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ABSTRACT This paper studies a separation principle for a class of linear sampled-data control systems
with aperiodic sampling. The concerned problem is to show that in aperiodic sampling, the design of
observer-based output feedback controller can be broken into two separate designs: aperiodic sampled-data
static state feedback controller and observer designs. It is proved that asymptotic (respectively, exponential)
stabilization by the sampled-data static state feedback and asymptotic (respectively, exponential) observation
by the sampled-data Luenberger observer imply asymptotic (respectively, exponential) stabilization by the
sampled-data observer-based output feedback. An example is given to check the validity of the proposed
theoretical claims.

INDEX TERMS Separation principle, sampled-data, aperiodic, Lyapunov, observer, output feedback,
asymptotic stability, exponential stability.

I. INTRODUCTION
A prominent research field in control theories, a sampled-
data control has been studied widely. Its research focus has
changed from periodic (or constant) sampling (see, [12]–[20],
and references therein) to aperiodic (or arbitrary varying)
one (see, [1]–[7], [21], [24]–[27], and references therein).
Analytic approaches to aperiodic sampling can be categorized
into two groups: the first one is to treat the aperiodic sampled-
data system in the discrete-time domain (see, [8]–[11],
and references therein), while the other is to analyze it as
an input delay system via Lyapunov-Krasovskii theorems
(see, [1]–[4], [6], [7], and references therein). Especially, [1]
analyzed the rigorous stability relation between the discrete-
time Lyapunov and the Lyapunov-Krasovskii stability
theorems.

A sampled-data observer-based output feedback control
is practically appealing because of not utilizing all inter-
nal states of a given real system. In aperiodic sampling,
observer should provide an estimate of the state used in
the sampled-data control, from aperiodic sampled measure-
ments, which makes its design perplexing. Several observers
have been presented in the literatures, such as a discrete-time
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observer [21], a sampled-data observer [3], [5]–[7], and
a continuous-discrete observer [4]. Among them, [7], [21]
introduced simple design strategies under the separation
principle.

The separation principle is an important issue on the
observer-based output feedback control as discussed in [28].
If the separation principle holds, the overall design of output
feedback controller can be separated into the state feedback
controller and observer designs. There are valuable theoret-
ical results on the separation principle for various classes of
linear or nonlinear sampled-data systems with periodic sam-
pling in [16]–[20], and references therein. However, in the
case of aperiodic sampling, the separation principle has not
been studied fully, except for [21]. Reference [21] proved the
separation principle for a class of aperiodic sampled-data sys-
tems under the discrete-time observer of which gains depends
on sampling instants. In particular, very few researches have
been done to prove the separation principle achieved with not
discrete-time but sampled-data observer.

This paper addresses a separation principle for a class
of linear aperiodic sampled-data control systems. Within
the framework of the stability theorems [1], the separa-
tion principle is proved by showing that the asymptotic
(respectively, exponential) state feedback stabilization and
the asymptotic (respectively, exponential) observation yields
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the asymptotic (respectively, exponential) stabilization by
the sampled-data observer-based output feedback. Contrary
to [21], the observer adopted here is not in the discrete-time
form but in the aperiodic sampled-data form. Also, the con-
troller and observer gains adopted here are not dependent
on the aperiodic sampling interval. Finally, an example, a
separate design for the sampled-data observer-based output
feedback is given to verify the theoretical claims.
Notations: The relation P � Q (P ≺ Q) means that the

matrix P − Q is positive (negative) definite. N and R denote
the sets of natural and real numbers, respectively. Rn means
the n-dimensional Euclidean space. Rm×n stands for the field
of real matrices of dimension m× n. For simplicity, x is used
in place of x(t) for the continuous-time signal vectors unless
otherwise indicated.1 indicates the forward difference oper-
ator, e.g., 1V (x(tk )) := V (x(tk+1)) − V (x(tk )) for k ∈ N.
Also, when a ∈ R and b ∈ R, R>a := {x ∈ R | x > a},
R>a := {x ∈ R | x > a}, R<a := {x ∈ R | x < a},
R6a := {x ∈ R | x 6 a}, R[a,b] := {x ∈ R | a 6 x 6 b},
R(a,b] := {x ∈ R | a < x 6 b}, R[a,b) := {x ∈ R | a 6 x <
b}, and R(a,b) := {x ∈ R | a < x < b}.

II. PROBLEM FORMULATION
Consider the linear time-invariant system{

ẋ = Ax + Bu
y = Cx

(1)

together with the sampled-data observer-based output feed-
back controller

u = u(tk ) = Kx̂(tk ) (2){
˙̂x = Ax̂ + Bu(tk )+ L(y(tk )− ŷ(tk ))
ŷ(tk ) = Cx̂(tk )

(3)

for all t ∈ [tk , tk+1), k ∈ N, where x ∈ Rn the state;
u ∈ Rm the sampled-data control input; y ∈ Rp the measure-
ment output; x̂ ∈ Rn the estimation of x; ŷ ∈ Rp the observer
output; tk , k ∈ N the kth sampling instant; A ∈ Rn×n;
B ∈ Rn×m; C ∈ Rp×n; K ∈ Rm×n the static control gain;
L ∈ Rn×p the static observer gain.
Assumption 1: Let the kth aperiodic sampling interval be

h̃k := tk+1 − tk . Assume that for the given h1 ∈ R>0 and
h2 ∈ R>h1 , h̃k ∈ R[h1,h2].
By defining e := x − x̂ and augmenting (1), (2), and (3),
the closed-loop system becomes

61 : ẋ = Ax + BKx(tk )− BKe(tk ) (4)

62 : ė = Ae− LCe(tk ) (5)

for all t ∈ [tk , tk+1), k ∈ N.
The main interest is addressed as follows:
Problem 1 (Separation Principle): Consider the closed-

loop system (4) and (5) and its nominal system

6′1 : ẋ = Ax + BKx(tk ) (6)

Suppose that (6) and (5) are asymptotically (or exponentially)
stable, respectively. Then, what can we say about the stability
of the overall closed-loop system (4) and (5)?
Remark 1: Within the discrete-time domain, the sepa-

ration principle, for sampled-data control systems under
the discrete-time observer-based output feedback, has been
investigated by [16]–[20] (for the periodic case) and [21]
(for the aperiodic case). Because the discretized system is
not usually time-invariant in the aperiodic sampling case,
unlike the periodic case, [21] consider the non-static control
and observer gains. This is why within the continuous-time
domain, most of studies [1]–[7], [21], [24]–[27] design the
controller and the observer of the aperiodic sampled-data
control system via Lyapunov-Krasovskii functional under
the assumption that it can be represented as an equiva-
lent continuous-time system with the input delay. Therefore,
within the continuous-time domain, we need to examine the
separation principle for the aperiodic sampled-data control
system via Lyapunov-Krasovskii functional in design.

III. MAIN RESULTS
Before proceeding to our main results, the following lemmas
will be needed throughout the proof:
Lemma 1: Let Dx ⊂ Rn be domain containing x = 0. Let

V : Dx → R be a continuously differentiable function such
thatW1(x) 6 V (x) 6 W2(x) for all x ∈ Dx , whereW1(x) and
W2(x) are continuous-positive definite functions onDx . Then
two following statements are equivalent:

i) There exists a positive definite function W3(x(tk )) such
that

1V (x(tk )) 6 −W3(x(tk )) (7)

for all k ∈ N and x(tk ) ∈ Dx .
ii) There exist a differentiable function

Va : [0,∞) × Dx → R and a positive definite function
W4(x(tk )) such that

1Va(tk , x(tk )) > 0 (8)

for all k ∈ N, and

˙̃V (t, x) 6 −W4(x(tk )) (9)

for all t ∈ [tk , tk+1), k ∈ N, where Ṽ (t, x) =
V (x)+ Va(t, x).

Proof: See Appendix A.
Lemma 2: Let Dx ⊂ Rn be domain containing x = 0.

Let V : Dx → R be a continuously differentiable function
such that υ1 ‖x‖b 6 V (x) 6 υ2 ‖x‖b for all x ∈ Dx , where
υ1 ∈ R>0, υ2 ∈ R>0, and b ∈ R>0. Then two following
statements are equivalent:

i) There exists υ3 ∈ R>0 such that

1V (x(tk )) 6 −υ3 ‖x(tk )‖b (10)

for all k ∈ N and x(tk ) ∈ Dx .
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ii) There exist differentiable functions Va : [0,∞) ×
Dx → R and υ4 ∈ R>0 such that (8) holds for all k ∈ N,
and

˙̃V (t, x) 6 −υ4 ‖x(tk )‖b (11)

for all t ∈ [tk , tk+1), k ∈ N, where Ṽ (t, x) := V (x) +
Va(t, x).
Proof: See Appendix B.

Remark 2: Note that Lemmas 1 and 2 directly follow from
Theorems 1 and 4 [1], respectively. The difference is that
Theorems 1 and 4 [1] require 1Va(tk , x(tk )) = 0 which is
a special case of (8) in Lemmas 1 and 2.
Lemma 3: Consider (4) and (5). Define ξ := col{x, e}.

There exist µ ∈ R>0 such that

‖ξ‖ 6 µ ‖ξ (tk )‖ (12)

for all t ∈ [tk , tk+1), k ∈ N.
Proof: See Appendix C.

The main results on Problem 1 are summarized in the
following theorems:
Theorem 1: Consider the closed-loop system system (4)

and (5) and its nominal system (6). Let Dx ⊂ Rn, De ⊂ Rn,
and Dξ ⊂ R2n be domains containing x = 0, e = 0, and
ξ = 0, respectively. Let Vx : Dx → R and Ve : De → R
be a continuously differentiable function such that W1x(x) 6
Vx(x) 6 W2x(x) andW1e(e) 6 Ve(e) 6 W2e(e) for all x ∈ Dx
and e ∈ De, respectively, where W1x(x), W2x(x), W1e(e),
and W2e(e) are continuous-positive definite functions on Dx
and De.
Suppose that

A1. There exist a differentiable function Ṽx(t, x) : [0,∞)×
Dx → R, positive definite functions W4x(x(tk )) and
W5x(x),$1 ∈ R>0, and$2 ∈ R>0 such that

1Vax(tk , x(tk )) > 0
˙̃V x(t, x)|(6) 6 −W4x(x(tk ))−W5x(x)∥∥∥∥∂Ṽx(t, x)∂x

∥∥∥∥ 6 $1W4x(x(tk ))
1
2 +$2W5x(x)

1
2

for all t ∈ [tk , tk+1), k ∈ N, where Ṽx(t, x) =
Vx(x)+ Vax(t, x).

A2. There exist a differentiable function Ṽe(t, e) : [0,∞) ×
De → R, positive definite function W4e(e(tk )), and
$3 ∈ R>0 such that

1Vae(tk , e(tk )) > 0
˙̃V e(t, e)|(5) 6 −W4e(e(tk ))

‖BKe(tk )‖ 6 $3W4e(e(tk ))
1
2

for all t ∈ [tk , tk+1), k ∈ N, where Ṽe(t, e) = Ve(e) +
Vae(t, e).

Then, the following hold.
i) There exists a positive definite functionW3ξ (ξ (tk )) such

that

1V (ξ (tk ))|(4),(5) 6 −W3ξ (ξ (tk )) (13)

for all k ∈ N and ξ (tk ) ∈ Dξ , where V (ξ ) = Vx(x) +
αVe(e) with α ∈ R>α and

α =
$ 2

3

4
λmax

([
$1
$2

] [
$1
$2

]T)
.

ii) the closed-loop system (4) and (5) is asymptotically
stable at the origin. Moreover, if the assumptions hold
globally, ξ = 0 is globally asymptotically stable.
Proof: ALyapunov function for (4) and (5) can be taken

as

Ṽ (t, ξ ) = V (ξ )+ Va(t, ξ ) (14)

where Va(t, ξ ) = Vax(t, x) + αVae(t, e) with α ∈ R>0. The
derivative of Ṽ along the trajectories of (4) and (5) becomes

˙̃V |(4),(5) =
∂Ṽx(t, x)
∂t

+
∂Ṽx(t, x)
∂x

(Ax + BKx(tk ))

−
∂Ṽx(t, x)
∂x

BKe(tk )+ α ˙̃V e(t, e)|(5)

6 ˙̃V x |(6) + α
˙̃V e|(5) +

∥∥∥∥∂Ṽx∂x
∥∥∥∥ ‖BKe(tk )‖

for all t ∈ [tk , tk+1), k ∈ N. Using the assumptions A1 and
A2 lead to

˙̃V |(4),(5)
6 −W4x(x(tk ))−W5x(x)− αW4e(e(tk ))

+$1$3W4x(x(tk ))
1
2W4e(e(tk ))

1
2

+$2$3W5x(x)
1
2W4e(e(tk ))

1
2

=

 W
1
2
4x

W
1
2
5x

W
1
2
4e


T

−1 0

1
2
$1$3

0 −1
1
2
$2$3

1
2
$1$3

1
2
$2$3 −α


 W

1
2
4x

W
1
2
5x

W
1
2
4e


from which we see that, by Schur complement,

˙̃V |(4),(5) < 0 ⇐


−1 0

1
2
$1$3

0 −1
1
2
$2$3

1
2
$1$3

1
2
$2$3 −α

 ≺ 0

⇔


$ 2

3

4α

[
$1

$2

][
$1

$2

]T
−

[
1 0
0 1

]
≺ 0

α > 0

on [0,∞) × D1/{0} × D2/{0}. By choosing α ∈ R>α ,
there exists a positive definite function W4ξ (ξ (tk )) such that
˙̃V (t, ξ )|(4),(5) 6 −W4ξ (ξ (tk )). Also, 1Vax(tk , x(tk )) > 0 and
1Vae(tk , e(tk )) > 0 yield 1Va(tk , ξ (tk )) > 0. Therefore,
from Lemma 1, we see that there exists a positive definite
functionW3ξ (ξ (tk )) such that (13) holds on Dξ , which means
that ξ (tk ) = 0, k ∈ N is asymptotically stable. More-
over, from (12) in Lemma 3, ξ = 0 is also asymptotically
stable.

VOLUME 8, 2020 53779



D. W. Kim: Separation Principle for Linear Sampled-Data Control Systems Under Observer-Based Output Feedback

Theorem 2: Consider the closed-loop system system (4)
and (5) and its nominal system (6). Let Dx ⊂ Rn, De ⊂ Rn,
and Dξ ⊂ R2n be domains containing x = 0, e = 0, and
ξ = 0, respectively. Let Vx : Dx → R and Ve : De → R be
a continuously differentiable function such that υ1x ‖x‖2 6
Vx(x) 6 υ2x ‖x‖2 and υ1e ‖e‖2 6 Ve(e) 6 υ2e ‖e‖2 for
all x ∈ Dx and e ∈ De, respectively, where υ1x ∈ R>0,
υ2x ∈ R>0, υ1e ∈ R>0, and υ2e ∈ R>0.
Suppose that

A1. There exist a differentiable function Ṽx(t, x) : [0,∞)×
Dx → R, υ4x ∈ R>0, υ5x ∈ R>0, υ6x ∈ R>0, and
υ7x ∈ R>0 such that

1Vax(tk , x(tk )) > 0
˙̃V x(t, x)|(6) 6 −υ4x ‖x(tk )‖2 − υ5x ‖x‖2∥∥∥∥∂Ṽx(t, x)∂x

∥∥∥∥ 6 υ6x ‖x(tk )‖ + υ7x ‖x‖

for all t ∈ [tk , tk+1), k ∈ N, where Ṽx(t, x) =
Vx(x)+ Vax(t, x).

A2. There exist a differentiable function Ṽe(t, e) : [0,∞) ×
De→ R, υ4e ∈ R>0, and υ5e ∈ R>0 such that

1Vae(tk , e(tk )) > 0
˙̃V e(t, e)|(5) 6 −υ4e ‖e(tk )‖2

‖BKe(tk )‖ 6 υ5e ‖e(tk )‖

for all t ∈ [tk , tk+1), k ∈ N, where Ṽe(t, e) =
Ve(e)+ Vae(t, e).

Then, the following hold.
1) there exists υ3ξ ∈ R>0 such that

1V (ξ (tk ))|(4),(5) 6 −υ3ξ ‖ξ (tk )‖2 (15)

for all k ∈ N and ξ (tk ) ∈ Dξ , where V (ξ ) = Vx(x) +
αVe(e) with

α =
υ25e

4υ4e
λmax

 υ− 1
2

4x 0

0 υ
−

1
2

5x

[ υ6x
υ7x

]

×

[
υ6x
υ7x

]T  υ− 1
2

4x 0

0 υ
−

1
2

5x

 .
2) the closed-loop system (4) and (5) is exponentially stable

at the origin. Moreover, if the assumptions hold globally,
ξ = 0 is globally exponentially stable.
Proof: Consider the Lyapunov function (14) with

α ∈ R>0. Following the similar line of proof of Theorem 1,
it can be shown that
˙̃V |(4),(5)
6 −υ4x ‖x(tk )‖2 − υ5x ‖x‖2 − αυ4e ‖e(tk )‖2

+ υ6xυ5e ‖x(tk )‖ ‖e(tk )‖ + υ7xυ5e ‖x‖ ‖e(tk )‖

=

 ‖x(tk )‖‖x‖
‖e(tk )‖

T

−υ4x 0

1
2
υ6xυ5e

0 − υ5x
1
2
υ7xυ5e

1
2
υ6xυ5e

1
2
υ7xυ5e − αυ4e


 ‖x(tk )‖‖x‖
‖e(tk )‖



under the assumptions A1 and A2. By choosing α ∈ R>α ,
we see that ˙̃V |(4),(5) 6 −υ4ξ ‖ξ (tk )‖2 for some υ4ξ ∈ R>0.
Also, it follows from 1Vax(tk , x(tk )) > 0 and
1Vae(tk , e(tk )) > 0 that 1Va(tk , ξ (tk )) > 0. From Lemma 2,
there exists υ3ξ ∈ R>0 such that (15) holds for all k ∈ N
and ξ ∈ Dξ . Under the assumption that υ1ξ ‖ξ (tk )‖2 6
V (ξ (tk )) 6 υ2ξ ‖ξ (tk )‖2 with υ1ξ ∈ R>0 and υ2ξ ∈ R>0,
it follows from the foregoing inequality that 1V (ξ (tk )) 6

−
υ3ξ
υ2ξ
V (ξ (tk )) ⇒ V (ξ (tk )) 6

(
1− υ3ξ

υ2ξ

)k
V (ξ (t0)) for all

k ∈ N. Hence,

‖ξ (tk )‖ 6

(
1
υ1ξ

(
1−

υ3ξ

υ2ξ

)k
V (ξ (t0))

) 1
2

6

(
υ2ξ

υ1ξ

(
1−

υ3ξ

υ2ξ

)k
‖ξ (t0)‖2

) 1
2

=

(
υ2ξ

υ1ξ

) 1
2

e−
γ
2 k ‖ξ (t0)‖

where γ = − ln
(
1− υ3ξ

υ2ξ

)
. By using (12) in Lemma 3, the

properties tk ∈ R[kh1,kh2], ∀ k ∈ N/{0} and (t− tk ) ∈ R[h1,h2],
∀ t ∈ [tk , tk+1), k ∈ N, and referring to the exponential
stability analysis ( [19], [23]), it can be shown that

‖ξ‖ 6 µ

(
υ2ξ

υ1ξ

) 1
2

e−
γ
2
k
tk
tk
‖ξ (t0)‖

6 µ

(
υ2ξ

υ1ξ

) 1
2

e
γ
2h2

(t−tk ) e−
γ
2h2

t
‖ξ (t0)‖

6 µ

(
υ2ξ

υ1ξ

) 1
2

e
γ
2 e−

γ
2h2

t
‖ξ (t0)‖

for all t ∈ R>0. Therefore, ξ = 0 is exponentially stable.
Remark 3: I would like to emphasize that

i) In Theorems 1 and 2, it is shown that stabilizability
by sampled-data state feedback and detectability by
sampled-data Luenberger observer imply stabilizability
by sampled-data observer-based output feedback with
aperiodic sampling.

ii) Within the continuous-time domain differently from the
previous results [16]–[21], Theorems 1 and 2 provide
the separation principles for the asymptotic and the
exponential stability of the sampled-data control sys-
tem with aperiodic sampling, respectively. Therefore,
we can examine the separation principles directly via the
continuous-time Lyapunov function like the Lyapunov-
Krasovskii functional in design.

iii) Also, we know that if there exist the Lyapunov-
Krasovskii functionals to guarantee A1 and A2 of The-
orem 1 (or 2) for (6) and (5), respectively, then there
exists the discrete-time Lyapunov function to ensure the
asymptotic (or exponential) stability for the closed-loop
system (4) and (5).
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iv) From Theorems 1 and 2, the separation principle in
the periodic sampling can be proved directly by setting
h := tk+1 − tk and replacing h̃, h1, and h2 by h.

v) If there exist Lyapunov functions satisfyingA1 andA2 in
Theorems 1 or 2, the controller and the observer will be
designed separately for the concerned sampled-data sys-
tems without introducing any additional conservatism
and without considering the perturbation BKe(tk ) in (4).

vi) It is conceivable that Theorems 1 and 2 are extendable
to the separation principle for the polytopic uncertain
systems or the fuzzy systems.

Example 1: Consider the closed-loop system (4) and (5)
with

A =
[
0 1
0 −0.1

]
, B =

[
0
−0.1

]
, C =

[
1 0

]
K =

[
3.75 11.5

]
, L =

[
3.9
3.61

]
for all t ∈ [tk , tk+1), k ∈ N, where A, B, and K are borrowed
from [22], and h̃k ∈ R[0.1,0.5]. To examine the separa-
tion principle for the exponential stability, we should show
that there exist differential functions Ṽx(t, x) and Ṽe(t, e),
υ4x ∈ R>0, υ5x ∈ R>0, υ6x ∈ R>0, υ7x ∈ R>0, υ4e ∈ R>0,
and υ5e ∈ R>0 to guarantee A1 and A2 in Theorem 2.

By solving the LMIs presented in [1, Th. 2]

51 + hi(52 +53) ≺ 0[
51 − hi53 ∗

hiM −hiR3

]
≺ 0

for all i ∈ {1, 2} and the given A, B, and K , we see that the
LMIs are feasible in

P=
[
12.9989 5.2806
5.2806 17.4412

]
R1=

[
0.1088 − 1.4982
−1.4982 4.1918

]
, R2=

[
−1.1762 − 1.5999
5.8791 0.3134

]
R3=

[
16.5883 − 0.1875
−0.1875 16.6261

]
, R4=

[
1.5975 − 0.0703
−0.0703 − 15.4542

]
M =

[
4.0991 8.9841 −2.7278 −0.8245
4.7999 9.3412 −5.0086 −7.5235

]
where

51 = He
{
ET1 PAc −

1
2
ET3 R1E3 − E

T
3 R2E2 − E

T
3 M

}
52 = ATc R3Ac + He

{
ATc R1E3 + A

T
c R2E2

}
53 = ET2 R4E2, Ac =

[
A BK

]
E1 =

[
I 0

]
, E2 =

[
0 I

]
, E3 =

[
I −I

]
.

Thus, from [1, Th. 2], (6) is globally exponentially stable.
That is, taking

Ṽx = xTPx + (tk+1 − t)(x − x(tk ))TR1(x − x(tk ))

+ 2(tk+1 − t)(x − x(tk ))TR2x(tk )

FIGURE 1. ‖x‖ of (6) (dash-dot), ‖e‖ of (5) (dashed), and ‖ξ‖ of (4) and
(5) (solid).

+ (tk+1 − t)
∫ t−tk

0
ẋ(s+ tk )TR3ẋ(s+ tk )ds

+ (tk+1 − t)(t − tk )x(tk )TR4x(tk )

there exist υ4x ∈ R>0 and υ5x ∈ R>0 such that
˙̃V x |(6) 6 −υ4x ‖x(tk )‖2 − υ5x ‖x‖2. Moreover, we know that∥∥∥ ∂Ṽx∂x ∥∥∥ 6 υ6x ‖x(tk )‖ + υ7x ‖x‖ for υ6x ∈ R>2h2‖R1−R2‖ and
υ7x ∈ R>2(‖P‖+h2‖R1‖) since

∂Ṽx
∂x
= 2xTP+ 2(tk+1 − t)((x − x(tk ))TR1 + x(tk )TR2).

In the similar way, we know that (5) is exponential stable
because there exist

Q=
[

18.6128 −11.9065
−11.9065 10.8459

]
S1=

[
1.7680 −0.4232
−0.4232 −1.8542

]
, S2=

[
−2.1770 −2.3488
14.6919 5.9363

]
S3=

[
15.7683 −7.1053
−7.1053 12.1057

]
, S4=

[
−18.8270 25.8112
25.8112 8.5025

]
N =

[
3.4894 14.4677 −25.3414 −0.1459
−1.3443 −3.6786 −7.9210 −13.2503

]
such that

61 + hi(62 +63) ≺ 0[
61 − hi63 ∗

hiN −hiS3

]
≺ 0

for all i ∈ 1, 2 and the given A, C , and L, where

61 = He
{
ET1 QAo −

1
2
ET3 S1E3 − E

T
3 S2E2 − E

T
3 N

}
62 = ATo S3Ao + He

{
ATo S1E3 + A

T
o S2E2

}
63 = ET2 S4E2, Ao =

[
A −LC

]
.

From [1, Th. 2], there exists υ4e ∈ R>0 such that
˙̃V e(t, e)|(5) 6 −υ4e ‖e(tk )‖2 when Ṽe(t, e) : [0,∞) ×
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Rn
→ R is defined as

Ṽe|(5) = eTQe+ (tk+1 − t)(e− e(tk ))T S1(e− e(tk ))

+ 2(tk+1 − t)(e− e(tk ))T S2e(tk )

+ (tk+1 − t)
∫ t−tk

0
ė(s+ tk )T S3ė(s+ tk )ds

+ (tk+1 − t)(t − tk )e(tk )T S4e(tk ).

Therefore, by Theorem 2, we can conclude that the expo-
nential stability of the closed-loop system (4) and (5)
is assured. Fig. 1 shows the simulation results when
(x1(0), x2(0), e1(0), e2(0)) = (1,−1, 0, 0.1). As shown in
Fig. 1, ‖ξ‖ of the closed-loop system (4) and (5) globally
exponentially converges to the origin when both (6) and (5)
are globally exponentially stable. Moreover, we know that the
controller and the observer can be designed separately for
the sampled-data observer-based output feedback control of
the concerned system with aperiodic sampling.

IV. CONCLUSION
This paper proved a separation principle for linear sampled-
data control system with aperiodic, rather than periodic, sam-
pling. The theoretical results show that the stabilizability
by observer-based output feedback can be deduced from
the stabilizability by sampled-data state feedback and the
detectability by sampled-data observer, namely, sampled-data
controller and observer can be designed separately. Sim-
ulation results have validated all of theoretical statements
successfully.

APPENDIXES
APPENDIX A
THE PROOF OF LEMMA 1
i) ⇒ ii) Similar to Va defined in [1], consider
Va(t, x) := −V (x)+ δ

t−tk
h̃k
1V (x(tk )) for δ ∈ R(0,1], which it

satisfies (8) if (7) holds for k ∈ N. It follows from Ṽ (t, x) =
δ t−tk

h̃k
1V (x(tk )), h̃k ∈ R[h1,h2], and (7) that ˙̃V (t, x) =

δ

h̃k
1V (x(tk )) 6 − δ

h2
W3(x(tk )) for all t ∈ [tk , tk+1), k ∈ N.

Thus, defining W4(x(tk )) := δ
h2
W3(x(tk )) implies (9).

ii) ⇒ i) Integrating on both sides of (9) over [tk , tk+1)
and using (8) and h̃k ∈ R[h1,h2] yield 1V (x(tk )) +
1Va(tk , x(tk )) 6 −h̃kW4(x(tk )) ⇒ 1V (x(tk )) 6
−h̃kW4(x(tk )) ⇒ 1V (x(tk )) 6 −h1W4(x(tk )) for k ∈ N.
By defining W3(x(tk )) := h1W4(x(tk )), we see that (7) holds
for k ∈ N.

APPENDIX B
THE PROOF OF LEMMA 2
i) ⇒ ii) In the similar manner to the proof of Lemma 1,
we see that ˙̃V (t, x) = δ

h̃k
1V (x(tk )) 6 −

δυ3
h2
‖x(tk )‖b for all

t ∈ [tk , tk+1), k ∈ N, and hence, choosing υ4 ∈ R(
0, δυ3h2

]
implies (11).
ii)⇒ i) By integrating on both sides of (11) over [tk , tk+1)

and applying (8) and h̃k ∈ R[h1,h2], it can be shown that

1V (x(tk )) 6 −h1υ4 ‖x(tk )‖b for k ∈ N. By choosing
υ3 ∈ R(0,h1υ4], we see that (10) holds for k ∈ N.

APPENDIX C
THE PROOF OF LEMMA 3
By using the state vector ξ , rewrite the closed-loop system
(4) and (5) as an augmented one ξ̇ = Aξ1ξ +Aξ2ξ (tk ), where

Aξ1 = diag{A,A} and Aξ2 =
[
BK −BK
0 −LC

]
. Premultiplying

e−Aξ1t on both sides of the augmented system, integrating
over [tk , t), and taking the norms yield

‖ξ‖ 6

(
e‖Aξ1‖h2 +

∫ t

tk
e‖Aξ1‖(t−s) ds

∥∥Aξ2∥∥) ‖ξ (tk )‖
for all t ∈ [tk , tk+1), k ∈ N. Therefore, by using
h̃k ∈ R[h1,h2], we can choose µ ∈ R>µ with

µ = e‖Aξ1‖h2 + 1
‖Aξ1‖

(
e‖Aξ1‖h2 −1

) ∥∥Aξ2∥∥ such that (12)
holds for all t ∈ [tk , tk+1), k ∈ N.
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