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ABSTRACT This study presents a self-organizing interval type-2 fuzzy asymmetric cerebellar model
articulation controller (MSIT2FAC) design for synchronizing chaotic satellite systems that use a modified
grey wolf optimizer. The proposed control system uses MSIT2FAC as the main controller (which mimics an
ideal controller) and a robust compensation controller (which addresses the approximation error between the
ideal controller and the main controller). The self-organizing algorithm is used to generate the first network
layer. In subsequent iterations, it autonomously increases or decreases the number of network layers using
the tracking error. The adaptive laws for adjusting the parameters for the fuzzy rule for the proposed system
are derived using the gradient descent method. The optimal learning rates for the adaptive laws are achieved
using amodified greywolf optimizer. The Lyapunov stability analysis guarantees the stability of the proposed
algorithm. Finally, the numerical simulation results illustrate the effectiveness of the proposed method.

INDEX TERMS Interval type-2 fuzzy neural network, self-organizing algorithm, cerebellar model articula-
tion controller, asymmetric membership function, chaotic satellite.

I. INTRODUCTION
A satellite system exhibits chaotic behavior under the influ-
ence of gravitational and geomagnetic fields and solar radi-
ation pressure [1]. Synchronization with other satellites
increases the accuracy of satellite missions. The synchroniza-
tion of chaotic satellite systems requires a control input that
forces a slave satellite to conform with a master satellite.
A chaotic satellite is a nonlinear system with a specific sen-
sitivity to the initial conditions, a fractal structure and which
is non-periodic [2]. Recent studies have proposed a variety
of techniques and methodologies to synchronize a chaotic
satellite system, such as fuzzy control [3]–[5], predictive
control [6], sliding mode control [7], control using a neural
network [1], and a linear matrix inequality [8]. However, most
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of these methods are complex and have scope for improve-
ment in terms of synchronization performance. This study
proposes a self-organizing interval type-2 fuzzy cerebellar
model articulation controller (CMAC) with an asymmetric
membership function (AMF) and a modified grey wolf opti-
mizer (MGWO) that allows enhanced synchronization of a
chaotic satellite system.

In recent years, CMAC has been widely used in various
fields [9]–[15]. CMAC is a type of neural network that is
based on a mammalian cerebellum model (associative mem-
ory). Its advantages are that it learns quickly, uses simple
computation and can be generalized [16]. Gaussian mem-
bership functions (GMF) are commonly used in traditional
CMAC networks because parameters can be easily adjusted.
However, similarly to type-1 fuzzy logic systems (T1FLSs), a
CMACwith a type-1GMF (T1GMF) cannot deal with system
uncertainties [17]. In 1975, Zadeh proposed the concept of
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type-2 fuzzy logic systems (T2FLSs), which cope well with
system uncertainties [18]. Interval T2FLSs (IT2FLSs) were
used by Liang and Mendel as a simplified method to com-
pute both the input and antecedent operations for a T2FLS,
in order to reduce the complexity of calculations for these
logic systems [19]. In recent years, T1FLSs and IT2FLSs
have been the subject of many studies [20]–[26]. In 2017,
Pan et al. proposed an adaptive fuzzy proportional deriva-
tive controller with a stable H ∞ tracking guarantee [20].
In 2018, Gil et al. proposed a fuzzy rule interpolation to
optimize traffic light cycles [21]. In 2019, Soto et al. derived
a multiple-input multiple-output fuzzy aggregation model to
predict multiple time series [22]. The results of many studies
show that IT2FLSs perform better than T1FLSs [27]–[30].
IT2FLSs better handle uncertainties and allow a more gen-
eral design with more degrees of freedom [29]. To achieve
better performance, some studies [17], [32]–[36] used a type-
2 GMF (T2GMF) in CMAC structures. Symmetric and fixed
membership functions (MF) are commonly used to sim-
plify the design of CMAC or fuzzy systems. Some studies
in [37], [38] show that a symmetric MF adversely affects a
system’s accuracy. Hellendoorn and Thomas used an AMF
for fuzzy systems [39]. A type-2 AMF (T2AMF) usually
consists of two GMFs as the upper MF and two GMFs as
the lower MF so it accommodates an MF with an uncertain
mean and an uncertain width and its learning capability and
flexibility are increased [37], [40].

The learning rate for an adaptive controller significantly
affects the performance of the system. If the learning rate is
too small, convergence is very slow and the system is easily
trapped in a local minimum. If the learning rate is too large,
the system oscillates, is unstable and does not converge [41].
This study proposes a MGWO that improves the random
searching positions and remembers the best solution, so the
grey wolf optimizer (GWO) has increased search capabil-
ity. The proposed algorithm is then used to optimize the
learning rate for the adaptive laws. The GWO algorithm is
a meta-heuristic algorithm that is inspired by the grey wolf
community hierarchy and hunting mechanisms [42]. Several
studies have used a GWO to solve real-life problems [43]–
[48]. In 2017, Rodríguez et al. introduced a fuzzy hierarchical
operator for a GWO [43]. In 2018, Qais et al. proposed an
optimum parameter for multiple proportional-integral con-
trollers using a GWO [44]. In 2019, Faris et al. demonstrated
an automatic selection of hidden neurons and weights in
neural networks using a GWO [45]. There are several other
optimization algorithms. One study [49] used an enhanced
adaptive fuzzy control that features optimal convergence for
the approximation error. An accelerated cuckoo optimization
algorithm has been used to solve capacitated vehicle routing
problems [50]. A nature-inspired optimization algorithm for
the fuzzy controller is proposed [51]. It is critical that the
network has an appropriate size when designing a fuzzy
controller or a CMAC controller [52]. Many studies use a
trial-and-error approach to address this problem. This study
proposes a network that uses a self-organizing algorithm to

autonomously construct a network structure, which increases
performance. This study constructs a self-organizing inter-
val type-2 fuzzy asymmetric cerebellar model articulation
controller using a MGWO (MSIT2FAC) that allows better
synchronization for a chaotic satellite system. The research
comprises the following: (1) An interval type-2 fuzzy CMAC
controller with AMF is developed; (2) The parameters for
the proposed system are updated online using the gradient
descent method; (3) The AMF increases the learning capabil-
ity and flexibility of the proposed network; (4) The optimal
learning rates for the adaptive laws are derived using the
MGWO; (5) The network structure and the parameters for
the antecedent for the fuzzy rule are determined using the
self-organizing algorithm. Themain contribution of this study
is the design of a new adaptive controller that combines the
advantages of an interval type-2 fuzzy network, an asymmet-
ric membership function, a modified grey wolf optimizer, and
a self-organizing algorithm. Unlike earlier studies [53], [54],
this study proposes a control method, that allows the proposed
control system to increase the network’s learning capability
and flexibility to better deal with the uncertainties and for
which it is easy to design the initial network parameters.

The remainder of this paper is structured as follows.
Section 2 presents the equations for problem formulation in
chaotic satellite systems. Section 3 proposes the structure of
the MSIT2FCA, the parameter learning algorithm, the self-
organizing algorithm, and the MGWO. Section 4 presents
the simulation results of the chaotic satellite synchronization.
Finally, Section 5 presents the study’s conclusions.

II. PROBLEM FORMULATION
A master and slave chaotic satellite systems in [3] is
expressed as:

Master system:

ẋ1(t) = σxx2(t)x3(t)−
1.2
Ix
x1(t)+

√
6

2Ix
x3(t)

ẋ2(t) = σyx1(t)x3(t)+
0.35
Iy

x2(t)

ẋ3(t) = σzx1(t)x2(t)−

√
6
Iz
x1(t)−

0.4
Iz
x3(t) (1)

Slave system:

ẏ1(t) = σxy2(t)y3(t)−
1.2
Ix
y1(t)

+

√
6

2Ix
y3(t)+ d1(t)+1f (y1)+ u1(t)

ẏ2(t) = σyy1(t)y3(t)+
0.35
Iy

y2(t)

+ d2(t)+1f (y2)+ u2(t)

ẏ3(t) = σzy1(t)y2(t)−

√
6
Iz
y1(t)

−
0.4
Iz
y3(t)+ d3(t)+1f (y3)+ u3(t) (2)
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where x(t) = [x1(t), x2(t), x3(t)] and y(t) =

[y1(t), y2(t), y3(t)], respectively denote the chaotic positions
of the master and slave systems; Ix , Iy, and Iz are the prin-
cipal moments of inertia; σx , σy, σz, are the chaotic coef-
ficients, which are written as σx =

Iy−Iz
Ix

, σy =
Iz−Ix
Iy

,

σz =
Ix−Iy
Iz

; d(t) = [d1(t), d2(t), d3(t)] and 1f (y) =
[1(y1),1y2(t),1y3(t)] respectively denote the external
disturbances and the system uncertainties; and u(t) =
[u1(t), u2(t), u3(t)] is the signal for the input control torque.
Equations (1) and (2) can be rewritten in vector form as:

ẋ(t) = G(x(t)) (3)

ẏ(t) = G(y(t))+ d(t)+1f (y(t))+ u(t) (4)

The vector synchronization errors for the two chaotic systems
are defined as e(t) = [e1(t), e2(t), e3(t)] and are written as:

e1(t) = y1(t)− x1(t)

e2(t) = y2(t)− x2(t)

e3(t) = y3(t)− x3(t) (5)

Therefore, the error dynamics are written as:

ė1(t) = σx (y2(t)y3(t)− x2(t)x3(t))−
1.2
Ix
e1

+

√
6

2Ix
e3 + d1(t)+1f (y1)+ u1(t)

ė2(t) = σy (y1(t)y3(t)− x1(t)x3(t))+
0.35
Iy

e2(t)

+ d2(t)+1f (y2)+ u2(t)

ė3(t) = σz (y1(t)y2(t)− x1(t)x2(t))−

√
6
Iz
e1(t)

−
0.4
Iz
e3(t)+ d3(t)+1f (y3)+ u3(t) (6)

Equation (6) can be rewritten in vector form as:

ė(t) = Ge(t)+ f (t)+ d(t)+1f (y(t))+ u(t) (7)

where

G =


−1.2
Ix

0

√
6

2Ix
0

0.35
Iy

0

−
√
6

2Iz
0

−0.4
Iz

 ,

and

f (t) =

 σx (y2(t)y3(t)− x2(t)x3(t))σy (y1(t)y3(t)− x1(t)x3(t))
σz (y1(t)y2(t)− x1(t)x2(t))


From (7), the ideal controller is designed as:

u∗(t) = −Ge(t)− f (t)− d(t)−1f (y(t))− ė(t) (8)

However, the external disturbances and the system uncer-
tainties in (8) cannot be exactly known, so this study uses a
MSIT2FCA controller (which mimics the ideal controller) to
synchronize the master and slave chaotic satellite systems.

III. STRUCTURE OF THE MSIT2FCA
A. T2FLS CMAC WITH AMF
For a class of T2FLS, the λth fuzzy inference rule is:

Rule λ : IF I1 is µ̃1jk and I2 is µ̃2jk , . . . , and Ini is µ̃nijk
Then w̃jk =

[
wjk wjk

]
for λ = 1, 2, . . . , nλ;

i = 1, 2, . . . , ni; j = 1, 2, . . . , nj; k = 1, 2, . . . , nk
(9)

where µ̃ijk and w̃jk are the input and outputMFs, respectively;
nλ is the total number of rules; ni, nj, nk are the number of
inputs, the number of layers, and the number of blocks in each
layer, respectively; wij and wij denote the lower and upper
weight for the fuzzy rules.

Figure 1 shows the structure of a MSIT2FCA, which has
five spaces: an input space, a membership space, a receptive-
field space, a weight memory space, and an output space.
The basic functions and signal propagation for each space are
represented as follows:

1) Input Space: In this space, the input vector
I =

[
I1, I2, . . . , Ini

]T
ε<ni is directly transferred to the next

space without any computation.
2) Association Memory Space: In this multilayered space,

each layer is accumulated as a block. Each block executes
a T2AMF. The output from this space is given by the input
signal I1 and the T2AMF as:

µ ijk =



exp


−

(
Ii − mlijk

)2
2
(
σ lijk

)2
 , Ii ≤ mlijk

1, mlijk ≤ Ii ≤ mrijk

exp


−

(
Ii − mrijk

)2
2
(
σ rijk

)2
 , mrijk ≤ Ii

(10)

µ ijk =



r∗exp


−

(
Ii − mlijk

)2
2
(
σ lijk

)2
 , Ii ≤ mlijk

r, mlijk ≤ Ii ≤ mrijk

r∗exp


−

(
Ii − mrijk

)2
2
(
σ rijk

)2
 , mrijk ≤ Ii

(11)

where µijk and µ
ijk

denote the upper and lower MFs; mlijk
and mrijk a re the means of the two upper GMFs, σ lijk and σ

r
ijk

are the variances of the two upper GMFs, mlijk and mrijk are
the means of the two lower GMFs, and σ lijk and σ

r
ijk are the

variances of the two upper GMFs. Fig. 2 shows the T2AMF,
which uses four GMFs. The following constraints ensure a
reasonable MF:

mlijk ≤ m
l
ijk ≤ m

r
ijk ≤ m

r
ijk

σ lijk ≤ σ
l
ijk ≤ σ

r
ijk ≤ σ

r
ijk

0.5 ≤ r ≤ 1

(12)
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FIGURE 1. The structure of the MSIT2FCA control system.

3) Receptive-Field Space: Using a t-norm operation, the inter-
val value for the multidimensional receptive field is described
as

f
jk
=

ni∏
i=1

µ
ijk

and f jk =
ni∏
i=1

µ ijk (13)

4)Weight Memory Space: In this space, the rule consequence
performs fuzzy operations. The adjustable connecting weight
is denoted by w̃ jk , which is defined as:

w̃ jk =

[
w jk w jk

]
(14)

where

w jk =

[
w 11, . . . w 1nk , . . . , w nj1, . . . ,w njnk

]
∈ <

njnk

w jk =
[
w 11, . . . w 1nk , . . . , w nj1, . . . ,w njnk

]
∈ <

njnk

5) Output Layer: This space uses the receptive-field space
and the connecting weight memory space and functions as a
de-fuzzifier:

ukMSIT2FCA =
ylk + y

r
k

2
=

1
2

∑nj
j=1 f jkwjk∑nj
j=1 f jk

+

∑nj
j=1 f jkwjk∑nj
j=1 f jk


(15)

The control signal, ukMSIT2FCA, is then used to mimic the ideal
controller in (8) to achieve the desired control performance.
The adaptive laws for updating controller parameters are
detailed in the following section.

FIGURE 2. The AMF of the MSIT2FCA control system. (a) The upper MF,
(b) the lower MF, and (c) the combined MF.

B. LEARNING THE PARAMETERS FOR THE MSIT2FCA
The optimal controller u∗MSIT2FCA in (15) is used to approxi-
mate the ideal controller in (8), so:

u∗(t) = u∗MSIT2FCA(w
∗,w∗,ml∗,ml∗,mr∗,mr∗, σ l∗, σ l∗,

σ r∗, σ r∗, t)+ ζ (t) (16)
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where w∗,w∗,ml∗,ml∗,mr∗,mr∗, σ l∗, σ l∗, σ r∗, σ r∗ are the
optimal parameters for w,w,ml,ml,mr ,mr , σ l, σ l, σ r , σ r ,
and the approximation error between the ideal controller and
the optimal controller is denoted by ζ (t).
The optimal parameters w∗,w∗,ml∗,ml∗,mr∗,mr∗,

σ l∗, σ l∗, σ r∗, σ r∗ cannot be obtained, so an estimation con-
troller ûMSIT2FCA estimates (16) as

û (t) = ûMSIT2FCA(ŵ, ŵ, m̂
l
, m̂

l
, m̂r , m̂

r
, σ̂

l
, σ̂

l
, σ̂

r
, σ̂

r
, t)

+ûRB (t) (17)

where ŵ, ŵ, m̂l, m̂
l
, m̂r , m̂

r
, σ̂

l
, σ̂

l
, σ̂

r
, σ̂

r
are the estima-

tions of w∗,w∗,ml∗,ml∗,mr∗,mr∗, σ l∗, σ l∗, σ r∗, σ r∗ and
ûRB is the robust compensator controller, which is used to
eliminate ζ (t) in (16).

The robust compensator controller is defined as

uRB(t) = R̂(t)sgn(s(t)) (18)

The adaptive law for updating the uncertainty bound R̂(t) is:

˙̂R(t) = ηR |s(t)| (19)

where ηR is the learning rate for updating R̂(t); s(t) is the high-
order sliding surface, which is defined as

s(t) = e(n−1) + k1e(n−2) . . .+ kn

∫ t

0
e (τ )dτ (20)

Taking the derivative of (20), then

ṡ(t) = e(n) + KT e (21)

where K = [k1, k2, . . . , kn] is the feedback gain vector.
A Lyapunov function is defined as

V1 (s (t)) =
1
2
s2 (t) (22)

Taking the derivative of (22) and using (7), (17) and (21),
given:

V̇1(s(t))

= s(t)ṡ(t) = s(t)
[
e(n) + KT e

]
= s(t)

[
Ge(t)+ f (t)+ d(t)+1f (y(t))

+

(
ûMSIT2FCA(ŵ, ŵ, m̂

l
, m̂

l
, m̂r , m̂

r
, σ̂

l
, σ̂

l
, σ̂

r
, σ̂

r
, t)

+ ûRB (t)
)
+ KT e

]
(23)

The objective is to tune the value of ŵ, ŵ, m̂l,
m̂
l
, m̂r , m̂

r
, σ̂

l
, σ̂

l
, σ̂

r
, σ̂

r
such that V̇1(s(t)) is minimized, so

s(t) converges rapidly. Using the gradient descent method,
the parameters for theMSIT2FCA control system are updated
as:

ŵjk (t + 1)

= ŵjk (t)− η̂w
∂V̇1(t)
∂ŵjk

= ŵjk (t)− η̂w
∂V̇1(t)

∂ ûMSIT2FCA

∂ ûMSTT2FCA
∂ylk

∂ylk
∂ŵjk

= ŵjk (t)−
1
2
η̂ws(t)

f
jk∑nj

j=1 f jk
(24)

ŵjk (t + 1)

= ŵjk (t)− η̂w
∂V̇1(t)

∂̂ŵjk

= ŵjk (t)− η̂w
∂V̇1(t)

∂ ûMSTT2FCA

∂ ûMST2FCA
∂yrk

∂yrk
∂ŵjk

= ŵjk (t)−
1
2
η̂ws(t)

f jk∑nj
j=1 f jk

(25)

m̂lijk (t + 1)

= ˆmijk (t)− η̂m
∂V̇1(t)

∂m̂lijk

= m̂lijk (t)− η̂m

(
∂V̇1(t)

∂ ûMSTT2FCA

∂ ûMSIT2FCA
∂ ŷlk

∂ ŷlk
∂f

jk

∂f
jk

∂µ
ijk

∂µl
ijk

∂m̂lijk

)

= m̂lijk (t)−
1
2
η̂ms(t)

wjk − ŷ
l
k∑nj

j=1 f jk

( f
jk

µ
ijk

)
∂µ

ijk

∂m̂lijk
(26)

m̂rijk (t + 1)

= ˆmijk
r (t)− η̂m

∂V̇1(t)
∂m̂rijk

= mrjk (t)− η̂m

(
∂V̇1(t)

∂ ûMST2FCA

∂ ûMST2FCA
∂ ŷTk

∂ ŷ′k
∂f

jk

∂f
jk

∂µ
jk

∂µ
ijk

∂m̂ijk

)

= m̂rijk (t)−
1
2
η̂ms(t)

wjk − ŷ
l
k∑nj

j=1 f jk

( f
jk

µ
ijk

)
∂µ

ijk

∂m̂rijk
(27)

σ̂
j
ijk (t + 1)

= σ̂
j
ijk (t)− η̂σ

∂V̇1(t)

∂σ̂
′

ijk

=
ˆσ ljk (t)− η̂σ

(
∂V̇1(t)

∂ ûMSTT2FCA

∂ ûMSTT2FCA
∂ ŷlk

∂ ŷlk
∂f

jk

∂f
jk

∂µ
ijk

∂µ
ijk

∂σ̂
l
ijk

)

= σ̂
l
ijk (t)−

1
2
η̂σ s(t)

wjk − ŷ
l
k∑nj

j=1 f jk

( f
jk

µ
ijk

)
∂µ

ijk

∂σ̂
l
ijk

(28)

σ̂
r
ijk (t + 1)

= σ̂
r
ijk (t)− η̂σ

∂V̇1(t)
∂σ̂

r
ijk

= σ̂
r
ijk (t)− η̂σ

(
∂V̇1(t)

∂ ûMsTT2FCA

∂ ûMSTT2FCA
∂ ŷlk

∂ ŷlk
∂f

jk

∂f
jk

∂µ
ijk

∂µ
ijk

∂σ̂
r
ijk

)

= σ̂
r
ijk (t)−

1
2
η̂σ s(t)

wjk − ŷ
l
k∑nj

j=1 f jk

( f
jk

µ
ijk

)
∂µ

ijk

∂σ̂
r
ijk

(29)

m̂
l
ijk (t + 1)

= m̂
l
ijk (t)− η̂m

∂V̇1(t)

∂m̂
l
ijk
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= m̂
l
ijk (t)− η̂m

 ∂V̇1(t)
∂ ûMSTT2FCA

∂ ûMSTT2FCA
∂ ŷrk

∂ ŷrk
∂f jk

∂f jk
∂µijk

∂µijk

∂m̂
l
ijk


= m̂

l
ijk (t)−

1
2
η̂ms(t)

(
wjk − ŷrk∑nj

j=1 f jk

)(
f jk
µijk

)
∂µijk

∂m̂
l
ijk

(30)

m̂
r
ijk (t + 1)

= m̂rijk (t)− η̂m
∂V̇1(t)
∂m̂rijk

= m̂
r
ijk (t)− η̂m

(
∂V̇1(t)

∂ ûMSTT2FCA

∂ ûMSTT2FCA
∂ ŷrk

∂ ŷrk
∂f jk

∂f jk
∂µijk

∂µijk

∂m̂
r
ijk

)

= m̂
r
ijk (t)−

1
2
η̂ms(t)

(
wjk − ŷrk∑nj

j=1 f jk

)(
f jk
µijk

)
∂µijk

∂m̂
r
ijk

(31)

σ̂
J
ijk (t + 1)

= σ̂
J
ijk (t)− η̂σ

∂V̇1(t)

∂σ̂
J
ijk

= σ̂
l
ijk (t)− η̂σ

 ∂V̇1(t)
∂ ûMST2FCA

∂ ûMST2FCA
∂ ŷrk

∂ ŷrk
∂f jk

∂f jk
∂µjk

∂µjk

∂σ̂
J
ijk


= σ̂

l
ijk (t)−

1
2
η̂σ s(t)

(
wjk − ŷrk∑nj

j=1 f jk

)(
f jk
µijk

)
∂µijk

∂σ̂
l
ijk

(32)

σ̂
r
ijk (t + 1)

= σ̂
r
ijk (t)− η̂σ

∂V̇1(t)

∂σ̂
r
ijk

= σ̂
r
ijk (t)−

1
2
η̂σ s(t)

(
wjk − ŷrk∑nj

j=1 f jk

)(
f jk
µijk

)
∂µijk

∂σ̂
r
ijk

(33)

where η̂w, η̂m, η̂σ are the positive learning rates.

In (26)–(33), terms
∂µ

ijk

∂m̂lijk
,
∂µ

ijk
∂m̂rijk

,
∂µ

ijk

∂σ̂ lijk
,
∂µ

ijk
∂σ̂ rijk

and
∂µijk

∂m̂
l
ijk

,
∂µijk

∂m̂
r
ijk
,

∂µijk

∂σ̂
l
ijk

,
∂µijk

∂σ̂
r
ijk

are calculated depending on the input region as

presented below.
For updating the lower MFs:
Region (I): Ii ≤ mlijk

∂µ
ijk

∂m̂lijk
= µ

ijk

(
Ii − mlijk

)
(
σ lijk

)2 ,
∂µ

ijk

∂σ̂
l
ijk

= µ
ijk

(
Ii − mlijk

)2
(
σ lijk

)3 ,

∂µ
ijk

∂m̂rijk
= 0,

∂µ
ijk

∂σ̂
r
ijk
= 0 (34)

Region (II): mlijk ≤ Ii ≤ mrijk

∂µ
ijk

∂m̂lijk
= 0,

∂µ
ijk

∂σ̂
l
ijk

= 0,
∂µ

ijk

∂m̂rijk
= 0,

∂µ
ijk

∂σ̂
r
ijk
= 0 (35)

Region (III): mrijk ≤ Ii

∂µ
ijk

∂m̂lijk
= 0,

∂µ
ijk

∂σ̂
l
ijk

= 0,
∂µ

ijk

∂m̂rijk
= µ

ijk

(
Ii − mrijk

)
(
σ rijk

)2 ,

∂µ
ijk

∂σ̂
r
ijk
= µ

ijk

(
Ii − mrijk

)2
(
σ rijk

)3 (36)

For updating the upper MFs:
Region (I): Ii ≤ mlijk

∂µ ijk

∂mlijk
= µ ijk

(
Ii − mlijk

)
(
σ lijk

)2 ,
∂µ ijk

∂σ lijk
= µ ijk

(
Ii − mlijk

)2
(
σ lijk

)3 ,

µ ijk

∂mrijk
= 0,

∂µ ijk

∂σ rijk
= 0 (37)

Region (II): mlijk ≤ Ii ≤ mrijk

∂µ ijk

∂mlijk
= 0,

∂µ ijk

∂σ lijk
= 0,

µ ijk

∂mrijk
= 0,

∂µ ijk

∂σ rijk
= 0 (38)

Region (III): mrijk ≤ Ii

∂µ ijk

∂mlijk
= 0,

∂µ ijk

∂σ lijk
= 0,

µ ijk

∂mrijk
= µ ijk

(
Ii − mrijk

)
(
σ rijk

)2 ,

∂µ ijk

∂σ rijk
= µ ijk

(
Ii − mrijk

)2
(
σ rijk

)3 (39)

By utilizing the adaptive laws given in (24)–(33), the estima-
tion parameters for ûMSIT2FCA can be obtained.

Proving the convergence:

Defined as ζ ϕ (t) =
∂ ûMSIT2FCA

∂ϕ
(40)

where ϕ = ŵ, ŵ, m̂l
, m̂

l
, m̂r

, m̂
r
, σ̂

l
, σ̂

l
, σ̂

r
, σ̂

r

Consider the derivative of the Lyapunov function in (22)
using the gradient descent method, which is obtained by:

V̇ (s(t + 1)) = V̇ (s(t))+1V̇ (s(t))

∼= V̇ (s(t))+
[
∂V̇ (s(t))
∂ϕ

]T
1ϕ (41)

where 1V̇ (s(t)) and 1ϕ, respectively, are the change in
V̇ (s(t)) and ϕ.
Applying the chain rule yields the following:

∂V̇ (s(t))
∂ϕ

=
∂V̇ (s(t))
∂ ûsTTRCA

∂ ûMSTT2FCA
∂ϕ

=
∂s(t)ṡ(t)

∂ ûMSTT2FCA

∂ ûMSIT2FCA
∂ϕ

(42)
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From (24) and (41), it is obtained that:

∂V̇ (s(t))
∂ϕ

=
1
2
s(t)

∂ ûMSIT2FCA
∂ϕ

=
1
2
s(t)ζϕ(t) (43)

From (24)–(33), 1ϕ can be represented as

1ϕ = −η̂z
∂s(t)ṡ(t)
∂ϕ

= −
1
2
η̂ϕs(t)ζϕ(t) (44)

Using (41), (43), and (44), it is obtained that

1V̇ (s(t)) =
[
∂V̇ (s(t))
∂ϕ

]T
1ϕ

=

[
1
2
s(t)ζ ϕ(t)

]T [
−
1
2
η̂ϕs(t)ζ ϕ(t)

]
= −

1
2
η̂ϕ(s(t))2

(
ζ ϕ(t)

)2 (45)

In (45), if η̂ϕ is chosen as a positive value, then 1V̇ (s(t)) is
a negative semi-definite, so s (t) is bounded. The control law
ûMSIT2FCA ensures that the system is stable. For the proposed
MSIT2FCA, the network parameters are tuned online using
the derived adaptive laws that are shown in (24)-(33). Correct
learning rates must be used for these adaptive laws because
they have a significant effect on the control performance.
This study uses a MGWO algorithm to determine the opti-
mal learning rates. The controller’s parameters can then be
learned to achieve quick convergence for the control systems.
The detail of theMGWOalgorithm is presented in the follow-
ing section.

C. THE MGWO
According to [42], the grey wolves’ hunting mechanisms are
based on the leadership strategy, in which each grey wolf can
adjust their position based on the best position, the second-
best position, and the third-best position in the swarm. In this
study, in order to improve the searchability of the GWO,
an MGWO based on enhancing the random searching posi-
tions and memoing the best solution is proposed.

The formula for updating the position of the MGWO is:

EDα

=

∣∣∣ EC1.EXα − EX
∣∣∣ ; EDβ = ∣∣∣ EC2.EXβ − EX

∣∣∣ ; EDδ = ∣∣∣ EC3.EXδ − EX
∣∣∣

(46)
EX1

=

∣∣∣EXα−EA1. EDα∣∣∣ ; EX2= ∣∣∣EXβ − EA2. EDβ ∣∣∣ ; EX3= ∣∣∣EXδ − EA3. EDδ∣∣∣
(47)

EX (t + 1)

=
EX1 + EX2 + EX3

3
+ F

[
φ1; φ2; . . . ; φnd

]
(48)

where EXα , EXβ , EXδ respectively represent the best position,
the second-best position and the third-best position for the
grey wolves in the swarm; EX is the current position of a grey
wolf; EC1, EC2, EC3 and EA1, EA2, EA3 are the coefficient vectors.
EDα , EDβ , EDδ respectively denote the distance vectors between

FIGURE 3. The flowchart for the MGWO algorithm.

the EXα , EXβ , and EXδ value, and the current position of a grey
wolf. EX1, EX2, and EX3 are the position vectors for calculating
the next position of a grey wolf EX (t + 1), and φnd is the
random coefficient factor in [0, 1] for the nd dimension of
the searching space. F is the variable that is used to adjust the
value of φnd , which is given by:

F = 0.05∗
(
satlin

(
‖e(t)‖4

))
(49)

The coefficient vectors EA and EC are written as:

EA = 2ar1 − a; EC = 2r2 (50)

where a is a number that linearly decreases from 2 to 0 over
the course of the iterations and r1 and r2 are random numbers
in [0, 1].

The fitness function is chosen as:

fitness = (e1(t)+ e2(t)+ e3(t))2 (51)

As shown in Eq (48), the random coefficient factor φnd will
make the grey wolves in the swarm moving more random
in nd demension of searching space. In (50), vectors EA and
EC contains random values r1 and r2. According to [42],
swarm solutions tend to diverge from the prey when |A| > 1
(exploration operation) and converge towards the prey when
|A| < 1 (exploitation operation). The same can be said for
vector C, if C> 1, the stochastically emphasize operation will
occurred, contrarily, if C< 1, the deemphasize operation will
occurred.

Unlike the original GWO in [42], this study’s MGWO
develops the terms F and φnd in the formula for updating
the grey wolf’s position. These terms increase the searching
performance for the GWO and avoid convergence to a local
optimum. For this study’s MGWO, the best position in each
iteration is stored and is only updated when a better position
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FIGURE 4. The scheme for the chaotic synchronization systems.

becomes apparent in the next iteration. TheMGWO is used to
optimize the learning rates η̂w, η̂m, η̂σ for the adaptive laws.
Fig. 3 shows the flowchart for the MGWO algorithm.

D. STRUCTURE LEARNING FOR THE MSIT2FCA
In terms of the network structure for MSIT2FCA, the num-
ber of layers in the association memory space significantly
affects the system’s performance. If there are too few layers,
the system may not be relevant to all cases, especially if
there is a broad range of inputs. If there are too many layers,
the computation time is excessive. This section details the
self-organizing algorithm that autonomously determines the
structure of the MSIT2FCA controller. The mechanism to
generate a new MF or to prune an unused MF uses the mem-
bership grade that, corresponds to the current input signal.

The condition for generating a new AMF is:

µimax < Gth (52)

where Gth is the generating threshold and µimax is the maxi-
mum membership grade of the ith input, which is written as:

µimax = max[
µi11, . . . , µi1nk , µi21, . . . , µi2nk , . . . , µinj1, . . . , µinjnk

]
(53)

where the average MF, µijk , is:

µijk =
µ
ijk
+ µijk

2
(54)

The parameters for the new AMF are defined as[
mlijk ,m

l
ijk ,m

r
ijk ,m

r
ijk

]
= [(Ii − 2α) , (Ii − α) , (Ii + α) , (Ii + 2α)] (55)

FIGURE 5. The synchronization of the chaotic satellite systems using the
MSIT2FCA controller in example 1. (a) Trajectories projected on the
three-dimensional plane. (b) Trajectories projected on the x1–x2 plane.
(c) Trajectories projected on the x1–x3 plane. (d) Trajectories projected on
the x2–x3 plane.

[
σ lijk , σ

l
ijk , σ

r
ijk , σ

r
ijk

]
= [(σinit − 2β) , (σinit − β) , (σinit + β) , (σinit + 2β)]

(56)
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FIGURE 6. The trajectory and synchronization results using various
controllers in example 1.

FIGURE 7. The control signals using various controllers in example 1.

FIGURE 8. The tracking errors using various controllers in example 1.

where α and β respectively represent the uncertainty in the
mean and the uncertainty in the variance and σinit is the initial
value of the variance.

The condition for deleting an unused AMF is:

µimin < Dth (57)

FIGURE 9. The layer adjustment of the MSIT2FCA controllers in example 1.

FIGURE 10. The online adjustment of the learning rates using the MGWO
in example 1.

where Dth is the deletion threshold and µimin is the minimum
membership grade of the ith input, which is written as:

µimin = min[
µi11, . . . , µi1nk , µi21, . . . , µi2nk , . . . , µinj1, . . . , µinjnk

]
(58)

This autonomously increasing and decreasing MF is used to
optimize the structure of the MSIT2FCA controller.

IV. ILLUSTRATIVE EXAMPLES
The estimation controller, û (t), in (17) is used to ensure that
a slave system y(t) follows a master system x(t) in order to
contain the tracking errors e(t) in a small bounded region.
Fig. 4 shows the scheme for the chaotic synchronization
systems that use the MSIT2FCA controller.

As in [3], the initial conditions for both the mas-
ter and slave satellite systems are x(0) = [3, 4, 2],
y(0) = b1, 2, −4c, the principal moments of inertia are
Ix = 3, Iy = 2, Iz = 1, the external disturbances are
d(t) = [cosπ t, 0.5 cos t, 1.5 cos 2t]T , and the system uncer-
tainties are 1f (t) = [0.8y1, 0.8y2, 0.8y3]T . In order to
decrease the computational burden, the maximum number of
layers is limited to five and the minimum number of layers is
one. TheMGWO algorithm is used to optimize three learning
rates η̂w, η̂m, η̂σ for the adaptive laws, then the dimension
of the searching space is chosen as nd = 3; the population
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FIGURE 11. The synchronization of the chaotic satellite systems using the
MSIT2FCA controller in example 2. (a) Trajectories projected on the
three-dimensional plane. (b) Trajectories projected on the x1–x2 plane.
(c) Trajectories projected on the x1–x3 plane. (d) Trajectories projected
on the x2–x3 plane.

size is chosen as np = 20. The parameter values for the self-
organizing algorithm are Gth = 0.15, Dth = 0.01, α = 0.02,
σinit = 0.3, β = 0.05, and the sampling time is 0.001 s.

FIGURE 12. The trajectory and synchronization results using various
controllers in example 2.

FIGURE 13. The control signals using various controllers in example 2.

FIGURE 14. The tracking errors using various controllers in example 2.

The performance of the synchronization system is calcu-
lated using the root mean square error (RMSE), which is
written as:

RMSE =

√√√√ 1
ns

ns∑
s=1

(
(e1s)2 + (e2s)2 + (e3s)2

)
(59)
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FIGURE 15. The layer adjustment of the MSIT2FCA controllers
in example 2.

FIGURE 16. The online learning rate adjustment using the MGWO
in example 2.

where ns is the number of samples and e1s, e2s, e3s is the
tracking error for the sth sample.
Two examples of chaotic satellite synchronization are

demonstrated in the simulation. The first simulation involves
no external disturbances or system uncertainties (shown
in Figs. 5–10). Fig. 5 shows the process of synchroniza-
tion for the three-dimensional chaotic satellite systems using
the MSIT2FCA controller. Fig. 6 shows the trajectories and
synchronization results for various controllers. Figs. 7 and
8 respectively show the control signals and tracking errors
for a synchronized chaotic satellite system. Fig. 9 shows
how the number of layers in the MSIT2FCA controller is
adjusted using a self-organizing algorithm. Fig. 10 shows the
adjustment of the online learning rate using the MGWO. The
synchronization tracking errors in the chaotic satellite system
rapidly converge to zero and synchronization is achieved
quickly.

The simulation results for the synchronization of a chaotic
satellite systems with external disturbances and system
uncertainties are illustrated in Figs. 11–16. Fig. 11 shows the
synchronization for the three-dimensional chaotic satellite
systems using the MSIT2FCA controller. Fig. 12 shows
the trajectories and synchronization results for various con-
trollers. Figs. 13 and 14 respectively show the control signals
and tracking errors for a synchronized chaotic satellite sys-
tem. Fig. 15 shows the adjustment of the number of layers

TABLE 1. Comparison results in RMSE synchronization of the chaotic
satellite system.

for the MSIT2FCA controllers using the self-organizing
algorithm. Fig. 16 shows the adjustment of the online learning
rate using the MGWO. The synchronization tracking errors
for the chaotic satellite system quickly converge to zero,
so synchronization is achieved quickly. This example demon-
strates that the proposed controller addresses external distur-
bances and system uncertainties.

The simulation results in Figs. 9 and 15 verify that the
MSIT2FCA controllers quickly construct suitable network
layers using the self-organizing algorithm. Figs. 10 and
16 show that the MGWO allows the proposed controller
to rapidly converge to a suitable value so it synchronizes
a chaotic satellite system with the smallest tracking errors.
A comparison of the RMSE for the proposed controller
and other control methods is shown in Table 1. It is seen
that the proposed MSIT2FCA controller ensure better syn-
chronization than a type-2 fuzzy-brain emotional-learning
controller (T2FBELC) [31], an interval type-2 Petri CMAC
(IT2PCMAC) [52], or the proposed controller without the
MGWO algorithm (SIT2AFC). The simulation program code
is given in [55].

V. CONCLUSION
This study determines the optimal network structure and
the optimal learning rate for a MSIT2FCA using a self-
organizing algorithm and a MGWO. The adaptive laws for
the online updating of network parameters are derived using
the gradient descent method. An AMF is used to increase the
learning capability and the flexibility of the proposed net-
work. Two examples of simulated synchronization of chaotic
satellites verify the effectiveness of the proposed system.
The comparison shows that the proposed controller addresses
external disturbances and system uncertainties to give the
best synchronization performance. Future study will estimate
the generation and deletion thresholds that achieve the best
control performance.
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