i− 1

N (m) − 1

)⌉
. (4)

Hence, the triangle area from Fig. 4 is equal N . Therefore,
it follows that

N (m)
=

⌈
2N

P(m)max

⌉
. (5)

Since P(m) ∈ N0, it may happen that
∑N (m)

i=1 P(m)(i) is not
exactly N . In that case, P(m)

(
N (m)

)
or P(m)

(
N (m)
− 1

)
are

modified to satisfy the imposed condition.
Parameter P(m)max represents the maximal number of neigh-

borhood points around x(m)i in m-th iteration. If their coor-
dinates are generated using arrangements with repetition
from the set

{
x(m)k,i −1x

(m)
k , x(m)k,i , x

(m)
k,i +1x

(m)
k

}
, k ∈

{1, 2, . . . , n}, then P(m)max = 3n − 1. We refer to this neighbor-
hood as grid neighborhood. For instance, if n = 20 then P(m)max
equals 3.49·109 points, which takes about 558GB ofmemory
(assuming that each coordinate takes 64 bites). For larger n,
P(m)max clearly becomes huge, which triggers memory issues.

VOLUME 8, 2020 53885

N. Covic, B. Lacevic: WFS—Novel Global Optimization Algorithm

FIGURE 5. α(m) versus m through M iterations for different values of the
flier’s velocity v .

Thus, we propose that P(m)max is computed as

P(m)max =

⌈
α(m)N

⌉
, (6)

where α(m) ∈ (0, 1) and is computed as

α(m) = 1− v−
m−1
M−1 , m ≥ 2, (7)

whereM is the number of the algorithm iterations and v > 0
is the algorithm parameter to which we refer to as flier’s
velocity. Fig. 5 shows how α(m) changes throughM iterations
for different values of v. Experiments suggest that the value
of v does not significantly affect the algorithm performance.
Therefore, it may be set to a default value, so the user does
not need to tune it (see section IV).

Equation (7) is proposed to encourage smaller P(m)max at
the beginning, which causes N (m) to be larger according
to (5). Moreover, all points are approximately equally treated,
because the function slope in Fig. 4 is small. It means that the
exploration of the search space is a priority. As m gets closer
to M , the slope in Fig. 4 becomes larger, which brings more
focus on better points. In other words, the exploitation gets
more attention.

C. GENERATING NEIGHBORHOOD POINTS
After assigning neighborhood size to each point, the ques-
tion is how to generate N new points. The flier’s ‘‘altitude’’
is decreasing through iterations rendering resolution of the
search space higher. The discretization step consequently gets
smaller as

1x(m) =
(
1− α(m)

)
1x(1), m ≥ 2. (8)

Thus, we refer to parameter α(m) as search sharpness in m-th
iteration.

Afterwards, N new points, i.e., neighborhood points
denoted yj

(
x(m)i

)
, j ∈

{
1, 2, . . . ,P(m)(i)

}
, are generated.

Fig. 6 shows an example scenario in 2D search space. Clearly,
blue points are neighborhood points, and white ones rep-
resents their possible locations. The point x(m)1 , having the
lowest value, determines the current solution x∗(m).

For each point x(m)i , a vector v(m)i = x(m)1 − x(m)i , oriented
towards the current solution, is created, to which we refer
to as neighborhood vector. It determines the direction of
generating neighborhood points. Each of its coordinates are

FIGURE 6. The layout of first N (m) points (in m-th iteration) and their grid
neighborhoods in 2D search space.

FIGURE 7. The layout of first N (m) points (in m-th iteration) and their
Halton neighborhoods in 2D search space.

generated using arrangements with repetition from the three
following sets:

Sk,1
(
x(m)i

)
=

{
x(m)k,i −1x

(m)
k , x(m)k,i

}
, if v(m)k,i < 0;

Sk,2
(
x(m)i

)
=

{
x(m)k,i , x

(m)
k,i +1x

(m)
k

}
, if v(m)k,i > 0;

Sk,3
(
x(m)i

)
= Sk,1

(
x(m)i

)
∪ Sk,2

(
x(m)i

)
, if v(m)k,i = 0. (9)

Thus, the maximal neighborhood size is 3λ ·2n−λ−1, where λ
is the number of vector v(m)i coordinates that are equal to zero.
If λ = 0, the neighborhood is strictly directed (e.g., around
x(m)
N (m)), and if not, it is non-strictly directed neighborhood

(e.g., around x(m)2). So, there are two options for choosing
neighborhood points:
• If P(m)(i) ≤ 3λ · 2n−λ − 1, then points are chosen
randomly from directed neighborhood (e.g., λ = 1 for
x(m)2);

• If 3λ · 2n−λ− 1 < P(m)(i) ≤ 3n− 1, then all points from
directed neighborhood and some remaining points from
non-directed neighborhood are chosen (e.g., λ = 0 for
x(m)
N (m)).

This means that directed neighborhood points have a priority.
It is important to stress that if some points ‘‘fall out’’ of the
search space (red points in Fig. 6), they are mirrored back
w.r.t. border of the search space (green points).

Neighborhood points may also be generated using Halton
sequence, as it is shown in Fig. 7. We refer to this neighbor-
hood as Halton neighborhood. It is obvious that, in general

53886 VOLUME 8, 2020

N. Covic, B. Lacevic: WFS—Novel Global Optimization Algorithm

FIGURE 8. The algorithm convergence towards the global minimum f (x∗) = 0.

case, points can be located anywhere into n-dimensional box
with dimensions of double discretization steps 21x(m).
All the logic described earlier for grid point sets applies for

Halton neighborhoods as well.
After generating all neighborhoods, the cost function is

evaluated at each of N new points and the minimum is
selected from N (m)

+ N points. Before the end of the m-th
iteration, two more points will be generated and added to the
population, which is explained in the sequel.

D. GENERATING CENTROID AND RANDOM POINT
In reality, at the beginning, the flier tends to be located above
the middle of the Earth surface of interest, since it is a priori
the best way to deal with unknown surrounding. It proves
beneficial to have a point which plays a role of the flier’s
current location. We refer to this point as centroid, and it is
computed as weighted average

z(m)1 =

∑N (m)
+N

i=1 W (m)(i) · γ
(
W (m)(i)

)∑N (m)+N
i=1 γ

(
W (m)(i)

) , (10)

where W (m) is the matrix1 containing all points, x(m)i and

yj
(
x(m)i

)
, represented as columns. Its dimensions are n ×(

N (m)
+ N

)
and W (m)(i) denotes its i-th column. Weighting

factor γ (·) is computed for point x as

γ (x) =

1−
f (x)− f ∗(m)

a(m) − f ∗(m)
, f (x) ≤ a(m);

0, f (x) > a(m).
(11)

where f ∗(m) represents a current solution value in m-th itera-
tion. The value atN (m)-th point is referred to as flier’s altitude
inm-th iteration, and is denoted a(m). Clearly, all points above
a(m) are ignored and only the first N (m) are analyzed, as it is
stated in subsection II-B. This resembles the real scenario,
where the flier is unable to see a ‘‘terrain’’ above them.

The above description is illustrated in Fig. 8, where the
algorithm convergence towards the global minimum f (x∗) =
0 is shown. Green line represents the algorithm curve con-
vergence (changing of f ∗(m)), black line is the flier’s altitude

1Actually, it is pattern matrix (see Sec. III).

curve (changing of a(m)), and red line represents the pro-
file of f (m)max through iterations. All values within the interval
(f ∗(m), a(m)) lay on gray line, and they are used to gener-
ate neighborhoods in the next iteration. The best value is
always preserved (e.g., f ∗(6) = f ∗(7)). Clearly, the condition
a(m−1) < a(m) is always satisfied, which resembles the real
scenario, where the flier’s altitude decreases in time.

Furthermore, to encourage the algorithm exploration
capacities, a random point z(m)2 is added to the search space.
This point is chosen randomly from theminimal hypervolume
axis-aligned bounding box which covers all the points from
m-th iteration.

Afterwards, the cost function is evaluated at points z(m)1
and z(m)2 , and f ∗(m) is updated if necessary, which ends the
m-th iteration. Now, imposing (1) becomes clear.

The algorithm runs until some stopping condition is sat-
isfied. Typically, it is a maximal number of iterations M ,
or reaching a minimal discretization step 1xmin, e.g.,
||1x(m)||∞ ≤ 1xmin.
It should be noted that centroid and random point are

also considered in the first iteration, when a(1) represents the
maximal evaluated value.

E. COMPARISON BETWEEN GRID AND HALTON POINTS
In order to get a better look on a difference between generat-
ing points by grid (grid points) versus Halton sequence (Hal-
ton points), Fig. 9 shows their layout in the search space after
m/M ∈ {0.1, 0.2, 0.5} when optimizing Rastrigin function
for n = 2. Green point represents the global optimum. Red
points are centroid and random point, and blue ones are other
points. After 10 % of WFS runtime (m/M = 0.1), it is easy
to spot that Halton points are more uniformly distributed in
the search space than grid points. Also, this feature is more
evident when the grid contains more ‘‘holes’’ (in incomplete
grid), which is inevitable in high-dimensional search spaces.

After 20 % of WFS runtime (m/M = 0.2), Halton
points clearly provide better exploration, while grid points
becomes aligned unpredictably, which leaves some parts
of the search space, even those close to global optimum
completely unexplored. On the other hand, Halton points

VOLUME 8, 2020 53887

N. Covic, B. Lacevic: WFS—Novel Global Optimization Algorithm

FIGURE 9. Layout of grid points (three top figures) versus Halton points (three bottom figures) in the search space after m/M ∈ {0.1, 0.2, 0.5} when
optimizing Rastrigin function for n = 2.

seem to enable better balance between exploration and
exploitation. This is somewhat indicated after 50 % of WFS
runtime (m/M = 0.5).

Similar comparison is performed for some other classical
bechmark functions [17], and Halton points consistently pro-
vide better results.

F. PSEUDOCODE OF WFS ALGORITHM
Pseudocode of WFS algorithm is given in Algorithm 1. The
pseudocode of the function CRP is given in Algorithm 2.
Used abbreviations and their meanings are:

• GenerateIP − GenerateInitialPoints,
• CRP − CentroidAndRandomPoint ,
• CheckSP − CheckStoppingCondition,
• GetNS − GetNeighborhoodSizes,
• GenerateANP − GenerateAllNeighborhoodPoints,
• GenerateCRP − GenerateCentroidAndRandomPoint .

Some of the variables used in Algorithm 1 are defined as:

• X (m)
=

[
x(m)1 x(m)2 . . . x(m)

N (m)

]
,

• Y (m)
=

[
y1
(
x(m)1

)
. . . y1

(
x(m)
N (m)

)
. . .

. . . yP(m)(1)
(
x(m)1

)
. . . yP(m)(N (m))

(
x(m)
N (m)

)]
,

• Z(m) =
[
z(m)1 z(m)2

]
.

Note that the function f (X) returns cost function values at
each point from matrix X (e.g., f

(
X (m))

=

[
f
(
x(m)1

)
. . . f

(
x(m)
N (m)

)]T
). Quantity X(i) denotes i-th column (point)

from matrix X . The term [X, Y] denotes horizontal concate-
nation of matrices X and Y .

Having in mind that the cost function evaluation (Line 7
and 20 in Algorithm 1, and Line 3 in Algorithm 2) is compu-
tationally the most expensive procedure within WFS, clearly
the complexity of WFS is O(M · N ∗), where M · N ∗ stands
for total number of evaluations (M is the number of algorithm
iterations and N ∗ is the population size). In case the number
of cost function evaluations does not implicitly account for
the dimensionality n, the complexity is O(M · N ∗ · n).

III. A CONCEPTUAL COMPARISON BETWEEN WFS AND
SIMILAR ALGORITHMS
Many metaheuristic algorithms use pattern matrix [7], which
includes considered solutions in a single algorithm iteration.
The best solution in the matrix is favorable to be improved
rapidly through iterations. The measure of that improve-
ment is referred to as convergence rate. In PSO algorithm,
the pattern matrix is referred to as swarm and each pattern
corresponds to an artificial particle. Similarly, in ABC algo-
rithm each pattern corresponds to a nectar source. In CS
algorithm, a pattern is considered as an artificial nest. In GA,

53888 VOLUME 8, 2020

N. Covic, B. Lacevic: WFS—Novel Global Optimization Algorithm

Algorithm 1Wingsuit Flying Search
Input: f , n, [xmin, xmax], N ∗, M , 1xmin
Output: x∗(m), f ∗(m)

1 m← 1
2 v← rand(10, 100) // random real

number from 10 to 100
3 N ← N ∗ − 2
4 N0← ceil(N^(1/n)) // Eq.2
5 1x(1) = (xmax − xmin)/N0 // Eq.3
6 X (1)

← GenerateIP
(
N , N0, 1x(1)

)
// Subsec.II-A, Fig.2 or Fig.3

7 f (1)← f
(
X (1))

8 a(1)← max
(
f (1)

)
9

(
X (m), f (m), x∗(m), f ∗(m)

)
←

CRP
(
X (1), f (1), a(1)

)
10 SC ← CheckSC

(
1x(1), 1xmin, m, M

)
11 while SC == false do
12 m← m+ 1
13 α(m)← 1− v^(−(m− 1)/(M − 1))

// Eq.7

14 P(m)max = ceil
(
α(m) ∗ N

)
// Eq.6

15 N (m)
= ceil

(
2 ∗ N/P(m)max

)
// Eq.5

16
(
X (m), f (m)

)
← Sort

(
X (m), f (m), N (m)

)
// Subsec.II-B, Fig.4

17 P(m)← GetNS
(
P(m)max , N (m)

)
// Eq.4

18 1x(m) =
(
1− α(m)

)
∗1x(1) // Eq.8

19 Y (m)
← GenerateANP

(
X (m), P(m), 1x(m)

)
// Subsec.II-C, Fig.6 or Fig.7

20 f (m)temp← f
(
Y (m))

21 X (m)
←
[
X (m), Y (m)]

22 f (m)←
[(
f (m)

)T
,
(
f (m)temp

)T]T
23 a(m)← f

(
X (m) (N (m)

))
// Subsec.II-D

24
(
X (m), f (m), x∗(m), f ∗(m)

)
←

CRP
(
X (m), f (m), a(m)

)
25 SC ← CheckSC

(
1x(m), 1xmin, m, M

)
26 end

each pattern corresponds to an artificial chromosome and the
pattern matrix represents a population. Many metaheuristic
algorithms somehow use the basic genetic rules (i.e., muta-
tion, crossover, selection, and adaptation) while improving
the pattern matrix. However, its attribute variety decreases
through iterations. The main question is how to generate
new patterns or attributes to the pattern matrix to maintain
diversity [7].

In WFS algorithm, the pattern matrix W (m) is referred to
as all points that flier sees in a single iteration (all points
from the gray line in Fig. 8). WFS does not use mutation or
crossover directly, but it develops new solution by generat-
ing corresponding neighborhoods around potential solutions

Algorithm 2 Function CRP

Input: X (m), f (m), a(m)

Output: X (m), f (m), x∗(m), f ∗(m)

1
(
x∗(m), f ∗(m)

)
← min

(
f (m)

)
2 Z(m)← GenerateCRP

(
X (m), f (m), f ∗(m), a(m)

)
// Subsec.II-D

3 f (m)CRP← f
(
Z(m)

)
4 X (m)

←
[
X (m), Z(m)

]
5 f (m)←

[(
f (m)

)T
,
(
f (m)CRP

)T]T
6

(
x∗(m), f ∗(m)

)
← UpdateMin

(
Z(m), f (m)CRP, f

∗(m)
)

(see Subsection II-C). In order to maintain diversity of points,
the combination of Halton sequence and grid logic is used
(see Subsection II-A). Selection is usedwhen bestN (m) points
are selected for next iteration (Equation (5)). Adaptation is
used when adapting the discretization step (Equation (8)).
Beside pseudo-randomly located points in specified neigh-
borhood, there are random point and centroid (see Sub-
section II-D), added at each iteration, which contribute to
maintaining diversity of the pattern matrix.

The general random-walk based system-equation of meta-
heuristic algorithms is given by

v← Xi + sδX , (12)

where δX (∈ Rn) denotes the step-size and Xi (∈ Rn) sub-
tends to a random solution of the related objective function.
The scaling factor s (∈ R) is selected for δx values [28].
To develop the Xi pattern, the decision rule

f (v) < f (Xi)→ Xi := v (13)

is used where f is the objective function. Here, Xi =
[x1 x2 · · · xn]T vector shows the i-th pattern of the pattern
matrix P = [X1 X2 · · · Xm], which includes n-dimensional
m random solutions [48]. The metaheuristic algorithms differ
radically in terms of the methods they use to determine s and
δx values [7].
In WFS, clearly, δX = 1x(1) and s = (1−α(m)) according

to (8). Equation (12) is always used when generating neigh-
borhood around each Xi (= x(m)i). Therefore, WFS is suitable
for parallelized computation since it can optimize different
parts of the search space independently, which differs it from
most concurrent algorithms. One more advantage that should
be highlighted, is that WFS is able to rapidly converge to
the global optimum solution of the related objective func-
tion. That convergence is, theoretically, exponential due to
the exponential dependence in (7). Thus, combining ‘‘par-
allelized computation’’ and rapidly convergence helps this
algorithm to make a good balance between exploration and
exploitation of the search space. The mentioned balance turns
out to be the inherent feature of the algorithm due to the fact
that WFS is essentially parameter-free. Experimental results
in the following section will confirm this claim.

VOLUME 8, 2020 53889

N. Covic, B. Lacevic: WFS—Novel Global Optimization Algorithm

IV. COMPARISON BASED ON EXPERIMENTAL RESULTS
In this subsection, WFS will be compared with 11 sim-
ilar classical global optimization algorithms, such as:
Genetic Algorithm (GA) [34], Particle Swarm Optimiza-
tion (PSO) [6], Bat Algorithm (BA) [58], Grey Wolf
Optimizer (GWO) [33], Butterfly Optimization Algorithm
(BOA) [1], Whale Optimization Algorithm (WOA) [32],
Moth Flame Optimization (MFO) [31], Harris Hawks Opti-
mization (HHO) [14], Monarch Butterfly Optimization
(MBO) [53], Moth Search (MS) [51], Elephant Herding
Optimization (EHO) [52], LSHADE-cnEpSin (later denoted
as A1) [3], LSHADE-SPACMA (later denoted as A2) [35]
and EBOwithCMAR (later denoted as A3) [22]. It is worth
pointing out that last three algorithms performed the best at
the recent competition based on CEC 2017 benchmark for
global optimization [37]. The choice of algorithms included
in the computational study is mainly driven by the availability
of code, whether the code was accessible online, or was it
provided to us upon request by the courtesy of authors. If the
code was not available, we would abstain from implementing
the corresponding algorithm ourselves. We maintain that,
by taking this approach, we avoid the risk of non-optimal
implementation and hence unfair comparison. On the other
hand, a limited set of algorithms was taken into account due
to space constraints.

Before comparison, we should determine the default value
for flier’s velocity v. After testingWFS on classical functions
for a wide range of v (even up to 16000), it turned out that the
best results are obtained for v ∈ (10, 100). Once we constrain
the value of v to belong to the interval (10, 100), it turns out
that the algorithm becomes rather insensitive to it, at least for
majority of test functions. Moreover, v may be set randomly
within that interval (see Algorithm 1, Line 2). Also, better
results are obtained when using Halton versus grid points,
as it is stated in Subsection II-E, so Halton points are used
as default.

For the experimental evaluation of selected algorithms,
recommendations from CEC 2020 [25] are used. The under-
lying assumptions ensure conditions for efficient and fair
comparison of competing algorithms. The most relevant pro-
visions are the following:

• Default parameters are used;
• Total independent runs2 for each test function is 30;
• Total number of cost function evaluations is 1000 ·n ·M ,
whereM = 10 is the number of iterations;

• We used 30 well-known classic benchmark func-
tions [17] and 10 modern numerical optimization prob-
lems considered from CEC 2020 special session and
competition on single objective bound constrained
numerical optimization [25]. Each test function is
detrended in order to impose that the real solution value

2It should be noted that MBO, EHO and MS were tested only 10 times,
due to its long computational time (see Tab. 8), so obtained results for them
may not be very reliable.

is always f (x∗) = 0. Thus, it is convenient to present all
results using logarithmic scale;

• Each solution value less than 10−8 is treated as zero;
• Several performance indicators for solution values are
used: best, worst, mean and standard deviation (Std).
The algorithm mean runtime is also considered;

• Testing3 is performed using MATLAB R2018a at PC
with the processor Intel(R) Core(TM) i7-8550U CPU@
1.80 GHz 1.99 GHz and 8.00 GB DDR4 RAM.

In the sequel, the test of reliability, efficiency and valida-
tion of the novel algorithm is provided by using a chosen
set of common standard benchmarks test functions from the
literature [17]. The number of test functions in most papers
varies from a few to about two dozens. Here, we chose the test
suite to be large enough to include a wide variety of problems,
such as unimodal, multimodal, separable, non-separable
and multi-dimensional problems. Unimodality confirms the
exploitation capability of proposed algorithm, while multi-
modality checks the exploration capabilities. Also, experi-
mental study on themodern numerical optimization problems
considered from CEC 2020 is conducted. These benchmark
functions set the bar higher for the optimization algorithms
by the fact that the functions are shifted, rotated, expanded,
and combined variants of the most complicated mathematical
optimization problems.

All results are displayed using tables and boxplots. The five
best algorithms in each row of a table are marked green, while
the five worst ones are marked red, which makes easier to
compare results visually.When boxplot for some algorithm is
not shown, it is because all function values are less than 10−8,
which are treated as zero. Also, logarithmic scale is used
to get a better view on small and huge values at the same
plot. However, this scale looks confusing when we want to
compare algorithms w.r.t. their standard deviation, since the
distance between 10k and 10k+1 looks the same as between
10−(k+1) and 10−k , k ∈ N0.

A. UNIMODAL AND SEPARABLE
BENCHMARK FUNCTIONS
This test evaluates the effectiveness and accuracy of WFS
while solving benchmark functions with unimodal and inher-
ently separable characteristics. The results obtained from
each algorithm are showed in Tab. 1, while Fig. 10 pro-
vides corresponding boxplots. Clearly, BOA, HHO, MS, A1,
A3 and WFS show best performance. For example, they
provide all values less than 10−8 for Quartic function. Con-
vergence rate comparison in Fig. 11 reveals that WFS finds
the best solution among the other algorithms even in the first
iteration.We assume the main reason for this is centroid point
which lies near the global optimum in the first iteration, which
is, for Sphere, Sum Squares and Quartic function, in the
middle of the search space. However, WFS did not find the
solution for Step function immediately, yet it converged to it

3All source-codes are available online at https://github.com/ncovic1/
Wingsuit-Flying-Search.git

53890 VOLUME 8, 2020

N. Covic, B. Lacevic: WFS—Novel Global Optimization Algorithm

TABLE 1. Comparative results for unimodal and separable classical benchmark functions.

FIGURE 10. Boxplots for unimodal and separable classical benchmark functions.

FIGURE 11. Convergence rate comparison for unimodal and separable classical benchmark functions.

very fast. In this case, centroid is not very helpful, but it is not
indispensable.

B. UNIMODAL AND NON-SEPARABLE
BENCHMARK FUNCTIONS
This test evaluates the performance and consistency of WFS
while solving the unimodal but non-separable functions. The
results obtained from each algorithm are showed in Tab. 2,
while Fig. 12 provides corresponding boxplots. GWO, HHO,
MS, A2, A3 and WFS show very good performance, while
BOA, WOA and EHO are little bit worse. Convergence
rate comparison in Fig. 13 shows that WFS converges very
fast for functions containing non-centered global minimum
(e.g., Beale, Easom, Collvile function).

C. MULTIMODAL AND SEPARABLE
BENCHMARK FUNCTIONS
The purpose of this test is to check the exploration capa-
bility of proposed WFS while solving the multimodal and

separable functions. The results obtained from each algorithm
are showed in Tab. 3, while Fig. 14 provides corresponding
boxplots. Again, GWO, WOA, HHO, A2, A3 and WFS have
very good performance, but GA is the best for Michalewicz
5 and Michalewicz 10 function, and HHO and MS for Rastri-
gin function. Fig. 15 reveals that GA converges the fastest
for Michalewicz 5 function, HHO for Rastrigin function,
but A3 and WFS for Booth, Holder Table and Michalewicz
2 function. It should be noted that sign ‘‘/’’ in table denotes
that algorithm did not find feasible solution within the speci-
fied bounds.

D. MULTIMODAL AND NON-SEPARABLE
BENCHMARK FUNCTIONS
This part of validation study also checks the exploration
capability of proposed WFS while solving the multimodal as
well as non-separable functions. The results obtained from
each algorithm are showed in Tab. 4, while Fig. 16 provides
corresponding boxplots. Unequivocally, HHO, A2, A3 and

VOLUME 8, 2020 53891

N. Covic, B. Lacevic: WFS—Novel Global Optimization Algorithm

TABLE 2. Comparative results for unimodal and non-separable classical benchmark functions.

FIGURE 12. Boxplots for unimodal and non-separable classical benchmark functions.

WFS show the best performance for most functions. Nev-
ertheless, GWO, WOA and MS show good performance as
well.Moreover,WFS indicates very small standard deviation,
which increases reliability of this algorithm. Its fast and early
convergence (Fig. 17), especially for Schaffer 2 and 4 func-
tions, Six Hump Camel Back and Shubert function, can be
seen.

E. CEC 2020 BENCHMARK FUNCTIONS
This test serves to evaluate the effectiveness and robustness
of the novel algorithm. Therefore, most intensely investi-
gated benchmark functions used in CEC 2020 are considered
for this purpose. They are designed with special features,
which makes very hard to find the global optimum using any
algorithm. Congress on Evolutionary Computation (CEC)
represents a special session and competition on single and

multi-objective real-parameter numerical optimization prob-
lems [25]. In this experimentation, all CEC 2020 functions
are considered. The results obtained from each algorithm
are showed in Tab. 5, while Fig. 18 provides corresponding
boxplots. Clearly, GA, GWO, A1, A2, A3 and WFS provide
results better than other algorithms. Convergence rate com-
parison is provided by Fig. 19. Again, mentioned algorithms
provide the best convergence. Here, the results are a little bit
worse to HHO, MBO and MS, than they were for classical
functions.

F. SUMMARY OF RESULTS AND FINAL RANKING
OF THE ALGORITHMS
Experiments on unimodal test functions from
Subsections IV-A, IV-B and IV-E show that WFS has very
good exploitation capabilities compared to the other related

53892 VOLUME 8, 2020

N. Covic, B. Lacevic: WFS—Novel Global Optimization Algorithm

FIGURE 13. Convergence rate comparison for unimodal and non-separable classical benchmark functions.

TABLE 3. Comparative results for multimodal and separable classical benchmark functions.

algorithms. This is likely due to discretization step get-
ting smaller through iterations. Thus, the current solution
becomes more and more accurate.

Experiments on multimodal test functions from Subsec-
tions IV-C, IV-D and IV-E show that WFS has very good
exploration capabilities compared to other related methods.
We attribute this to the uniformity of initial population and
properly controlled neighborhood sizes for each point. Thus,
at the beginning, more solutions are being considered, which
ensures the search to be decentralized.

In spite of discretization, uniformity of initial popula-
tion and properly controlled neighborhood sizes, centroid
of population represents another crucial mechanism (see
Subsection II-D). Indeed, convergence plots indicate the

occurrence of the situation when the centroid is positioned
near global minimum (e.g., Rastrigin function in Fig. 15)
in the first iteration steps. Usually, this occurs when global
minimum is located more in the search space interior (global
minimum is centered). Moreover, it is shown that even if
the global minimum is not centered (e.g., Step function
in Fig. 11), the algorithm successfully converges to it, proving
that the centroid is not indispensable, but it is useful.

Final ranking of tested algorithms is performed by using
obtained results from Tables 1 to 5. Four solution properties
are analyzed separately: best, worst, mean and standard devi-
ation. In each category, all algorithms are sorted in ascending
order for each test function. Then, these rankings are summed
up separately. It should be noted that, if two algorithms give

VOLUME 8, 2020 53893

N. Covic, B. Lacevic: WFS—Novel Global Optimization Algorithm

FIGURE 14. Boxplots for multimodal and separable classical benchmark functions.

FIGURE 15. Convergence rate comparison for multimodal and separable classical benchmark functions.

the same mean value (e.g., zero), they both get the same
ranking (1.5, not 1 nor 2). Clearly, the lower sum implies the
better ranking of the algorithm.

The final ranking results for classical benchmark functions
are given in Tab. 6, and for CEC 2020 benchmark functions
in Tab. 7. In total, WFS clearly provides considerable perfor-
mance improvements according to all four categories, and for
both classical and CEC 2020 benchmark functions. Not sur-
prisingly, HHO,MS, A2 and A3 show excellent performance,

while PSO, BA, BOA, MFO and MBO do not appear to be
very reliable, at least for the used implementation. Clearly,
A3 is the winner in each category, whileWFS took 3rd, 5th, 4th

and 5th place w.r.t. best, worst, mean and standard deviation
values, respectively, for classical benchmark functions. Final
ranking for CEC 2020 benchmark functions reveals thatWFS
took 2nd, 6th, 3rd and 3rd place w.r.t. best, worst, mean and
standard deviation values, respectively. It is worth to notice
that WFS is the only algorithm, beside A2 and A3, which is

53894 VOLUME 8, 2020

N. Covic, B. Lacevic: WFS—Novel Global Optimization Algorithm

TABLE 4. Comparative results for multimodal and non-separable classical benchmark functions.

FIGURE 16. Boxplots for multimodal and non-separable classical benchmark functions.

ranked in the top w.r.t. both, classical and CEC 2020 bench-
mark functions.

As for the algorithm runtimes, Tab. 8 shows the mean
runtime in seconds for 30 experiments with Rastrigin function

VOLUME 8, 2020 53895

N. Covic, B. Lacevic: WFS—Novel Global Optimization Algorithm

FIGURE 17. Convergence rate comparison for multimodal and non-separable classical benchmark functions.

TABLE 5. Comparative results for CEC 2020 benchmark functions.

for n = 30. Clearly, GWO, MFO and WFS are the fastest
algorithms, while MBO, MS and EHO are the slowest ones.

In the context of the trade-off between performance and
speed, it is interesting to note that WFS is faster than A2 and

53896 VOLUME 8, 2020

N. Covic, B. Lacevic: WFS—Novel Global Optimization Algorithm

FIGURE 18. Boxplots for CEC 2020 benchmark functions.

TABLE 6. Final ranking for classical benchmark functions.

TABLE 7. Final ranking for CEC 2020 benchmark functions.

A3 more than an order of magnitude. We attribute this
to the structural simplicity of WFS. Otherwise, the ques-
tion about fair comparison of WFS versus A1, A2 and
A3 arises due to the fact that they represent improved ver-
sions (e.g., A1 and A2 (LSHADE variants) are improved
versions of DE (Differential Evolution) algorithm, and A3
(EBOwithCMAR) is improved version od BOA). Moreover,
WFS is essentially very simple and ‘‘lean’’ algorithm com-
pared to some competing algorithms equipped with ‘‘heavy
artillery’’, which is clearly visible from both runtimes and
pseudocode.

G. LIMITATIONS OF WFS ALGORITHM
Generally, the main limitation of WFS algorithm is the lack
of guarantee that the computed solution is an optimal one
(or even a near optimal), which is the common issue for a
wide variety of metaheuristic algorithms. On the other hand,
some limitations related to specific implementation of the
presented WFS algorithm are as follows:
• The current implementation of WFS supports only
box-constrained search spaces. On the other hand,
the algorithm is adaptable to treat other constraints,
which is the topic of ongoing research.

VOLUME 8, 2020 53897

N. Covic, B. Lacevic: WFS—Novel Global Optimization Algorithm

FIGURE 19. Convergence rate comparison for CEC 2020 benchmark functions.

TABLE 8. The mean runtime in seconds for 30 experiments with Rastrigin function for n = 30.

• The initial version of WFS algorithm used grid points
as candidates for population members. Further exper-
imentation has indicated than Halton points pro-
vide better results in general (see Subsection II-E).
It remains an open question whether another type
of low-discrepancy sequence would provide further
performance improvements of the algorithm. How-
ever, regardless of the approach (grid, Halton points
or any other low-discrepancy sequence), the prob-
lem that some parts of the search space are left
uncovered remains. This problem becomes even more
emphasized when dimensionality of the search space
increases.

• Experiments have shown that the best results (on aver-
age) are achieved when flier’s velocity v is in the range
(10, 100) for the most of classical functions. However,
there are some test functions for which WFS performs

better when v is greater than 100. This calls for the idea
to enable online adaptation of parameter v during the
algorithm run. This surely remains an open question for
future research.

• In some cases, the convergence rate of WFS is con-
siderably slow. This phenomenon is notable in scenar-
ios when the initial population yields solution which
is relatively close to optimal one. When this occurs,
in order to have the further advancement to the optimal
solution, it is necessary to ‘‘wait’’ until the discretization
step becomes small enough. Unfortunately, this usu-
ally implies many more iterations. For instance, this
occurs for the following functions: Squares and Sum
Squares function in Fig. 11, Schwefel 2.22, Schwefel
1.2 and Dixon-Price function in Fig. 13, Rastrigin func-
tion in Fig. 15, and Schaffer 6, Rosenbrock, Griewank
and Ackley function in Fig. 17.

53898 VOLUME 8, 2020

N. Covic, B. Lacevic: WFS—Novel Global Optimization Algorithm

V. CONCLUSION AND FUTURE WORK
This paper presented the novel metaheuristic algorithm –
Wingsuit Flying Search. Its mathematical model was
described in detail along with the pseudocode. Halton
sequence was proposed to be the default approach of generat-
ing points, though it would be interesting to establish should
other low-discrepancy sequences provide better results.

Practically, WFS does not require any parameters, beside
setting the population size and maximal number of iterations,
which makes it very easy to use. Moreover, its structural
simplicity render it very easy for implementation. It was
compared to a number of related optimization algorithms.
The test suite was chosen to be large enough to include a
wide variety of problems, such as unimodal, multimodal,
separable, non-separable and multi-dimensional problems.
In total, 30 classical and 10 CEC 2020 benchmark func-
tions were used. WFS and HHO have shown the best per-
formance, excluding A2 and A3, w.r.t. best and the worst
value, mean solution values, and the standard deviation
of the solution values. Convergence rate tests showed that
WFS is able to rapidly converge to the global optimum
while keeping the exploration of the search space. It is con-
firmed that WFS has promising capabilities of balancing
between exploitation and exploration of the search space.
As for average runtimes, WFS has the best performance as
well, though this feature may be implementation-dependent.
Given WFS structural complexity, and particularly the fact
that it is essentially paremater-free, this result is very posi-
tive, since WFS clearly successfully competes with related
algorithms.

Future work will include a broader numerical study includ-
ing both engineering applications, and wider range of test
functions and search algorithms.Moreover, parallelized com-
putation of WFS, treating other types of constraints, and
online adaptation of parameter v should be examined.

REFERENCES
[1] S. Arora and S. Singh, ‘‘Butterfly optimization algorithm: A novel

approach for global optimization,’’ Soft Comput., vol. 23, no. 3,
pp. 715–734, Feb. 2019.

[2] A. Askarzadeh, ‘‘A novel metaheuristic method for solving constrained
engineering optimization problems: Crow search algorithm,’’ Comput.
Struct., vol. 169, pp. 1–12, Jun. 2016.

[3] N. H. Awad, M. Z. Ali, and P. N. Suganthan, ‘‘Ensemble sinusoidal
differential covariance matrix adaptation with Euclidean neighborhood
for solving CEC2017 benchmark problems,’’ in Proc. IEEE Congr. Evol.
Comput. (CEC), Jun. 2017, pp. 372–379.

[4] B. Basturk, ‘‘An artificial bee colony (ABC) algorithm for numeric func-
tion optimization,’’ in Proc. IEEE Swarm Intell. Symp., Indianapolis, IN,
USA, 2006, pp. 397–414.

[5] C. Blum and A. Roli, ‘‘Metaheuristics in combinatorial optimization:
Overview and conceptual comparison,’’ ACMComput. Surv., vol. 35, no. 3,
pp. 268–308, Sep. 2003.

[6] E. Bonabeau, D. D. R. D. F. Marco, M. Dorigo, G. Théraulaz, and G. Ther-
aulaz, Swarm Intelligence: From Natural to Artificial Systems. London,
U.K.: Oxford Univ. Press, 1999, no. 1.

[7] P. Civicioglu and E. Besdok, ‘‘A conceptual comparison of the cuckoo-
search, particle swarm optimization, differential evolution and artificial
bee colony algorithms,’’ Artif. Intell. Rev., vol. 39, no. 4, pp. 315–346,
Apr. 2013.

[8] K. Deb, Optimization for Engineering Design: Algorithms and Examples.
New Delhi, India; PHI Learning Pvt., 2012.

[9] W. Deng, J. Xu, and H. Zhao, ‘‘An improved ant colony optimization algo-
rithm based on hybrid strategies for scheduling problem,’’ IEEE Access,
vol. 7, pp. 20281–20292, 2019.

[10] M. Dorigo, L. M. Gambardella, M. Birattari, A. Martinoli, R. Poli, and
T. Stützle, ‘‘Ant colony optimization and swarm intelligence,’’ in Proc. 5th
Int. Workshop, vol. 4150. Brussels, Belgium: Springer, Sep. 2006.

[11] S. M. Elsayed, R. A. Sarker, D. L. Essam, and N. M. Hamza, ‘‘Test-
ing united multi-operator evolutionary algorithms on the CEC2014 real-
parameter numerical optimization,’’ in Proc. IEEE Congr. Evol. Comput.
(CEC), Jul. 2014, pp. 1650–1657.

[12] F. Glover, ‘‘Future paths for integer programming and links to artificial
intelligence,’’ Comput. Oper. Res., vol. 13, no. 5, pp. 533–549, Jan. 1986.

[13] J. H. Halton, ‘‘Algorithm 247: Radical-inverse quasi-random point
sequence,’’ Commun. ACM, vol. 7, no. 12, pp. 701–702, Dec. 1964.

[14] A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, and H. Chen,
‘‘Harris hawks optimization: Algorithm and applications,’’ Future Gener.
Comput. Syst., vol. 97, pp. 849–872, Aug. 2019.

[15] R. Hooke and T. A. Jeeves, ‘‘‘Direct search’solution of numerical and
statistical problems,’’ J. ACM, vol. 8, no. 2, pp. 212–229, 1961.

[16] M. Jain, V. Singh, and A. Rani, ‘‘A novel nature-inspired algorithm for
optimization: Squirrel search algorithm,’’ Swarm Evol. Comput., vol. 44,
pp. 148–175, Feb. 2019.

[17] M. Jamil and X.-S. Yang, ‘‘A literature survey of benchmark functions for
global optimization problems,’’ 2013, arXiv:1308.4008. [Online]. Avail-
able: http://arxiv.org/abs/1308.4008

[18] T. Johnson and P. Husbands, ‘‘System identification using genetic algo-
rithms,’’ in Proc. Int. Conf. Parallel Problem Solving Nature. Berlin,
Germany: Springer, 1990, pp. 85–89.

[19] A. Kaveh and A. Dadras, ‘‘A novel meta-heuristic optimization algorithm:
Thermal exchange optimization,’’ Adv. Eng. Softw., vol. 110, pp. 69–84,
Aug. 2017.

[20] R. Kumar, ‘‘Directed bee colony optimization algorithm,’’ Swarm Evol.
Comput., vol. 17, pp. 60–73, Aug. 2014.

[21] S. Kirkpatrick, C. D. Gelatt, andM. P. Vecchi, ‘‘Optimization by simulated
annealing,’’ Science, vol. 220, no. 4598, pp. 671–680, 1983.

[22] A. Kumar, R. K. Misra, and D. Singh, ‘‘Improving the local search
capability of effective butterfly optimizer using covariance matrix adapted
retreat phase,’’ in Proc. IEEE Congr. Evol. Comput. (CEC), Jun. 2017,
pp. 1835–1842.

[23] B. Lacevic and E. Amaldi, ‘‘Ectropy of diversity measures for populations
in Euclidean space,’’ Inf. Sci., vol. 181, no. 11, pp. 2316–2339, Jun. 2011.

[24] X. Li, ‘‘A new intelligent optimization artificial fish school algorithm,’’
Ph.D. dissertation, College Comput. Sci. Technol., Univ. Zhejiang, Zhe-
jiang, China, 2003.

[25] C. Yue, K. Price, P. Suganthan, J. Liang, M. Ali, B. Qu, N. Awad, and
P. Biswas, ‘‘Problem definitions and evaluation criteria for the CEC 2020
special session and competition on single objective bound constrained
numerical optimization,’’ Comput. Intell. Lab., Zhengzhou Univ.,
Zhengzhou, China, Tech. Rep. 201911, 2019. [Online]. Available: https://
github.com/P-N-Suganthan/2020-Bound-Constrained-Opt-Benchmark/
blob/master/Definitions%20of%20%20CEC2020%20benchmark
%20suite%20Bound%20Constrained.pdf

[26] Y. Ling, Y. Zhou, and Q. Luo, ‘‘Lévy flight trajectory-based whale
optimization algorithm for global optimization,’’ IEEE Access, vol. 5,
pp. 6168–6186, 2017.

[27] R. Martin and W. Stephen, ‘‘Termite: A swarm intelligent routing algo-
rithm for mobilewireless ad-hoc networks,’’ in Stigmergic Optimization.
New York, NY, USA: Springer, 2006, pp. 155–184.

[28] A. G. Mersha and S. Dempe, ‘‘Direct search algorithm for bilevel pro-
gramming problems,’’ Comput. Optim. Appl., vol. 49, no. 1, pp. 1–15,
May 2011.

[29] Z. Michalewicz, J. B. Krawczyk, M. Kazemi, and C. Z. Janikow, ‘‘Genetic
algorithms and optimal control problems,’’ inProc. 29th IEEEConf. Decis.
Control, Dec. 1990, pp. 1664–1666.

[30] S. Mirjalili, ‘‘The ant lion optimizer,’’ Adv. Eng. Softw., vol. 83, pp. 80–98,
May 2015.

[31] S. Mirjalili, ‘‘Moth-flame optimization algorithm: A novel nature-inspired
heuristic paradigm,’’Knowl.-Based Syst., vol. 89, pp. 228–249, Nov. 2015.

[32] S. Mirjalili and A. Lewis, ‘‘The whale optimization algorithm,’’ Adv. Eng.
Softw., vol. 95, pp. 51–67, May 2016.

[33] S. Mirjalili, S. M. Mirjalili, and A. Lewis, ‘‘Grey wolf optimizer,’’ Adv.
Eng. Softw., vol. 69, pp. 46–61, Mar. 2014.

[34] M. Mitchell, An Introduction to Genetic Algorithms. Cambridge, MA,
USA: MIT Press, 1998.

VOLUME 8, 2020 53899

N. Covic, B. Lacevic: WFS—Novel Global Optimization Algorithm

[35] A. W. Mohamed, A. A. Hadi, A. M. Fattouh, and K. M. Jambi, ‘‘LSHADE
with semi-parameter adaptation hybrid with CMA-ES for solving CEC
2017 benchmark problems,’’ in Proc. IEEE Congr. Evol. Comput. (CEC),
Jun. 2017, pp. 145–152.

[36] M. Molga and C. Smutnicki. Test Functions for Optimization Needs.
Accessed: 2005. [Online]. Available: https://www.robertmarks.org/
Classes/ENGR5358/Papers/functions.pdf

[37] D. Molina, A. LaTorre, and F. Herrera, ‘‘An insight into bio-inspired and
evolutionary algorithms for global optimization: Review, analysis, and
lessons learnt over a decade of competitions,’’ Cognit. Comput., vol. 10,
no. 4, pp. 517–544, Aug. 2018.

[38] A. Mucherino, O. Seref, O. Seref, O. E. Kundakcioglu, and P. Pardalos,
‘‘Monkey search: A novel Metaheuristic search for global optimization,’’
AIP Conf. Proc., vol. 953, pp. 162–173, Nov. 2007.

[39] H. Mühlenbein, M. Gorges-Schleuter, and O. Krämer, ‘‘Evolution algo-
rithms in combinatorial optimization,’’ Parallel Comput., vol. 7, no. 1,
pp. 65–85, 1988.

[40] J. A. Nelder and R. Mead, ‘‘A simplex method for function minimization,’’
Comput. J., vol. 7, no. 4, pp. 308–313, Jan. 1965.

[41] H. Niederreiter, ‘‘Low-discrepancy and low-dispersion sequences,’’
J. Number Theory, vol. 30, no. 1, pp. 51–70, Sep. 1988.

[42] A. K. Qin, V. L. Huang, and P. N. Suganthan, ‘‘Differential evolution
algorithm with strategy adaptation for global numerical optimization,’’
IEEE Trans. Evol. Comput., vol. 13, no. 2, pp. 398–417, Apr. 2009.

[43] E. Rashedi, H. Nezamabadi-pour, and S. Saryazdi, ‘‘GSA: A gravitational
search algorithm,’’ Inf. Sci., vol. 179, no. 13, pp. 2232–2248, Jun. 2009.

[44] L. A. Rastrigin, Systems of Extremal Control. Moscow, Russia: Nauka,
1974.

[45] Y. Sharafi, M. A. Khanesar, and M. Teshnehlab, ‘‘COOA: Competi-
tive optimization algorithm,’’ Swarm Evol. Comput., vol. 30, pp. 39–63,
Oct. 2016.

[46] H. Shareef, A. A. Ibrahim, and A. H. Mutlag, ‘‘Lightning search algo-
rithm,’’ Appl. Soft Comput., vol. 36, pp. 315–333, 2015.

[47] K. Sörensen, ‘‘Metaheuristics—The metaphor exposed,’’ Int. Trans. Oper.
Res., vol. 22, no. 1, pp. 3–18, 2015.

[48] R. Storn and K. Price, ‘‘Differential evolution–A simple and efficient
heuristic for global optimization over continuous spaces,’’ J. Global
Optim., vol. 11, no. 4, pp. 341–359, 1997.

[49] R. Tanabe and A. S. Fukunaga, ‘‘Improving the search performance of
SHADE using linear population size reduction,’’ in Proc. IEEE Congr.
Evol. Comput. (CEC), Jul. 2014, pp. 1658–1665.

[50] S. A. Uymaz, G. Tezel, and E. Yel, ‘‘Artificial algae algorithm (AAA) for
nonlinear global optimization,’’ Appl. Soft Comput., vol. 31, pp. 153–171,
Jun. 2015.

[51] G.-G. Wang, ‘‘Moth search algorithm: A bio-inspired Metaheuristic algo-
rithm for global optimization problems,’’Memetic Comput., vol. 10, no. 2,
pp. 151–164, Jun. 2018.

[52] G.-G. Wang, S. Deb, and L. D. S. Coelho, ‘‘Elephant herding optimiza-
tion,’’ in Proc. 3rd Int. Symp. Comput. Bus. Intell. (ISCBI), Dec. 2015,
pp. 1–5.

[53] G. G.Wang, S. Deb, and Z. Cui, ‘‘Monarch butterfly optimization,’’Neural
Comput. Appl., vol. 31, no. 7, pp. 1995–2014, 2019.

[54] G. G. Wang, S. Deb, and L. D. S. Coelho, ‘‘Earthworm optimisation
algorithm: A bio-inspired Metaheuristic algorithm for global optimisation
problems,’’ Int. J. Bio-Inspired Comput., vol. 12, no. 1, pp. 1–22, 2018.

[55] M. Xu, X. You, and S. Liu, ‘‘A novel heuristic communication heteroge-
neous dual population ant colony optimization algorithm,’’ IEEE Access,
vol. 5, pp. 18506–18515, 2017.

[56] X.-S. Yang, ‘‘Firefly algorithms for multimodal optimization,’’ in Proc.
Int. Symp. Stochastic Algorithms. Berlin, Germany: Springer, 2009,
pp. 169–178.

[57] X.-S. Yang, Nature-Inspired Metaheuristic Algorithms. Luniver Press,
Univ. Cambridge, Cambridge, U.K., 2010.

[58] X.-S. Yang, ‘‘A new metaheuristic bat-inspired algorithm,’’ in Nature
Inspired Cooperative Strategies for Optimization. Berlin, Germany:
Springer, 2010, pp. 65–74.

[59] X.-S. Yang, ‘‘Flower pollination algorithm for global optimization,’’
in Proc. Int. Conf. Unconventional Comput. Natural Comput. Berlin,
Germany: Springer, 2012, pp. 240–249.

[60] X.-S. Yang and S. Deb, ‘‘Cuckoo search via Lévy flights,’’ in Proc.
World Congr. Nature Biologically Inspired Comput. (NaBIC), Dec. 2009,
pp. 210–214.

[61] M. Yazdani and F. Jolai, ‘‘Lion optimization algorithm (LOA): A nature-
inspired Metaheuristic algorithm,’’ J. Comput. Des. Eng., vol. 3, no. 1,
pp. 24–36, Jan. 2016.

NERMIN COVIC (Member, IEEE) was born
in Suhodol, Sarajevo, Bosnia and Herzegovina,
in 1994. He received the B.S. and M.S. degrees
(Hons.) from the Department for Control Systems
and Electronics, Faculty of Electrical Engineering,
University of Sarajevo, in 2016 and 2018, respec-
tively, where he is currently pursuing the Ph.D.
degree. He is also working as a Teaching/Research
Assistant with the University of Sarajevo. His
research interests include optimization, robotics,

automation, control systems, and system identification.

BAKIR LACEVIC (Member, IEEE) received the
Dipl.-Ing. and Magister degrees in automatic
control from the University of Sarajevo, Sara-
jevo, Bosnia and Herzegovina, in 2003 and 2007,
respectively, and the Ph.D. degree in information
technology from Politecnico di Milano, Milano,
Italy, in 2011. He is currently an Associate Pro-
fessor with the Faculty of Electrical Engineer-
ing, University of Sarajevo, where he teaches
courses in robotics and modeling/identification of

dynamic systems. His research interests include robotic motion planning,
human-robot interaction, optimization, and machine learning.

53900 VOLUME 8, 2020

