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ABSTRACT The stability of flying of a hummingbird-like flapping-wing micro air vehicle (MAV) has been
challenging. In this paper, experimental studies are reported on the tail shapes of hummingbird-like flapping-
wing MAVs, since tails play an important role in-flight stability. Dynamics parameters of hummingbird
tails are firstly studied and evaluated. Then man-made tails inspired by the natural hummingbirds are
designed, manufactured and optimized for experimental tests. The results show that lift generated by the
tail is independent of a fan angle, whereas the pitch moment is related to the fan angle. Further, the tail can
be applied to stabilising hovering twin-wing flapping wing MAVs.

INDEX TERMS Hummingbird tail, flapping wing MAYV, hovering flight, tail design, tail fabrication.

I. INTRODUCTION

Currently, many of flapping-wing MAV inspired by the
natural flyers from large birds to tiny insects are studied.
Hummingbirds, as the smallest birds in the world from about
2 grams to nearly 20 grams [1] have been studied by plenty of
researchers, due to not only the agile flight and manoeuvrabil-
ity but also hovering flight. However, many elements, such as
the aerodynamics of flapping wings, body dynamics, sensory
system, neural control and wing, and tail action, result in the
superiority of hummingbird flight, shown in Fig. 1. These
elements make a complex close-loop to achieve amazing
flight capability. To understand the interaction between these
various systems, many studies on natural hummingbirds are
done including aerodynamics, wings, tails, morphology, etc.
For example, hummingbirds have distinctive morphology
compared with other birds, like hummingbird forearm bones
and the upper arm are significantly shorter [2], so they can
fly in hovering. Hummingbirds are characterized by high
flapping frequency, small strains and a highly supinated wing
orientation during upstroke or down-stroke that generate lift
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force in both halves of the stroke cycle. In hovering, the body
axis is inclined at a desirable angle and wing flaps an eight-
like pattern in the vertical plane, see in Fig. 1. And their wings
are connected by the muscles and skeletal joints and may
flex or rotate different segments according to aerodynamic
demands.

Hummingbird’s super agility has highly attracted atten-
tion and currently inspired the development of flapping-
wing MAV since they are able to perform the desired task
in a dangerous or inaccessible environment such as aerial
photography, patrolling, search and rescue, law enforce-
ment, aerial mapping, terrain reconnaissance, etc. Over
the last decade, the studies of hummingbird’s morphology
were done, such as muscles [3], skeleton structure [4], [5],
aerodynamics [6]-[9], wings [10]-[13] and tails [14].
Besides, some researchers have developed flapping-wing
MAVs inspired by the nature flyers such as bee, beetle,
dragonfly, hummingbird such as Harvard Robobee [15],
Nano-hummingbirds [16], KUBeettle [17], Delfy [18],
Flowerfly [19], Festo-Dragonfly [20], Festo-Butterfly [21],
Colibra [22], Giant hummingbird [23] and Festor-
Seabirds [24]. And a review concerning natural hummingbird
to hummingbird-like flapping wing MAV is comprehensively

VOLUME 8, 2020


https://orcid.org/0000-0001-6646-9475
https://orcid.org/0000-0001-7960-8374
https://orcid.org/0000-0002-9131-5918
https://orcid.org/0000-0002-6575-1839
https://orcid.org/0000-0002-1708-4197

Y. Nan et al.: Experimental Studies of Tail Shapes for Hummingbird-Like Flapping Wing MAVs

IEEE Access

euromuscular

Sensors
{Inner ear and
visual eye)

Wlng flapplng
and
body dynamics

Force/Torque

FIGURE 1. Elements in the flapping wings of a hummingbird.

studied by Nan [25]. However, these flapping wing MAVs
are almost tailless. In nature, the tails play an important role
in maintaining stability over a range of flight speeds and
in generating lift and drag to help with roll, pitch and yaw
turning and slow flight, since they vary as much as their
wings, or even more [26]. Therefore, the aerodynamic per-
formance studies of tail shape are meaningful and significant
for a stable flight of flapping wing MAVs.

In this paper, the natural hummingbird’s tail morphology
is studied first, followed by designing, testing and optimizing
the artificial tails. Then the aerodynamic performance of tails
is evaluated through experiments, with results and discus-
sions presented.

Il. TAILS DESIGN AND STUDY

A. MORPHOLOGY OF TAILS

The tail shapes and morphology of birds are naturally selected
by gender. The birds’ tails have intricate and distinct shapes
particular in sexually dimorphic species. Many birds have
a long and elaborate tail as a sexual ornament since long
and elaborate tails can enhance mating success for female
choice [27]. However, flight performance might constraint
such ornamental diversity [14].

Universally, the birds that need high manoeuvrability to
feed aerially and avoid a collision in cluttered environments
have longer tails, whereas birds with high lift-to-drag ratio
have relatively short tails since a long tail could reduce
a bird’s overall lift-to-drag ratio [14]. Although different
birds select different tail shapes, they have a common fea-
ture, namely, the tails play an aerodynamic role in flight
and produce lift and drag [28]. Birds’ tail directly affects
stable flight, and they can use their tails to operate body
turns. In terms of a natural glider, they perform symmetri-
cally banked turns and reorient laterally the vertical force,
and the yaw turn is finally realized [30], whereas hum-
mingbirds realize pure yaw turns by just flapping wings
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FIGURE 2. Examples of Hummingbirds’ tails: i) generic tails of
hummingbirds: fork, rounded, and graduated; ii) special tails of
hummingbirds: A-C.
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FIGURE 3. Tail shape and spread angle. R is represented the rectrix
feather of a tail.

Graduated

symmetrically [29] or asymmetrically [31]. Meanwhile, hum-
mingbird may use tail spreading to avoid extreme sideslip,
roll, and pitch in a short time [32], particular in turbulent
surroundings, hummingbird may increase aerodynamic force
and/or improve stability by increasing mean stroke amplitude,
stroke plane angle and tail fanning angle [33].

The generic tail shape has 7 different categories such as
squared, forked, rounded, double-rounded, cleft, wedged and
graduated. Then to investigate 18 species natural humming-
birds, the fan-shaped, squared, forked, notched (Cleft) and
rounded tails are general, which takes up 50%, 16.7%, 16.7%,
11.1%, and 5.6%, respectively. Some examples of general
hummingbird’s tail see in Fig. 2 (i) and the special tail shapes
are not discussed in this paper, seen in Fig. 2 (ii).

All hummingbirds have five bilateral pairs of rectrices (the
tail feathers are called rectrices) that individually vary in
length and shape [14]. The number of rectrices is marked
from medial R to lateral R 5, seen in Fig. 3. From such figure,
outer tail feathers are longer than the middle pair in the forked
tail, and feathers increase in length from the central pair to
the outer pair. That is, R 5 is the longest of rectrice, whereas
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FIGURE 4. Cross-X shape tail mode (a): Fixing four carbon bars on the prepared tools
before glueing bar 5 on points A and B, then cutting out four suitable pieces Maylar to
glue on the frame before making well; and (b) tail prototype.

R; is the shortest one. By contrast, as for graduated tails, R4
is the longest and R5 is the shortest rectrix. All rectrices in
rounded tails are of almost the same length, feathers increase
in length from the outer pair to the middle pair. The length of
the longest rectrix is 20% more than that of the shortest one.

Bird’s tail can be controlled independently, but they are
spread the same degree on each side when flying. The max-
imum continuous span (MCS) is the widest distance of the
unbroken surface area of a tail, from R 5 to R5 on both lateral
sides. The spread angle is the angle between the outermost
rectrices presented by B, seen in Fig. 3. When this angle
is above a critical value, the gap between individual tail
feathers appears. By contrast, the edges of neighbouring tail
feathers overlap when this angle is smaller than the critical
angle. Therefore, the tail surface (S;) [14] can be roughly
approximated as

1
S, = ERﬁﬂ (1

where, R,, is the average length of the tail feather.

B. FORK RATIO

In nature, there are various kinds of tail shapes such as a
forked tail, squared tail, rounded tail, graduated tail, wedged
tail. The square, forked and rounded tails are the basic, other
tail shapes can derive from these three types. Fork ratio (FR)
is rather important, which normally determines the tail shape.
It is defined as the R5 length divided by the R length, which
is presented as

Rs length
~ Rjlength

When the fork ratio is higher than 2 (FR > 2), the tail shape
can be roughly defined as an elongated forktail. The optimal
fork ratio is FR = 2 at 8 = 120° [26], but this spread angle
is not general. After that, it is also explored that the optimal
fork ratio is 1.2 when 8 = 67°. When the fork ratio is in
the range of 1.2 < FR < 2, the tail shape can be regarded

FR 2)
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as a moderate fork. As for the rounded tail, the fork ratio
is in 0.83 < FR < 1.2, whereas the graduated tail may be
achieved at FR < 0.83.

C. TAIL ASPECT RATIO

Tail aspect ratio (AR;) [34], similar wing aspect ratio, is a
measure of the shape of the tail and impacts the aerodynamic
performance. It is defined as the square tail span divided by
tail surface, which is given by

AR, = b?/S, 3)

where, b; is the tail span which can be calculated by
by = 2R5sing and S; is the tail surface.

Combination of Equation (1) and (3), the tail aspect ratio
can be rewritten as

b} 2b}
St R3B
According to the equation, the tail aspect ratio in certain
species is obtained, which is summarized in Table 1.

To compare morphologies, the spread angle is hypothe-

sized to be constant, whereas the spread angle actually varies
with flight posture.

t =

“

lIl. AERODYNAMICS OF HUMMINGBIRDS

A. TAIL DESIGN

As has been mentioned earlier, the goal of the present study
is to find the tail performance on stable flying. We firstly
started with a Cross-X shape of a tail as a basic tail and
it is similarly designed by existing flapping wing MAVs
Flowerfly [19], seen in Fig. 4. The components of the tail
assembly include a frame from carbon bars, tube and tail
platform itself, made of Mylar membrane. Mylar was chosen
due to its light-weight, strong and durable. The tail has two
sub-frames, then fixed down by glue. The tails themselves
are hand-made. Production of a tail takes about 40 mins as
well as is repeatable. Unfortunately, it is easier to tear and
break down when flapping-wing MAV with tail flaps in high

VOLUME 8, 2020



Y. Nan et al.: Experimental Studies of Tail Shapes for Hummingbird-Like Flapping Wing MAVs

IEEE Access

TABLE 1. Tail aspect ratio in certain species (adapted by [34]).

Species Kestrel Sparrowhawk Peregrine falcon Black kite Pigeon Buzzard Gull Eagle
AR, 0.3 0.4 0.6 0.7 2.1 1.5 1.8 1.8
mainly has six steps, seen in Fig. 6: 1) the printed paper is
— Carbon bar . >
Carbon | Plastic tube taped on the.platfor.m then fixed it, 2) The curve contours of
connector the future tail are firstly cut out, 3) the straight contours are

Carbon tube

Balsa wood

FIGURE 5. Baseline tail after assembly. 2 To install the tail, a 3 tube with
slot was made before the tail was put it into the 4 slot and then was
glued. Then, it was attached to the 5 flapping mechanism with a
connecter.

TABLE 2. Specification of the tested detail materials.

Tail type material Thickness
Balsa wood 1.0 mm
Balsa wood 1.5 mm
Balsa wood 2.0 mm

frequency. Therefore, such a tail shape study is stopped. But,
importantly, via experimental study on such tail, we found
that the lift and pitch moment was proportional to the tail
position, which promoted us to study further on different tails.
Also, such kind of the tail was successfully applied to the
passive stability of flying [35].

After that, another tail inspired by the natural humming-
birds was designed. The components of the tail assembly
include a frame from carbon tubes, and the tail planform
itself, made of balsa wood with 1 mm that not influence plan-
form deformation when flapping, see Fig. 5. The balsa wood
was selected as it is a light-weight yet strong and durable
material. The 1 mm thickness was chosen as thinner material
was too prone to tearing. Other materials, such as 1.5 mm,
2.0 mm, were also tested, but the achieved performance was
slightly worse due to higher weight, see Table 2. So the other
material is not studied in this paper.

The tails themselves are hand-built. However, a manufac-
turing technique different from other flapping wing MAYV like
Defly, shown in Fig. 6, was developed to achieve sufficient
repeatability. Production of a tail takes about 20 mins. In order
to fix well tail into the carbon connector, the tail is glued
into it.

Before producing the tail, the tail is designed using CAD
software (Solid Edge), then prints it. The manufacturing tail
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cut out. 4) The cut tail shape paper is put onto the balsa wood
and taped it. 5) and 6) cutting the tail along the contours of
the tail. Then the tail is made.

To design the tail, the natural hummingbird tail is inves-
tigated. According to the relation between the maximum
length of tail feature and body mass of hummingbirds [27],
20 g weight of hummingbirds is approximately response to
about the 70 mm length of the maximum length of tail, seen
in Fig. 7. Therefore, the maximum tail, 70 mm - long, is
made.

We started with the 70 mm length as a basic, which was
used throughout the development of the tail study. To under-
stand the effect of each parameter, we adopted an iterative
process and varied only one parameter at a time. In total,
3 different tails were built and tested. Their parameters are
presented in Table 3. From discussed above, the optimal fork
ratio is 2 at § = 120°, whereas when 8 = 67° the optimal
fork ratio is 1.2. Thus, the tail performance with two spread
angles is to be studied in this paper. First, the effect of the
spread angle was investigated. Tail-Re7 and Tail-Rp0 were
made keeping the same shape, but the tail surface, aspect
ratio, and span are different. Second, to investigate the shape
effect, keeping the same spread angle, aspect ratio and Span,
the tail surface and tail shape are changed.

B. EXPERIMENT SETUP
To investigate the tail’s aerodynamic performance, an experi-
mental setup consisting of a force balance, voltage amplifiers,
and a digital signal processing system (DSP) was constructed.
Its overview is illustrated in Fig. 8. The setup was used
to measure the motor voltage, current, flapping frequency
(about 25 Hz), force and moment generated by the tail. In this
study, double beam cantilever force sensors with strain gages
in full-bride configuration, coming from low-cost precision
scales, were used. Their advantage is that they are insensitive
to the axial force as well as to the bending moment. The
designed balance uses two of these single axis force sensors,
so that lift and moment can be measured at the same time. The
measured forces when flapping are relatively small (order
of 0.01 N), but of a lift and drag, which tends to excite
the vibration in the system. So the measured efforts are a
combination of aerodynamics and inertial forces.

The working principle of the force balance is shown in
Fig. 8 (b). The robot, represented by the lift force L and the
moment M, is connected to the right end of the lower beam,
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FIGURE 6. The principle steps of tail production.

TABLE 3. The geometric parameters of tail.

'\

D>
/g ~~(6)

>

Spread angle 8 Tail Surface S,(mm°®) AR, Span b; (mm)
Tail-R¢7 67 2863.5 2.08 77.2
Tail-Ryy 120 5128.7 2.86 121.2
Tail-T 120 2123.1 2.86 121.2

R- Rounded tail, T - Triangular tail. Re7is the rounded tail with 67°, Ry is the rounded tail with 120°, and T 20 is the triangular tail with 120°.

200

100

Max. Male tail length (mm)

1.8 5 10 15 20 25

Male body mass (g)

FIGURE 7. The relation maximal male tail length against body mass of
natural hummingbird (adapted by [14]).

which can rotate around hinge point C. the left end of this
beam is connected to sensor 2. The hinge at point C is held
by a base, which also holds sensor 2. This whole assembly is
connected to sensor 1. The sensor forces are obtained by the
static equilibrium of the balance as

Si=L 5)

M + LA,
S = —— 6
2 m» (6)
The assembled force balance is given in Fig. 8 (c). Each
sensor is connected to custom build an electronic circuit that
provides stabilized power to the bridge and amplifies the
bridge output. The balance is designed to measure the pitch
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moment of the flapping prototype. Moreover, the prototype
attachment can be rotated by 90° to also measure the roll
moment. The experiment setup in detail sees in paper [36].

The developed hummingbird-like flapping wing MAV was
applied in this study, seen in Fig. 9. The flapping wing MAV
prototype is composed of four main components: the driving
brushed DC motor, flapping mechanisms, wings, and tail. The
frame and links are 3D printed using Digital-ABS compos-
ite photopolymer material and Stratasys PolyJet technology.
A gear with injection-moulded gears is applied. The links are
connected by aluminium and steel rivets. The wing bars are
made of the carbon-fibre-reinforced polymer rods.

IV. RESULTS AND DISCUSSION

We present the experimental results of the mean lift force and
moment generated by the tails in this section. In this study,
the tail, no flapping, is fixed on the robot in an assigned
angle position and then robot is fixed on the experiment
setup. We use the same robot prototype and wings over the
testing and then measured the lift force and moment. For
each tail, we set the tail at five different fan angle positions.
Fan angle («) varies from —15° (tail down) to 15° (tail up),
seen in Fig. 10. (Fan angle can be regard as tail flapping
amplitude in this paper.) The wings, made of Mylar with
90 mm length, the aspect ratio of 9.3, are applied in this study.
The DC motor is operated at 3 V responding to the flapping
frequency at 25Hz. The motor can be operated even at higher
voltages where, however, a slow performance decrease was
observed over time due to increased temperature and wear
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FIGURE 8. The experimental setup. Schematic diagram of the complete setup
(a), the working principle with a free body diagram (b1+b2), the photos of the physical

implementation (c1+c2) [36].

Tail-Ti2o

FIGURE 9. Assembled prototype with wing and tail.

of the brushes. Each measurement sequence was carried out
three times in a row, and we present the data in the form
of mean values. The measurement error is approximately
40.5 mN for the lift and + 0.05 N.mm for the moment.
The other parameters (voltage, current, flapping frequency)
are averaged in the same way. The flapping frequency is
estimated from the variation of the motor current due to
varying load within a single wingbeat. The current signal is
low-pass filtered and the period of the variation is detected
online. Thanks to a high sampling rate of the digital signal
processing system (2 kHz), and subsequent averaging over
the measurement interval, a prevision below 0.1 Hz was
achieved.

The aim of the study is to assess the aerodynamic per-
formance for three kinds of tails. To fairly compare the tail
performance, the same voltage and flapping frequency of the
wing were set up for each test. The measurement results
are highlighted in marks, which are presented in II. From
this figure, it is observed that the generated force of tail is
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approximately constant in five positions, which is differ-
ent from the states that hummingbird might increase aero-
dynamic force and/or improve stability by increasing the
mean stroke amplitude, anatomical stroke plane angle and
tail fan angle [37] as well as different from the test results of
Cross-X shape tail. This may be because the flapping-wing
robot’s body is fixed on the frame, and the tail is rigid without
a camber angle. Also, it is found that the lift rises with tail
surface and spread angle increase through comparing tail
Re7 and Ry, shown in II (left). However, by comparing the
tail Rg7 and Ti;, the generated force by tail Rey is slightly
smaller than that of tail T, although the tail surface of tail
Rg7 is slightly greater than that of tail Tyyg, this might be
related to the spread angle and tail shape. The force generated
by tail Re7 and Ty is similar, so the pitch moment generated
by both kinds of tails is equally similar, which is considerably
less than that of tail Rypg.

Overall, the tails play a significant role in stable flying
by generating force and moment, so it can be utilized to the
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FIGURE 10. Hummingbirds control tail to stabilize the attitude (left), and tail position varies from —15° to 15° (right).
(A connector is made and utilized to connect the tail and prototype and can be turned so that the tail can be adjusted).
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FIGURE 11. Lift vs. tail position (left), pitch moment vs. tail position (right).

flapping wing MAVs to stabilize its flight. That is to say,
the posture of flapping-wing MAVs can be performed via
adjusting the position of the tail, which is firstly presented
and trialled in twin-wing hovering flapping wing MAVs.
In the previous study of twin-wing hovering flapping wing
MAVs, the wing twist modulators [17], [23], [38], [39] were
universally employed to produce pitch and roll moment then
achieved the stability of flapping wing MAVs.

Our future research includes the following aspects:
(1) MAV applications to agriculture, such as autonomous
pollination [40]; (2) high efficiency and reliability in design
for the MAV’s key components [41]-[47] using new Al algo-
rithms, with the support of the parallel CIAD framework [48].
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