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ABSTRACT Lucky imaging is a high-angular resolution astronomical image reconstruction technique that
can effectively reduce the impact of atmospheric turbulence on image quality and improve the imaging
resolution of ground-based telescopes. Its key steps include image selection, registration and superposition.
However, the lucky imaging algorithms based on a central processing unit (CPU) encounter difficulty
accomplishing real-time processing; thus, they are post-processing methods and cannot meet the needs of
on-site observers. Taking advantage of the parallelism and flexibility of the field programmable gate array
(FPGA), this paper presents a new real-time lucky imaging algorithm that features real-time processing
and dynamic updating and displaying. The algorithm consists of a dynamic sorting-free image selection
algorithm, an improved registration and storage method, a parallel superposition algorithm, a parallel prepro-
cessingmethod for noise suppression and cosmic ray removal, and a dynamicmultithreshold display scheme.
The simulation results show that the algorithm is feasible, effective and efficient. Compared with other
lucky imaging algorithms based on FPGAs, this algorithm shows great advantages in clock consumption and
on-chip resource consumption. Furthermore, it can be implemented on a small or medium-size development
board of an FPGA. Moreover, the implemented FPGA system can perform real-time and dynamic lucky
imaging for more than 10,000 frames of short-exposure images with an original format of 512 × 512
pixels continuously. The experimental results not only show the validity of the proposed algorithm but also
demonstrate the feasibility of the proposed implementation techniques for the FPGA-based algorithm.

INDEX TERMS Astronomical observation, data reduction, FPGA, lucky imaging, real-time processing.

I. INTRODUCTION
Atmospheric turbulence is an irregular and random move-
ment in the atmosphere. Physical properties such as pressure,
velocity and temperature at each point of the turbulence fluc-
tuate randomly, making the distribution of the atmospheric
refractive index non-uniform. After the starlight is transmit-
ted through the atmosphere, its wavefront is distorted, causing
star twinkling and swaying and, more seriously, starlight
spreading, which makes the star a blob rather than a point.
Finally, a long-exposure image of the observed star becomes
a Gaussian image with large full width at half-maximum
(FWHM), while the continuously short-exposure images of
the star are composed of speckles of different shapes with
random changes that have their center within a certain range.
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The atmospheric turbulencemakes the actual resolution of the
telescope much lower than the diffraction limited resolution
of the telescope, which is a major factor limiting the spatial
resolution of the ground-based medium-sized and large opti-
cal telescope [1], [2].

To obtain star images with resolution close to the
diffraction limit of ground-based telescopes, several active
and passive techniques are employed, i.e., sophisticated and
expensive adaptive optics (AO) [3] and low-cost image recon-
struction techniques. Lucky imaging (LI) is a simple and
effective astronomical image reconstruction technique for
reducing or even removing effects of the atmospheric turbu-
lence [4], [5]. The classical lucky imaging technique based on
a CPU is an image post-processing method. An electron mul-
tiplying charge-coupled devices (EMCCD) camera [6], [7]
is usually used to capture a large number of short-exposure
astronomical images, and a computer is used to save these
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images. After the observation, all the images are processed
by a computer equipped with a software package of the
lucky imaging algorithm, and finally a high-angular resolu-
tion astronomical image can be obtained. The classical lucky
imaging algorithm consists of three basic processes, namely,
image selection, registration and superposition. By analyzing
the high-resolution images, astronomers can discover new
dim celestial bodies, calculate their precise positions and
determine their orbital elements [8], [9].

It is effective to use CPU-based platforms to study the
lucky imaging algorithm. Due to the serial processing char-
acteristics of a CPU, its computing power is limited, so the
lucky imaging systems based on CPUs suffer from prob-
lems of long running time and no real-time performance.
During the short-exposure observations using EMCCD, due
to the atmospheric turbulence effect, observers do not know
much about the real-time states (i.e., position, shape and
brightness) of the celestial bodies in the captured images,
especially the information of those dimmer celestial bodies.
This makes it difficult for observers to detect and correct
possible deviations or errors in the observation in time, which
may result in invalid observational data and waste valuable
observation time. This is especially serious for observers with
less experience in lucky imaging observations. Therefore,
it is an important research field to build a high-speed and
even real-time lucky imaging system by using new processing
hardware with great computing power and to study new fast
lucky imaging algorithms [2], [5], [10], [21].

In the recent decade, the graphics processing unit (GPU)
and field programmable gate array (FPGA) with powerful
parallel processing capabilities have been introduced into the
field of image processing as hardware accelerators [11]–[13].
Although the GPU has great parallel processing capability, its
real-time performance is not as good as that of FPGA. AGPU
only has data parallelism, while an FPGA has both data
parallelism and pipeline parallelism. In addition, a GPU is far
less flexible than an FPGA. Once a system based on a GPU
is built, its hardware resources cannot be adjusted according
to actual needs. However, an FPGA can be programmed
according to the actual needs [14] to realize reconfigurable
computing [15]. This is the main reason why an FPGA is
chosen as the hardware accelerator in this paper.

The main contributions of this study include the following
two aspects:
(1) The authors propose a new real-time lucky imag-

ing algorithm that consists of three main processes:
real-time image preprocessing (Gaussian filtering, cos-
mic ray removal), real-time lucky imaging (dynamic
sorting-free image selection, improved image registra-
tion and storage, and parallel superposition), and multi-
ple threshold display.

(2) The authors design and implement the new algorithm
on a small and medium-scale FPGA, during which sev-
eral new techniques and methods were proposed and
successfully tried, such as a sorting-free image selec-
tion method based on on-chip RAM, a parallel image

registration and storage method based on DDR3, a par-
allel image superposition technique, and an on-site
adjustable multithreshold image display scheme.

II. RELATED WORK
The key of astronomical lucky imaging with FPGA is not
to propose a whole new complex imaging algorithm but
rather to determine how to improve and modify the existing
CPU-based software programming algorithm according to
the characteristics of FPGA, describe lucky imaging with
hardware description language (HDL), and implement the
modified algorithm on an FPGA device of extremely lim-
ited on-chip resources. At present, there are only two lucky
imaging systems based on FPGA; one is FastCam, which has
been put into actual observation, and the other is a test system
developed by Zhao, Li et al. in our laboratory.
In 2008, the team of Oscoz and Piqueras first implemented

the lucky imaging using an FPGA and built an FPGA-based
lucky imaging system–FastCam, with which astronomical
observations were carried out and real-time high-resolution
images were obtained [16]. The FastCam system employs
a high-performance Vertex-4 FPGA and its development
board manufactured by Xilinx. The front-end EMCCD cam-
era outputs images of 512 × 512 pixels that are transmitted
to the FPGA development board through Gigabit Ethernet.
These images are cut into small images of 128 × 128 pixels
and processed by a real-time lucky imaging algorithm. Then,
the reconstructed high-resolution image is obtained and out-
put to a video graphics array (VGA) displayer. At the same
time, the resulting image is transmitted to a personal com-
puter (PC) through Gigabit Ethernet and saved. FastCam
also has its limitations: (1) Because the FastCam system
only uses the FPGA on-chip random access memory (RAM)
as the image storage unit instead of synchronous dynamic
random accessmemory (SDRAM) on the development board,
the FastCam can only process cropped small images with
128 × 128 pixels. As Piqueras reported, the real-time algo-
rithm can handle large images up to 512× 512 pixels, but in
fact, due to the limitations of on-chip RAM resources, even
using a newly launched Vertix-7 FPGA does not enable the
FastCam system to process the original image of 512 × 512
pixels. (2) The number of real-time processing frames is fixed
to 2048. (3) Unlike most classical lucky imaging algorithms,
the FastCam does not use a constant percentage but uses a
real-time threshold to select good images. If the peak flux
count of the brightest speckle in the current image is greater
than the real-time threshold, this image is selected for reg-
istration and superposition, and at the same time, the real-
time threshold will be updated; otherwise, this image will
be discarded. This may result in the selected and super-
imposed images that are not exactly the images with the
maximum instantaneous Strehl ratio (i.e., peak flux count)
in the 2048 frames. (4) Because the FastCam does not
remove the images containing cosmic rays, the FastCam will
directly select these images for registration and superposition,
and the real-time threshold will become very large, causing

VOLUME 8, 2020 52193



J. Wang et al.: New Real-Time LI Algorithm and Its Implementation Techniques

subsequent good images to be selected no longer. These
shortcomings will limit the processing ability and imaging
effect of the system. Moreover, their papers only introduce
the system structure and the basic framework of the algorithm
and the experimental results and do not describe the spe-
cific algorithms and implementation techniques. Especially,
no methods for determining or calculating three key parame-
ters (i.e., two configurable input thresholds and one real-time
threshold) for image selection are introduced. All of these
make it impossible for others to reliably simulate the FastCam
algorithm on PCs and repeat their experiments.

In 2018, Zhao et al. in our laboratory built an FPGA-based
lucky imaging system using a low-cost Spantan-6 FPGA
manufactured by Xilinx and its development board. This
system can only process 1,000 frames of cropped images of
128 × 128 pixels, and only use a single threshold for dis-
play processing. Zhao’s paper details the specific design and
implementation of each processing module in an FPGA [10].
This is just a test system for validating the FPGA-based algo-
rithm. Although the test system realizes the function of lucky
imaging, there are also some shortcomings, such as a serial
peripheral interface (SPI) for a secure digital memory (SD)
card that is used in the image transmission link, the overly
simple and direct hardware description of the lucky imag-
ing algorithm, and the few parallel processing links in the
design and implementation process. Although the function
and timing sequence of each subalgorithm and its module
are divided clearly and independently, the comprehensive
resource utilization and clock efficiency are low, resulting in a
processing capability and speed of the test system that cannot
meet the real-time requirements with a performance far from
the FastCam system.

In 2019, Duan et al. in our laboratory built an improved
version of Zhao’s system [21]. In Duan’s system a Gigabit
Ethernet link is used instead of the SPI link for image trans-
mission, but Duan’s lucky imaging algorithm is the same as
Zhao’s, and main function modules related to the algorithm
are transplanted from Zhao’s system. Compared with Zhao’s
system, the total running time of Duan’s system is greatly
reduced, but the processing speed of the lucky imaging algo-
rithm itself is not improved substantially.

To break through the limitations of the FastCam system and
solve the problems of Zhao’s and Duan’s system, we propose
a new FPGA-based lucky imaging algorithm different from
the existing algorithms (i.e., the classical algorithm, the Fast-
Cam and Zhao’s algorithm). Compared with the existing
algorithms, the proposed algorithm has 5 key innovations:
(1) real-time Gaussian filtering and cosmic ray removal,
(2) parallel and dynamic image selection without sorting,
(3) parallel and dynamic registration with off-chip memory,
(4) parallel superposition, and (5) multithreshold displaying.
Compared with the FastCam and Zhao’s system, the system
based on the proposed algorithm has 5 new functions: (1) by
using double-data-rate three synchronous dynamic random
access memory (DDR3 SDRAM, short for DDR3) as the
registered image storage unit, the original EMCCD image of

512 × 512 pixels can be processed; (2) real-time processed
images are up to 10,000 frames or more; (3) the real-time
image selection rate is a constant 1% to ensure that the
selected images are the ones with the highest peak ranking
in all images; (4) the original images are filtered with a
Gaussian filter and the frames with cosmic rays are removed;
and (5) nine real-time thresholds are used to binarize the
reconstructed images that are displayed on a VGA displayer
and transmitted back to the PC via Gigabit Ethernet.

This paper describes the proposed algorithm, the over-
all framework of the system implemented, and the specific
design and implementation of each FPGA processing mod-
ule. Some simulation or test experiments are designed to
verify the specific algorithms and modules. The FPGA sys-
tem was tested by using a large number of short-exposure
images observed on the astronomical telescope with a diame-
ter of 2.4 m at the Lijiang Observatory, Yunnan Observatory,
Chinese Academy of Sciences, and the performance of the
system is analyzed and discussed.

III. REAL-TIME LUCKY IMAGING ALGORITHM, ITS FPGA
DESIGN AND IMPLEMENTATION
Different from the algorithm design and system implemen-
tation based on the PC platform, those based on FPGAs
are closely related to the hardware platform. Because of
the continuity of the research, the hardware implementation
platform and software development environment for testing
the new real-time lucky imaging algorithm are the same as
that of Zhao’s and Duan’s system in our laboratory [10], [21],
that is, an ALINX 516 FPGA development board has a
XC6SLX16 device in the Xilinx Spartan-6 family, a Dell
workstation has a Xeon-E5620 CPU, the FPGA design and
development environment is ISE Design Suite 14.7, and the
verification and debugging tools for hardware design are
Xilinx ChipScope Pro 14.7 and Mentor Graphics ModelSim
SE 10.5, a simulation tool for algorithm testing is a PC with
a Core i5-3230M, Windows 7 and MATLAB R2016a. This
section introduce the new real-time lucky imaging algorithm,
and then introduce the algorithm implementation techniques
on the FPGA.

A. NEW REAL-TIME LUCKY IMAGING ALGORITHM
1) DESCRIPTION OF THE ALGORITHM
This novel FPGA-based real-time lucky imaging algo-
rithm is different from the conventional CPU-based lucky
imaging algorithm [1], [4], [18], and also different from
FastCam and Zhao’s FPGA-based real-time lucky imaging
algorithms [2], [10], [16]. Firstly the proposed algorithm uses
a Gaussian filter and a cosmic ray removal process to denoise
the input images, and then uses a constant percentage of
image selection for dynamic image selection that does not
require any sorting operations. After that, it only registers
and stores the selected images by DDR3 ping-pong access
operations, and dynamically superimpose the registered
images to obtain high-resolution resulting images; finally,
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uses 9 piecewise thresholds to binarize the resulting images
and dynamically updates the VGA display.

Let n stand for the current number of input frames, s for
the constant percentage of image selection, m for the current
number of selected images, nr and nc for the number of rows
and columns of the registered images, respectively. The m
is the nearest integer greater than or equal to n × s, that is,
m = ceil(n × s). The proposed real-time lucky imaging
algorithm can be described as follows:

(1) Initialization: the initial values of n and m are 1, and
the initial peak flux count x0 is the median of the peak
counts of the three pre-captured images;

(2) Receive serial input astronomical images continu-
ously, and perform Gaussian filtering with a 3 × 3
window for the current frame (nth frame);

(3) Find the peak information of the nth image, that is,
the peak flux count and its location;

(4) Calculate an adaptive threshold according to
Equation (1) given in Section III-C;

(5) By comparing the peak count with the adaptive thresh-
old, determine whether the nth image contains cos-
mic rays. If yes, discard the current frame and go to
step (2);

(6) Create an FPGA on-chip RAM area of m + 1 units
(called peak information register, 32 bits per unit) to
store the peak information of the selected images and
the current image; and create a DDR3 memory area of
nr×nc× (m+1)×2 bytes to store the selected images
after registration;

(7) Stored the current image peak information in RAM
Unit m+ 1.

(8) Compare the m+1 peak counts in these RAM units to
find an address of RAM Unit k (i.e., address k) where
the minimum value is located;

(9) Write the current peak information from RAM Unit
m+ 1 to RAM Unit k;

(10) Crop the current imagewith its peak pixel as the center,
and store the resized image of nr× nc pixels in Block
k of the DDR3 memory;

(11) If n = 1, go to step (13);
(12) Compare the value of the current address k with that

of the last address k. If they are the same, that is, the k
is not updated, go to step (16);

(13) Superimpose all registered images stored in m
DDR3 blocks in parallel;

(14) Binarize the superimposed image by using several
thresholds that form an arithmetic progression;

(15) Integrate these binary images into one image and then
sent it to a VGA monitor for display;

(16) Update the values n and m, that is, n = n + 1,
m = ceil(n× s), and go to step (2).

In the above procedure, step (1) is designed for initializa-
tion of the algorithm, steps (2) to (5) for receiving the input
images and performing image pre-processing to suppress
noise, steps (6) to (9) for selecting good images, step (10)

for registering and storing the selected images, and steps (11)
to (16) for dynamically updating and displaying the resulting
image, of which step (12) for triggering the update of the
resulting image according to the update of the address k,
step (13) for reading and superimposing the selected images,
and steps (14) to (15) for enhancing and displaying the result-
ing image.
It can be seen from the above algorithm flow that the

proposed image selection algorithm is performed according
to a fixed selection ratio. This is similar to the conventional
algorithm, but it does not perform the global comparison and
sorting like the conventional algorithm. Because the selection
percentage s is small, only a small number of comparison
operations are required in the selection process. As a result,
the calculation amount is greatly reduced. Due to the fixed
selection ratio, it is also different from the real-time threshold
selection scheme of the FastCam. This sorting-free image
selection algorithm is the biggest highlight of the proposed
real-time lucky imaging algorithm.
If the proposed algorithm is implemented on a FPGA, after

the system is powered on, as long as there is an image input,
the above process will continue. Since only a small number of
selected images need to be stored in the DDR3, it can contin-
uously process up to 10,000 frames of input images without
limiting the number of input images like the existing real-time
lucky imaging systems. Since the number of selected images
m increases gradually with the increase of the number of
input images n, the amount of the FPGA on-chip RAM and
the off-chip DDR3 is gradually increased; at the same time,
the address k changes with the result of the selected images,
thus the lucky imaging results are dynamically updated. It can
be said that with the continuous input of the images, the lucky
imaging process is dynamically adjusted.

2) VERIFICATION OF THE ALGORITHM
As seen from the above process, although the image selection
in this algorithm is based on a fixed percentage, due to the par-
allel processing characteristics of FPGA, the image selection
can be performed simultaneously with the image input. With
the image input, therefore, the selection is carried out grad-
ually or dynamically through simple comparison operations
(that is, no sorting is required); while in the conventional post-
processing algorithm, due to the requirements of global image
selection, the image selection is only started after all images
are input, in which a full comparison sorting algorithm is
used. It is because of the improvement of the selectionmethod
that the amount of computation is greatly reduced, making
the proposed algorithm suitable for real-time lucky imaging.
However, whether this change is feasible and effective needs
to be tested with observed data.
The test is carried out in three steps: (1) write a simulation

program on a PC and MATLAB platform according to the
above algorithm; Note that the RAM units and DDR3 mem-
ory blocks in the FPGA-based algorithm are represented by
some arrays and matrices in the MATLAB program; (2) use
the observed three data sets of astronomical HDS70 images
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TABLE 1. Comparison of the results obtained by the 2 algorithms.

(10,000 frames in each set) to conduct the simulation exper-
iments at a 1% selection ratio; (3) compared the simulation
results with the results obtained by the conventional post-
processing algorithm without GPUs described in Ref. [18].
The simulation results obtained by the two algorithms are
shown in Table 1.

The first row of Table 1 shows the difference between the
proposed algorithm and the conventional algorithm in the
results of image selection. With 1% selection, for each data
set of 10,000 frames, 100 good images are selected. Obvi-
ously, the results of the proposed dynamic image selection
method are different from those of the conventional global
image selection method, but only the last few frames in the
100 lucky frames are different. It can be said that the differ-
ence in selection is relatively small, about 7.67%. In other
words, the effectiveness of the new selection method is
about 92.33%.

Since the two algorithms have differences in image selec-
tion, the imaging results are inevitably different. However,
because the differences in the selection results are small,
it is difficult for the human eye to distinguish the differences
between the two resulting images, so it needs to be illustrated
with image data. To this end, we take the high-resolution
image obtained by the conventional algorithm as the refer-
ence, and calculate the image quality indexes of the resulting
image of the proposed algorithm, namely a peak signal-
to-noise ratio (PSNR) and a structure similarity (SSIM).
Rows 2 to 5 of Table 1 show the PSNR and SSIM in two
cases, that is, the PSNR and SSIM of the original and the
normalized resulting images. In general, a PSNR is greater
than 40, indicating that the image is very good. Therefore, the
data in Rows 2 and 3 of Table 1 show that the resulting image
of the proposed algorithm is very similar to the resulting
image of the conventional algorithm.

As seen from Rows 4 and 5 of Table 1, all the original
SSIMs are greater than 0.92, and all the normalized SSIMs
are very close to 1, which further illustrates that the resulting
image of the proposed algorithm is very similar in structure
to the resulting image of the conventional post-processing
algorithm.

Another important index of algorithm evaluation is the
average execution time (AET) in second. The AET listed
in Table 1 is the average of results recorded in two simula-
tions. Rows 6 and 7 represent the total AETs of the two algo-
rithms, Row 8 the AETs for reading the images from a hard
disk to the computer memory, and Rows 9 and 10 the AETs
of the two lucky imaging algorithms themselves (i.e., Row 6
and Row 7 minus Row 8, respectively). Rows 11 to 12 are the
time efficiencies improved by the proposed algorithm.

In terms of total AET, the difference between the two algo-
rithms is not very large, mainly because the time for reading
10,000 frames of images from the hard disk to the computer
memory (about 126s) is much greater than the AET for lucky
imaging (10 to 20s). In general, the proposed algorithm is
9.1583 seconds faster than the conventional algorithm, and
the time efficiency is improved by 6.29%. If we do not
consider the time taken to read the images from the hard
disk to the computer memory, that is, simply compare the
AETs of the two algorithms, the proposed algorithm is still
9.1583 seconds faster than the conventional algorithm, but the
time efficiency is improved by 46.83%. These show that the
proposed algorithm is more efficient in execution time.

In summary, the new real-time lucky imaging algorithm,
in terms of imaging effect, is very similar to the conven-
tional algorithm, while in terms of time efficiency, it is better
than the conventional algorithm, can be used as a feasible
and effective alternative to the conventional lucky imaging
algorithm.

In addition, since we are not clear about the specific
method of determining the real-time threshold in the FastCam
image selection [16], we cannot compare the proposed algo-
rithm with the FastCam, which is a pity.

Any good algorithm must be implemented on a suit-
able platform and with proper technical methods. Otherwise,
the expected goal cannot be achieved. Since the proposed
algorithm is feasible and effective, as long as the FPGA
design of the above algorithm is reasonable, the processing
time can be reduced to a short enough level, so that the
system can complete the process of image selection, regis-
tration, superposition and display before the next frame of
image arrives, thereby meeting the requirements of real-time
lucky imaging. The FPGA design and implementation of the
new algorithm or the new real-time lucky imaging system,
therefore, becomes the next key issue.

B. OVERALL DESIGN OF THE SYSTEM
For real-time applications, the lucky imaging system is
required to have capabilities of high-speed image inputting,
processing and outputting. Similar to FastCam, the new
system uses Gigabit Ethernet as the image input interface,
the outputs directly display on a VGAmonitor, and the image
processing is carried out by logic units inside the FPGA.
Therefore, the real-time lucky imaging system will mainly
include a Gigabit Ethernet receiving/transmitting module,
an image preprocessing module, a lucky imaging module,
a multithreshold binary module, and a VGA control/display
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FIGURE 1. Overall structure of the real-time lucky imaging system.

module. All modules are designed and implemented with
Verilog HDL. The overall structure of the system is shown
in Figure 1. Among them, the four modules of Gigabit
Ethernet, image preprocessing, multithreshold binary and
VGA control are not available in Zhao’s system, and the
lucky imaging module is redesigned according the proposed
algorithm. The other modules are approximately the same as
those of Zhao’s and Duan’s system. The workflow of this
system can be summarized as follows:

(1) After the system is powered on, the short-exposure
astronomical image data taken in real time by the EMCCD
and stored temporarily in the workstation is continuously
transmitted to the Gigabit Ethernet receiving module through
a gigabit medium independent interface (GMII). Then,
the received image data are sent to the image preprocessing
module for Gaussian filtering and removal of cosmic rays.
After that, the preprocessed data are sent to the lucky imaging
module.

(2) The resulting image generated by the lucky imag-
ing module is sent to the multithreshold binary module to
enhance the visibility of the target area and then divides
the image data into two channels: one of which carries the
resulting image and nine binary images to the Gigabit Eth-
ernet transmitting module that then transmits these images
back to the workstation; the other carries the nine binary
images to the VGA control/displaymodule to drive the FPGA
off-chip interface circuit and display the binary images on the
VGA monitor.

(3) In the process of continuous transmission of astronomi-
cal images, whenever there is a lucky image update, it returns
to step (2) to update high-angular resolution resulting image
dynamically in real time.

Scientific EMCCD cameras with high speed and low noise
are usually used for astronomical lucky imaging observa-
tions [17]. At present, the system can dynamically select
lucky images from 100 to 10,000 frame or more of con-
tinuously input short-exposure images with dimensions of
512 × 512 pixels on the FPGA development board, and cut

the selected original image into a small image of 64 × 64
pixels in the process of image registration, then stack the
registered images to produce a resulting lucky image, finally
display dynamically the resulting image of 64×64 pixels on a
VGA monitor.

TheGigabit Ethernet receiving/transmittingmodule is sim-
ilar to that of Duan’s system [21]. Other modules similar to
Zhao’s system can refer to Zhao’s paper [10] and are not
introduced in this paper. The following briefly describes the
image preprocessing module, focuses on the lucky imaging
algorithm redesigned with new ideas, as well as the multi-
threshold binary display scheme.

C. IMAGE PREPROCESSING ALGORITHM AND ITS
IMPLEMENTATION
The image preprocessing algorithm consists of two spe-
cific algorithms, one for Gaussian filtering of astronomical
images, another for removing the frames of cosmic rays.
At the same time, the peak flux count of the brightest
speckle and its position coordinates (row and column) are
obtained.

There are three reasons for using Gaussian filters for noise
suppression. (1) Small and medium-sized FPGAs (such as
Spantan 6 used in our experiments) have limited on-chip
resources and cannot support complicated denoising algo-
rithms, such as CNN-based algorithms. (2) Through our cal-
culation experiments, we find that the Gaussian filter has a
better effect on astronomical images acquired by EMCCD
cameras. (3) The Gaussian filtering algorithm is relatively
simple, occupies less FPGA on-chip resources, and is easy
to be implemented on FPGAs.

Therefore we use a standard 3×3 Gaussian filter for noise
suppression. When processing with this Gaussian template
of 3 × 3, only 3 rows of image data need to be cached.
The filtering for the image is composed of serval simple
algebraic operations, such as ×2 and ×4, and ÷16, which
are equivalent to the corresponding pixel value (digits) in a
register being shifted 1 bit and 2 bits to the left, and shifted
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4 bits to the right, respectively. It is very consistent with the
characteristics of the FPGA logic operation.

Cosmic rays are highly energetic particles from outer
space. When these particles hit an EMCCD sensor, a specific
cosmic ray image is formed, in which the counts of several
pixels are much higher than the peak count of the bright
stars in normal astronomical images. Therefore, when image
quality evaluation is based on instantaneous Strehl ratio or
an image’s peak count, it is easy to mistake the cosmic
ray image as the reference star (bright star) used for image
registration, eventually causing errors in image selection and
directly affecting the final results. However, the treatment of
cosmic rays has not been mentioned in the relevant papers
(such as [2], [10], [16], [21], etc.). Although the probability
of cosmic rays appearing in an EMCCD image is very small,
once they occur, the result obtained by a classical image
selecting method will be wrong.

This system specially designs the cosmic ray removal algo-
rithm used to eliminate the cosmic ray images in real time.
It is easy to search and remove cosmic rays by programming
on a PC. However, this method has not been implemented on
an FPGA. According to the method for eliminating cosmic
rays on a PC, there should be two processes of searching and
removing when it is implemented on an FPGA. Therefore,
the cosmic ray removal algorithm designed in this paper con-
sists of two steps: peak searching and cosmic ray estimating
and eliminating, corresponding to the two FPGA process-
ing modules. The peak searching module is implemented
by a counter architecture, which searches the peak count
by comparison and counting, and determines its location.
The cosmic ray removal module is implemented by the state
machine architecture. By comparing the peak count searched
in the current image with an adaptive real-time threshold,
the cosmic ray images are estimated and then removed. The
initial count x0 is the median of the peak counts of the three
precaptured images. The adaptive threshold Tn for the nth
frame of astronomical images is determined by x0 and the
peak counts of the first n frames of astronomical images
(x1, x2, . . . , xi, . . . , xn) jointly, that is,

Tn =
a
n

n−1∑
i=0

xi, (1)

where n ≥ 1, a is a coefficient related to imaging param-
eters of the used EMCCD camera, and usually between
2 to 2.5 for our observations. To facilitate the implementation
of an FPGA, a is set to 2 in this algorithm. An iterative form
of Formula (1) for FPGA logic design is

Tn =
1
n
[(n− 1)Tn−1 + axn−1] , (2)

If xn > Tn, it can be considered that the current astronomi-
cal image contains cosmic rays and should be removed. There
is a division operation during the calculation of the adaptive
threshold. Considering that there is a time interval for data
transmission of one image in the process of finding peaks
of two neighboring images, the interval is long enough to

FIGURE 2. Architecture of the lucky imaging module.

complete the division operation. This also reflects the parallel
advantage of the FPGA.

D. FPGA-BASED LUCKY IMAGING ALGORITHM AND ITS
IMPLEMENTATION
1) ARCHITECTURE OF THE LUCKY IMAGING MODULE
The classical lucky imaging algorithm consists of three inde-
pendent algorithms and their processing procedures: image
selection, registration and stack of short-exposure images.
To embed the lucky imaging algorithm in an FPGA, these
three algorithms must be modified and integrated by using
new ideas, and their hardware processing behaviors must
be described in a reasonable way by using Verilog HDL.
To meet the requirements of real-time and dynamic process-
ing, we propose a new FPGA-based lucky imaging algorithm
in Section III-A, and design a complex lucky imaging module
to implement the new algorithm in this section. An architec-
ture of the complex module is shown in Figure 2.

It can be seen that the lucky imaging module is composed
of four modules: image selection, registration, DDR3 access
and superposition. The image selection module is used
to perform the sorting-free image selection process shown
in steps (6) to (9) of the proposed algorithm flow in
Section III-A, while the registration, DDR3 access and super-
position modules jointly complete the image registration and
superposition process shown in steps (10) to (13). The fol-
lowing subsections describe the key algorithms or methods
and main functions of their modules in Figure 2, as well as
the design methods and implementation techniques.

2) IMAGE SELECTION ALGORITHM AND ITS
IMPLEMENTATION
The traditional idea of image selection is to compare and
sort the peaks in all images and then to select a fraction of
top-ranking images according to a certain selection percent-
age. When the number of input images is large, the image
selection algorithm based on comparison and sorting not
only has a huge amount of computation but also consumes a
considerable amount of valuable on-chip logic resources. It is
not suitable for small or medium-size FPGA devices, nor for
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FIGURE 3. Schematic diagram of the image selection algorithm.

real-time lucky imaging systems. For this reason, considering
that the ranking order of selected images does not affect
the subsequent operations of registration and superposition,
we propose a new idea of image selection suitable for FPGA
logic implementation, that is, comparison but no sorting,
which can reduce the computation and save a considerable
amount of on-chip logic resources.

A schematic diagram of the sorting-free image selection
algorithm is shown in Figure 3, where each block represents
an information register of 36 bits used to store the peak
information (i.e., count and location), and m is the number
of selected images. In the whole lucky imaging process,
m frames of images are selected from n frames of input
original images for registration and superposition according
to the 1% image selection [2], [18], that is,

m = ceil(n× 1%), (3)

where ceil() is an integer-valued function, rounding its ele-
ment to the nearest integer greater than or equal to n × 1%.
Note that n increases with the increase of input images; thus,
m changes dynamically.

The algorithm flow can be described as follows:

(1) The top-ranking m peak counts and locations from the
image preprocessing module are temporarily stored in
an on-chip RAM of address 1 to m.

(2) The peak information of the current frame from the
image preprocessing module is temporarily stored in
the RAM of address m+ 1.

(3) Read address 1 to m + 1 in the RAM sequentially,
compare the m + 1 peak counts with each other and
record the RAM address k of the minimum peak count.
If k = m+ 1, go back to step (2); otherwise, go to the
next step.

(4) Write the peak information temporarily stored in
the RAM of address m + 1 into the RAM of
address k.

(5) The address k and the location (row and column num-
ber) of the peak of the current frame are sent to the
registration module for registration.

(6) Go to step (2) until there is no longer an input image.

The image selection algorithm can ensure that the data in
RAM address 1 to m is the top m maximum counts among
the n image peaks.

3) REGISTRATION ALGORITHM AND ITS IMPLEMENTATION
The registration is to shift the selected image center to the
brightest pixel of the reference star. This can be done by
cutting the original 512× 512-pixel images into a small-size
one in which the brightest pixel is located in the image
center. For a real-time lucky imaging system, it is necessary
to process the full-size (512×512 pixels) input image, but the
area of interest to be displayed is usually a small one around
the target star. The proposed algorithm does not limit the size
of the displayed area. The area can be larger than 64 × 64
pixels, such as 128× 128 or 256× 256 pixels. Note: the nth
power of 2 is selected for the convenience of FPGA operation.
However, in order to facilitate comparison with the FastCam
and Zhao’s system, we use a small image of 64 × 64 pixels
for comparative experiments.

The registration algorithm presented in this paper crops
each selected image centered on the peak location to form
a small image of 64 × 64 pixels. Finally, the cropped image
will be sent to the DDR3 access module. A key issue in the
FPGA logic design is how to address the first pixel of the
64 × 64-pixel image in the DDR3 memory. According to
the data storage principle of the DDR3 memory and the
requirement of image registration, a registration formula con-
sistent with the logic implementation of FPGA is obtained,
as shown in equation (4).

addr_r =
[
(axis_x− 32)× 512+ axis_y− 32

]
× 4, (4)

where addr_r is the address of the first pixel of the
64 × 64-pixel image in the DDR3 memory, and axis_x
and axis_y represent the row/horizontal coordinate and
column/vertical coordinate stored in the peak information
register, respectively. The reason for multiplication of 4 in
equation (4) is that one pixel of data occupies 4 address units
in the DDR3 memory. All the operations of multiplication
of 4 related to theDDR3memory discussed in the next section
are due to this reason.

By comparing this registration formula with the one
adopted by Zhao in her paper [10], both of them have
achieved the same goal. However, because each image is
stored in a one-dimensional way, the recorded position of
the peak pixel is a one-dimensional subscript in Zhao’s algo-
rithm. Therefore, Zhao uses the image serial number and the
subscript position of the peak pixel for image registration,
and its registration formula is very complex and hard to
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FIGURE 4. DDR3 access module.

understand. In contrast, equation (4) in this paper is concise
and easy to understand, and the registration process is clear.
This is more suitable for characteristics of the FPGA logic
design and can greatly simplify the code structure and reduce
the amount of code written in the actual HDL design.

4) IMAGE STORAGE METHOD AND ITS IMPLEMENTATION
In Zhao’s algorithm, all astronomical images are directly
stored in the DDR3 memory in a one-dimensional way and
then registered and superimposed. This image storagemethod
leads to a large consumption of resources (i.e., the RAM,
DDR3 and clock) and increases the difficulty of design. Espe-
cially when the number of input images is large, the consump-
tion of DDR3 resources becomes very large. Zhao’s method
is not suitable for any small or medium-sized FPGAs and
their development boards, or for construction of any real-time
lucky imaging system. For this reason, the proposed image
storage method ingeniously divides the DDR3 memory into
three memory areas, namely, DDR3_p0 port, DDR3_p1 port
and DDR3_p2 port, which are used to write or read the reg-
istered images through the corresponding writing or reading
control modules, as shown in Figure 4. Since the rate of image
input is different from that of data writing in the DDR3,
a first-in-first-out (FIFO) data buffer module is designed.

A ping-pong operation for data access is adopted between
the DDR3_p1 port for the odd frames and the DDR3_p2 port
for the even frames to accomplish the buffer of high-speed
real-time image data. The ping-pong operation is imple-
mented by switching the reading and writing operations
between two memory areas. When the DDR3_p1 port is
used for the writing operation, the DDR3_p2 port is used
for the reading operation. When a frame of an image is read
out, the state is switched, that is, the DDR3_p1 port is used

for the reading operation, and the DDR3_p2 port is used
for the writing operation at the same time. The ping-pong
operations go on continuously until no images are input. The
DDR3_p1 port and DDR3_p2 port only store one frame of
the original astronomical image of 512× 512 pixels at once.

While the DDR3_p1 port or DDR3_p2 port is read, the
DDR3_p0 port stores the cropped images after registration.
The storage mode of DDR3_p0 port is similar to the image
selection algorithm, as shown in Figure 5. Each storage block
stores one cropped image, which occupies 64 × 64 × 4 =
16384 address units. When a cropped image is stored in
storage block i, the first address of the storage block is
k × 16384, and k is the parameter coming from the image
selection module. In this way, it can be guaranteed that the
cropped images in storage block 1 to m of the DDR3_p0 port
are exactly the cropped images corresponding to the top m
maxima of n peaks of all the effective input images.

5) SUPERPOSITION ALGORITHM AND ITS IMPLEMENTATION
The superposition is simply to add all the images registered,
and usually it is last step of the classical lucky imaging
algorithm. However, for a real-time processing algorithm on
an FPGA, it is not a simple problem because the superpo-
sition speed and the on-chip resources are also issues that
must be considered in addition to the superposition method
(e.g., the data flow and the cumulative manner). A solution to
the problem is shown in Figure 6.

There is an adder of 32 bits and two RAM modules
of 32 bits in Figure 6. RAM1 is a true dual-port RAM with
two writing ports and two reading ports, while RAM2 is a
simple dual-port RAM with one writing port and one reading
port. To accomplish seamless buffering and stacking of image
data and to save the buffer space, a ping-pong operation for
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FIGURE 5. Storage mode of DDR3_p0 port.

FIGURE 6. Superposition scheme.

data access between RAM1 andRAM2 is also used to achieve
image superposition. The ping-pong operation is realized by
switching the reading and writing operations between two
RAMs, that is, when RAM1 is writing, RAM2 is reading.
After a frame of an image is added, the read-write state is
switched, that is, RAM1 is reading andRAM2 is writing. This
superposition process goes on until all the registered images
in the DDR3_p0 port are added. At this time, a resulting lucky
image is produced and stored in RAM2. In the process of
image transmission, as long as a new good image arrives, the
superposition module will be reset to start a new round of
stacking.

E. DISPLAY SCHEME AND ITS IMPLEMENTATION
Usually, the primary star in a binary or multistar system is
much brighter than the companion stars, and it is used as
a reference star for lucky imaging. The main purpose of
lucky imaging is to distinguish and measure dim compan-
ion stars in a binary or multistar system. When a real-time
resulting image is displayed directly on the VGA displayer
according to the gray value of the image, it is hard to show
the dim companion stars. Moreover, for different observation
objects, the brightness differences between bright reference
stars and dim stars are changed and can even be unknown
when searching for new faint celestial bodies. To make the
constructed real-time lucky imaging system suitable for dif-
ferent observational targets, we proposed a multithreshold or
piecewise-threshold scheme to enhance visibility of the target
area.

In this method, nine thresholds are used to binarize the
high-angular resolution resulting image. For a threshold T,
the basic formula is as follows:

Io(x, y) =

{
1 When Ii(x, y) > T
0 When Ii(x, y) ≤ T ,

(5)

Where Ii(x,y) is the pixel count of the resulting image after
superposition, Io(x,y) is the pixel value of the output binary
image.

Since the resulting image after superposition is updated
dynamically in real time, the threshold T cannot be fixed. Two
groups of buttons on the FPGA board are therefore set for
observers to regulate the threshold T in the field, one for fine
tuning and the other for coarse tuning, so that an appropriate
threshold is obtained. As the threshold can track the optimal
threshold of the resulting image in real time, a good display
effect is achieved. However, its initial value T0 should be set.
In the new system T0 is equal to the average pixel value of
the first selected image.

To obtain a better display effect, on the other hand,
8 thresholds are added to binarize the resulting image after
superposition. Therefore, there are 9 thresholds distributed
according to arithmetic progression with a step of 20,
in which the adjustable threshold is located in the middle
of the arithmetic progression. As a result, 9 binary images
responding to the 9 thresholds are obtained, in which at least
two or more can show the dim celestial bodies clearly.

To show the 9 binary images of 64 × 64 pixels on a VGA
monitor, a VGA control module is designed to control the
positions of these images on the VGA screen. The actual
resolution of VGA display is 1024 × 768 (i.e., extended
graphics array, XGA). The 9 binary images are displayed on
the VGA screen in a 3× 3 arrangement.

IV. EXPERIMENTATIONS
To verify the proposed real-time lucky imaging algorithm
based on an FPGA and its implementation techniques, a real-
time processing system is built on an ALINX 516 FPGA
development board [10], [21]. The system accomplishes
lucky imaging with 1% image selection [2], [18]. A series
of the short-exposure astronomical image used in the
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FIGURE 7. Two frames of observed images of HDS 70.

experiment were the observed images of the astronom-
ical binary star system HDS 70 at the Lijiang Obser-
vatory, Yunnan Observatory of the Chinese Academy of
Sciences on October 20, 2016. There are three data sets,
with 10,000 frames in each set. The observational conditions
and imaging parameters of the EMCCD camera are listed in
Mao’s paper [18]. A random frame in a data set is shown
in Figure 7(a), and the best frame is shown in Figure 7(b).

To test functions of the system, 10,000 frames of original
images are continuously transmitted to the FPGA system
via Gigabit Ethernet at the acquisition speed (35 frames
per second) of the EMCCD camera, and the FPGA is used
for lucky imaging. After the first 100 effective astronomical
images are transmitted, the VGA monitor starts to display
9 piecewise-threshold binary images. As the images continue
to be transmitted to the FPGA system, the threshold images
on the VGA screen are updated dynamically. This shows that
the system realizes the function of real-time processing and
dynamic updating.

To evaluate the performance of the proposed algo-
rithm, a resulting image return module is designed. When
5,000 frames have been processed, the resulting image and
the 9 piecewise-threshold binary images are transmitted back
to the PC via Gigabit Ethernet and then saved to a hard disk.
The 9 images are displayed by calling several functions in
MATLAB, as shown in Figure 8, where Figure 8(a) and 8(b)
are the results of piecewise-threshold processing for
5,000 and 10,000 frames respectively. The visual effect of
the 9 images on PC screen is the same as that on the VGA
screen in the real-time lucky image system. Each small image
in the figure shows the resulting lucky image binarized by
a corresponding threshold. The number above each small
image indicates the serial number for the threshold.

However, after using 9 segmented thresholds, there are four
small images in Figure 8(a) and six in Figure 8(b), in which
the dim star can be seen directly by human eyes. It shows that
the image enhancement effect of the proposed display scheme
is good.

The resulting images from 5,000 and 10,000 frames of
original images are used determined positions of the pri-
mary and the companion star with two-dimensional-modified
moment centering algorithm [19]. Obtained results are listed
in Table 2. According to the scale of the telescope imaging
system 0.043 arcsecond/pixel [18], the separation angles of

TABLE 2. Positions and separation of the primary and the companion
star (in pixels).

the binary stars are 0.325 and 0.320 arcsecond respectively.
This results are close to the data of HDS70 in the binary
catalog (0.3 arcsecond) [20]. The error comes mainly from
the difference between the position of the binary star at the
catalog ephemeris and the position of binary star at our actual
observation time, and partially from the lucky imaging and
the centering calculation.

In addition, we have also tested the new system with two
other data sets of astronomical images of binary stars HDS
70 and obtained similar results. All of these demonstrate that
the proposed real-time lucky imaging algorithm based on
FPGA is effective once more, and its implemented system
are correct.

V. COMPARATIVE ANALYSES AND DISCUSSIONS
During the research, we not only implement the proposed
lucky imaging algorithm and build a new system but also
replicate Zhao’s experiments, that is, we also implement her
lucky imaging algorithm and build Zhao’s system to gain
comparable experimental data. Because we do not know the
specific algorithm and HDL codes used in FastCam [16],
we cannot compare the results of the proposed system with
those of the FastCam system. The only comparison between
the two systems is the final on-chip logic resource consump-
tions. Since the main modules for lucky imaging in Duan’s
system are transplanted from Zhao’s system, during the com-
parative analysis of the algorithm, we did not give the Duan’s
data, except for the system running time [21].

A. COSMIC RAY REMOVAL ALGORITHM
For the three data sets of 10,000 frames of short-exposure
images, there were several frames (3 to 8 frames) of cosmic
ray images in each set. To make a comparative study, two
astronomical images of cosmic rays were inserted into the
original image set of 1,000 frames, given that Zhao’s system
can only process images up to 1,000 frames of 128 × 128-
pixel images. The serial numbers of the two frames are 959
(i.e., 3BF in Hex) and 1,000 (i.e., 3E8 in Hex), and their
peak flux counts are 3524 (i.e., 0DC4 in Hex) and 5254
(i.e., 1486 in Hex) respectively. The top five peak counts
selected from the 1,000 astronomical images were captured
by the ChipScope tool. The results of images selected by
Zhao’s algorithm and by the proposed algorithm are shown
in Figure 9, where pick_1 to pick_5 are five peak information
registers, and pick_over represents a signal indicating the end
of image selection at which the signal is pulled to a high level.
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FIGURE 8. Nine piecewise-threshold binary images on a VGA screen.

FIGURE 9. Comparison of image-selecting results.

Each peak information register is of width of 44 bits
(i.e., 11 hexadecimal digits). The value of the register is
expressed in hex, which is listed on the right side of Figure 9.
The first 3 hexadecimal digits represent the image serial
number, the middle 4 digits represent the image peak count,
and the last 4 digits in Zhao’s algorithm are used to record
the subscript position of the image peak, while in this system
they are used to record the horizontal and vertical coordinates
of the image peak (note that the first 2 hexadecimal digits
represent the horizontal coordinate, and the last 2 digits rep-
resent the vertical coordinate). The difference between the

two recording methods is introduced in Section III of this
paper.

By comparing the data in Figure 9, it can be seen that
Zhao’s algorithm selects the two images containing cos-
mic rays as lucky images (pick_1 and pick_2) because her
algorithm has no function of filtering and removing cosmic
rays. Therefore, her algorithm mistakes the cosmic rays as
brightest speckle of the primary star in the binary star system,
which would directly affect the subsequent registering and
stacking. In contrast, this system does not select any images
containing cosmic rays.Moreover, the five frames selected by
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FIGURE 10. Simulation results of the two image selection algorithms.

this algorithm include 3 frames selected by Zhao’s algorithm.
All of these show that the cosmic ray removal algorithm is
effective, and its implemented module is correct.

B. IMAGE SELECTION ALGORITHM
To make a comparative analysis, the FPGA implementation
of the proposed sorting-free image selection algorithm and
Zhao’s image selection algorithm based on comparison and
sorting are simulated by using theModelSim tool. The results
are shown in Figure 10, where the clock used refers to
the Gigabit Ethernet clock with a frequency of 125 MHz
and a period of 8 ns, pic_num is the number of frames
(1,000 frames) from which top 5 peak counts are selected,
data_in represents the simulated input data, and data_in_vld
is an indicator for valid input data. The input data are
generated by a random function, pick_1 to pick_over are
the peak information registers similar to those illustrated
in Section V-A. However, for the proposed algorithm does
not need to record information about the serial numbers of
selected images, these registers in this proposed system are
of width of only 32 bits (i.e., 8 hexadecimal digits). The first
4 hexadecimal digits represent the peak count of the image,
and the last 4 digits record the horizontal and vertical coor-
dinates of the image peak (where the first 2 digits represent
the horizontal coordinate and the last 2 digits represent the
vertical coordinate). The simulation results for each register
or signal are listed on the right side of Figure 10, where

two red vertical lines and the data below the lines are the
beginning and ending time of the image selecting. The span
between the two lines is the time consumed by the image
selection algorithm, also shown in the figure.

The following are comparative analyses and discussions
about the two image selection algorithms from three aspects:

(1) By comparing two group of results of image selection
(i.e., the 4th to 7th hexadecimal digits of pick_1 to pick_5 in
Figure 10(a) and the 1st to 4th hexadecimal digits of pick_1 to
pick_5 in Figure 10(b)), it can be seen that the results of the
two algorithms are exactly the same except for the differ-
ent order of image selection. This shows that the proposed
algorithm can obtain the correct result of image selection,
as also accomplished by Zhao’s algorithm, and shows once
again that the proposed algorithm has no problems in image
selection. The order of image selection results does not affect
the subsequent image registration and superposition. That is,
it is not necessary to sort all the peak flux counts during image
selection, as long as the images responding to the top m peak
counts can be selected from the n frame of input images. This
is the innovative point of the image selection algorithm in this
paper.

(2) By analyzing the clock resources consumed in Fig-
ure 10(a), it can be seen that Zhao’s image selection algorithm
based on comparison and sorting takes considerable clock
resources, more specifically, 5,014 (i.e.,40,112 ns/8 ns) clock
cycles, to complete the image selecting after reading all the
images. From Figure 10(b), it can be seen that the proposed
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algorithm carries out image selection while reading images.
Therefore, after reading all images, only a very small amount
of clock resources, 23 (i.e., 184 ns/8 ns) clock cycles, are con-
sumed to finish the image selection. Compared with Zhao’s
image selection algorithm, the clock resource consumption
of the proposed algorithm decreases 99.54% (i.e., |5,014-
23|/5,014), which greatly improved the clock utilization effi-
ciency and fully demonstrates the advantages of parallelism
and flexibility of the FPGA.

(3) By comparing and analyzing the consumed on-chip
resources, it can been seen that Zhao’s algorithm needs to
store all the peak flux counts in the RAM on the FPGA chip
in the process of receiving images. All the information about
the serial numbers, peak counts and their locations of all
received images also needs also to be registered at the same
time. After all the images are received, the peak counts need
to be read out from the RAM for sorting in turn. Finally,
the images in which the peak counts are top-m ranked are
selected. The serial number of an image is represented by a
12-bit binary number in the FPGA, and the peak count and
peak location in an image are represented by 16-bit binary
number. Because the peak counts of n frames of input images
in Zhao’s algorithm are sorted directly, the on-chip RAM
resource required is y11 = (12+ 16+ 16)× n. However, the
proposed algorithm only needs to store the peak counts and
locations of m + 1 frames, and the on-chip RAM resource
required is y12 = (16 + 16) × (m + 1). Compared with
Zhao’s algorithm, therefore, the RAM resource consumption
of implementing the proposed algorithm is as follows

η1 =
y12
y11
=

8 (m+ 1)
11n

, (6)

Because n is usually greater than 1,000 and m is
only 1% of n, η1 is less than 1%, and when n becomes con-
tinuously larger, η1 tends to 0.7273%. To intuitively compare
the on-chip RAM consumption of the two algorithms, the
ratio η1 is plotted by using the MATLAB tools, as shown
in Figure 11. It can be seen from the figure that the
RAM resource consumption of implementing the proposed
image selection algorithm is far less than that of implement-
ing Zhao’s algorithm. This demonstrates that the proposed
sorting-free image selection algorithm has a great advantage
over Zhao’s implementation.

In fact, when Zhao’s algorithm based on a comparison and
sorting is used to select images for more than 1,000 frames of
input images, the RAM resources on the Spantan-6 FPGA are
not sufficient. As a result, Zhao’s system can only accomplish
lucky imaging for 1,000 frames of 128 × 128-pixel astro-
nomical images at most. However, the RAM resource needed
by the proposed image selection algorithm is only related to
the frame number m of selected images, but not to the total
number n of input images, which can greatly save the on-chip
logic resource. This is one of the reasons why the proposed
system can accomplish real-time dynamic lucky imaging for
more than 10,000 frames of 512×512-pixel images on a small
and medium-scale FPGA device.

FIGURE 11. Comparison of RAM resource consumption in the two image
selection algorithms.

C. IMAGE STORAGE METHODS AND RESOURCE
CONSUMPTION OF DDR3
Here, the image storage methods used in Zhao’s lucky imag-
ing algorithm and the proposed algorithm are compared and
analyzed from the perspective of hardware resource con-
sumption. Zhao’s image storage method needs to store all
the input images in the DDR3 memory, so the n frames of
input astronomical images with the format of 512×512 pixels
occupy the DDR3 resource given by y21 = 512×512×4×n.
However, the proposed method needs only to store two input
images with the format of 512 × 512 pixels in the ports
DDR3_p1 and DDR3_p2 using ping-pong access operation
and m + 1 frames of small registered images with 64 × 64
pixels in the port DDR3_p0; thus, the DDR3 resource spent
by this storage method is y22 = (512× 512× 4)× 2+ (64×
64 × 4) × (m + 1). Compared with Zhao’s image storage
method, therefore, the DDR3 resource consumption of imple-
menting the proposed method is as follows:

η2 =
y22
y21
=
m+ 129
64n

, (7)

Since n is usually greater than 1,000 and m is only 1%
of n, η2 is less than 0.22%, and when n becomes continuously
larger, η2 tends to 0.0156%.
To more intuitively compare the DDR3 resource con-

sumption of the two storage methods, the ratio η2 is plot-
ted by using the MATLAB tools, as shown in Figure 12.
As seen from the figure, the DDR3 resource consumed by
the proposed algorithm is far less than that by Zhao’s algo-
rithm. If there are 10,000 frames of short-exposure images
for lucky imaging, Zhao’s algorithm takes up 10 GB of
DDR3 resources, which is an amount far beyond the total
DDR3 resources on the development board. With 1% image
selection, however, the proposed algorithm takes up only
3.61 MB. By contrast, the algorithm has a great advantage
in image storage. This is another important reason why the
proposed system can accomplish real-time dynamic lucky
imaging for more than 10,000 frames of 512 × 512-pixel
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FIGURE 12. Comparison of DDR3 resource consumption.

images on a small and medium-scale FPGA development
board. In principle, this system can directly process the orig-
inal images of 1k × 1k pixels.
Even if the original format images without cropping during

the registration are directly used for storage, the memory
resource for the DDR3_p0 port taken up by the proposed
method is only (512 × 512 × 4) × (m + 1). Compared with
Zhao’s method, therefore, the DDR3 resource consumption
of implementing the proposed method is as follows:

η2 =
y22
y21
=
m+ 3
n

, (8)

Since n is very large, η2 is approximately equal to
the fixed percentage of image selection (1%). This shows
that in this situation, the demand of the algorithm for
DDR3 is still far less than that of Zhao’s method. When
processing 10,000 frame of input images, only 100 MB
is needed, and thus a DDR3 memory of 128 or 256 MB
on a small or medium-scale FPGA development board
can meet the requirements of the proposed lucky imaging
algorithm.

D. SUPERPOSITION ALGORITHM
Tomake a comparative study, Zhao’s superposition algorithm
and the proposed one are simulated by using the Model-
Sim tool. The simulation experiment is to select 10 frames
from 20 randomly generated images and superpose them.
The results are shown in Figure 13, where c3_clk0 is a
DDR3 working clock of 312.5 MHz (i.e., a period of 3.2 ns),
add_begin is a superposition start signal, add_end is an end
signal that jumps from 0 to 1 after all images are added
together, and one_frame_end is an end signal that jumps from
0 to 1 after one frame of registered images is superposed. The
simulation waves or data for these signals are listed on the
right side of Figure 13, where two red vertical lines and
the data below the lines are the beginning and ending time of
the image superposition. The span between the two lines is the
time consumed by the superposition algorithm, also shown
in the figure. Note that the proposed algorithm is not limited
to the frequency of 312.5MHz. In fact, the system can work
properly at 625MHz that is themaximumoperating frequency
of the DDR3 supported by the FPGA development board we
used.

As seen from Figure 13, in terms of clock resource
consumption, a total of 1,526,995 (i.e., 4,886,384ns/3.2ns)
clock cycles are consumed by Zhao’s superposition algo-
rithm, while the proposed superimposed algorithm consumes
91,295 (i.e., 292,144ns/3.2ns) clock cycles. Compared with
the Zhao’s algorithm, the clock resource consumption in the
proposed algorithm is reduced by 94.02% (i.e., |1,526,995-
91,295|/1,526,995). The proposed superposition algorithm
greatly improves the efficiency of clock utilization. This
result fully embodies the advantage of using the ping-pong
operation to realize image superposition on an FPGA.

E. CLOCK CONSUMPTION IN FPGA
Using the FPFA-based lucky imaging algorithm proposed in
this paper and the algorithms in Zhao’s and Duan’s paper,
lucky imaging experiments were performed for 1,000 frames

FIGURE 13. Simulation results of the two superposition algorithms.
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TABLE 3. Running times (in seconds).

of input images (128 × 128 pixels) at a rate of 1% image
selection [10]. Running times for the three lucky imaging
algorithms, for image transmission, and the total running
times are listed in Table 3. Note: (1) Due to the limited pro-
cessing capacity of Zhao’s system, only 1,000 frame images
are used to process for comparison here; (2) Since Zhao’s
system does not meet the real-time processing requirements,
the comparison experiments for running time are conducted
under the condition of simulated data transmission.

As seen from Table 3, the processing speed of the proposed
lucky imaging algorithm is 2.45/0.08 = 31 times faster than
that of Zhao’s algorithm. This is because a new image selec-
tion algorithm and a new image storage method are adopted,
and the data parallel and pipeline parallel characteristics of
the FPGA are fully utilized in the design and implementation
of the algorithm. The pixel receiving speed of this system is
41.94/4.99= 8.4 times faster than that of Zhao’s system. This
is because this system adopts the GMII for image transmis-
sion instead of the SPI used in Zhao’s system. However, due
to the limitation of the FPGA development board used in the
experiment, the GMII transceiver can only pack/unpack up to
1,500 bytes of packets at a time, resulting in a large number
of interpacket time delays in the transmission process. It can
be seen from Table 3 that it still needs 4.99 s to transmit
1,000 frames of 128×128 pixels. A solution to this problem is
to use an FPGA development board with higher performance.
The average running speed of this system is 44.39/5.07 =
8.76 times faster than that of Zhao’s system.

With the help of high-speed data transmission of Giga-
bit Ethernet, compared with Zhao system, the total running
time of Duan’s system is greatly reduced, but the processing
speed of lucky imaging is not improved substantially. This
is because Duan’s lucky imaging algorithm is the same as
Zhao’s algorithm and his main FPGA-based function mod-
ules are transplanted from Zhao’s system. It can be seen
from Table 3 that the lucky imaging algorithm and related
implementation techniques proposed in this paper still have
obvious advantages in the same image transmission mode.

F. FPGA ON-CHIP RESOURCE CONSUMPTION
The on-chip resource consumption of implementing the pro-
posed algorithm is compared with that of FastCam [16].
When the FastCam system performs lucky imaging, the input
images processed by FPGA are not the original format
(512×512 pixels) images directly from the EMCCD camera,
but cropped images of 128 × 128 pixels, and the registered
images are selected from 2,048 frames of the small-size

TABLE 4. FPGA on-chip resource consumption of lucky imaging for
2048 frames of cropped images.

images. For comparison purposes, a special test system based
on the proposed lucky imaging algorithmwas implemented to
ensure the two compared systems have the same image input.
The experimental results are shown in Table 4.

As seen from Table 4, under the same processing con-
ditions, the on-chip slices and block RAMs consumed by
the proposed lucky imaging algorithm are only 35.73% and
15.79% of those by the FastCam. Obviously, the FPGA
on-chip resource consumption has been greatly reduced when
using the proposed algorithm.

From the above analysis and discussion, we can see that
the proposed FPGA-based lucky imaging algorithm and the
implemented system have good performance, but it is not
perfect, and there are still some limitations. For example,
although the input images are the original format (512× 512
pixels) images of the EMCCD camera, in the registration
process, the original images are still cropped and resized into
small images of 64× 64 pixels for superposition processing,
and the resulting lucky image is finally displayed in a window
of 64 × 64 pixels. In fact, because the proposed algorithm
uses a DDR3 memory to store images temporarily, it can
process EMCCD images with a larger format (such as 1k ×
1k pixels). In addition, in the registration process, the images
can be cropped into images of 128× 128 or 256× 256 pixels
for stacking. This will display a larger target area and be
more effective for observing dim objects in a multistar system
or cluster. To achieve this goal, the superposition algorithm
needs to be partially modified, that is, given that the block
RAM resource on the FPGA is not sufficient, the images after
superposition are stored in the DDR3 memory.

VI. CONCLUSION
On the basis of carefully analyzing the advantages and dis-
advantages of the FastCam, Zhao’s lucky imaging algorithm
and their implemented systems based on FPGAs, and tak-
ing full advantage of the data parallel and pipeline parallel
characteristics of FPGA, this paper proposes a new real-time
lucky imaging algorithm that contributes to real-time lucky
imaging in the following five aspects: a dynamic sorting-
free image selection algorithm with only a few comparisons,
a registration and storage method for storing only a few reg-
istered images, a parallel superposition algorithm, a parallel
preprocessing method for noise suppression and cosmic ray
removal, and a dynamicmultithreshold displaymethod. In the
specific implementation of the algorithm, parallel process-
ing techniques and FPGA off-chip resources are adopted as
much as possible, which affords the algorithm have a great
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advantage over the existing algorithms in terms of clock
resources and on-chip resource consumption so that it can
perform lucky imaging for more than 10,000 frames of the
original images in real time. The experimental results show
that the proposed algorithm is feasible and effective.

In addition, the design method and implementation tech-
niques for the proposed algorithm based on an FPGA also
have a certain universality, which can provide a reference for
the design and implementation of other FPGA-based algo-
rithms.
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