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ABSTRACT Aiming at the complexity problem of fractional-order Jafari-Sprott chaotic system, in this paper,
Adomian decomposition method is used to study its numerical analysis and a complexity analysis method
of fractional-order Jafari-Sprott chaotic system based on fuzzy entropy algorithm, sample entropy algorithm
and dispersion entropy algorithm is proposed. For the synchronization and control of fractional-order
Jafari-Sprott chaotic system, sliding mode control is used to achieve synchronization of fractional-order
Jafari-Sprott chaotic system and a control method of fractional-order Jafari-Sprott chaotic system is proposed
based on frequency distribution model of fractional-order integral operator. The main results are as follows:
(1) The complexity of the fractional-order Jafari-Sprott chaotic system is greater than the integer-order Jafari-
Sprott chaotic system, and fractional-order chaotic system has better application prospects. (2) Moreover,
it is concluded that the effect of the dispersion entropy algorithm on detecting complexity is the best, which
provides theoretical and experimental basis for the practical engineering application of the fractional-order
Jafari-Sprott chaotic system. (3) Synchronization and control of fractional-order Jafari-Sprott chaotic system
is accomplished by sliding model control and frequency distribution model of fractional-order integral
operator respectively. In particular, the control effect of each variable is accomplished by designing a control
law based on the frequency distribution model of fractional integral operator.

INDEX TERMS Fractional-order chaotic system, Adomian decomposition method, complexity analysis,
sliding mode control, frequency distribution model of fractional-order integral operator.

I. INTRODUCTION
Research on complexity is involved in various fields. So far
there is no unified concept of complexity. Complexity refers
to metric value, which has comparative significance, and
different complexity algorithms characterize different aspects
of complexity. Horgan [1] pointed out that there are multiple
definitions of complexity, such as time complexity, space
complexity, semantic complexity, Kolmogorov complexity,
etc. There are multiple algorithms for calculating complex-
ity. Lempel and Ziv [2] proposed Lempl-Ziv algorithm.
Pincus [3] and Sun et al. [4] proposed an approximate entropy
algorithm. Chen et al. [5] and Sun et al. [6] proposed a fuzzy
entropy algorithm. Larrondo et al. [7] and Sun et al. [8]
proposed a strength statistics algorithm. Azad et al. [9]
proposed a symbolic entropy algorithm. At present, there
are spectral entropy algorithm [10], wavelet entropy algo-
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rithm [11] and C0 algorithm [12] based on Fourier transform
and wavelet transform. In addition, complexity algorithms
based on entropy are often used in biological and medical
research. Yang and Liao [13] applied approximate entropy
to the comparison of heart rate between children with sudden
infant death and normal children. Lake et al. [14] used sample
entropy to analyze the change of newborn heart rate signal as
the basis for diagnosis of neonatal sepsis. Liu et al. [15] used
sample entropy to study the electroencephalography (EEG)
during sleep, and distinguished the different stages of sleep
through the change of sample entropy value. Yang et al. [16]
analyzed depression by using sample entropy. It can be seen
that entropy can be used to test the complexity of various sys-
tems. Fractional-order chaotic system is widely used because
of its rich dynamic behavior, especially related to complexity.
The complexity of fractional-order chaotic system analysis
by fuzzy entropy algorithm, sample entropy algorithm and
dispersion entropy algorithm has not been reported, so it is
necessary to carry out this research.
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The current synchronization control methods commonly
used in chaotic system research are OGY (firstly proposed
by E. Ott, C. Grebogi, J. A. Yorke) control method [17],
drive response control method [18], [19], linear and nonlinear
feedback control method [20], [21], real-delay feedback con-
trol method [22], linear error feedback control method [23],
generalized synchronous control method [24], neural net-
work control method [25], [26]. With the deepening research
of scientists, a large number of methods have been pro-
posed, such as self-adaptive synchronization method [27],
active control synchronization method [28], [29], variable
structure synchronization control method [30], [31], fuzzy
control synchronization method [32], [33], synchroniza-
tion method based on state observer [34], coupled syn-
chronization method [35]–[38], etc. Scholars at home and
abroad have also achieved some achievements. Mao [39] and
Mao and Li [40] studied the synchronization problem of the
fractional-order Duffing system with a new approach law and
the synchronization control problem of the fractional-order
Genesio-Tesi chaotic system. Based on the nonlinear sliding
mode integral control method, the control problem of a class
of systems has been studied and the proportional integral
control method has been widely used in the field of cybernet-
ics [41]. Based on proportional integral control, an accurate
tracking and guidance method has been studied, and sliding
mode control method has also been widely used in control
field [42]. Xu et al. [43] studied on sliding mode control for a
class of chaotic systems. Aghababa and Akbari [44] studied
the control synchronization of two types of chaotic systems
with uncertain disturbances and designed an appropriate slid-
ing mode controller and adaptive rate to eliminate the effects
of system uncertainty and external disturbances, and finally
achieved system synchronization. Song et al. [45], [46]
studied a class of uncertain fractional-order nonlinear sys-
tems subject to uncertainties and external disturbances and
the adaptive output feedback resilient control problem, and
designed a fractional adaptive backstepping neuro-fuzzy slid-
ing mode controller with neuro-fuzzy network system and
the fractional Lyapunov stability theory and the finite-time
stability theory, and pointed out that observer-based adaptive
output feedback control scheme for fractional-order (FO)
nonlinear systems is one of our future work. Today, most
three-dimensional fractional-order chaotic systems require
three control laws for synchronous control [47], [48], and how
to design fewer control laws needs further study, and how
to optimize the control law that makes it contain only state
variables is also a question worth studying.

Because of the advantages of entropy in complexity
analysis, this paper combines the complexity analysis of
fractional chaotic system with entropy. Firstly, for the
integer-order Jafari-Sprott chaotic system, the classical Lya-
punov exponent, Poincaré section, and bifurcation diagram
are used to analyze dynamics. Secondly, the fractional-order
Jafari-Sprott chaotic system is taken as an example to intro-
duce the decomposition steps of the Adomian decomposition
method in detail. Then, the effects of system parameters

and orders on the complexity of fractional-order Jafari-Sprott
chaotic system based onAdomian decompositionmethod and
three entropy are analyzed. The combination of entropy and
the complexity of fractional-order chaotic system can better
reflect the characteristics of the system. Finally, synchro-
nization control of the fractional-order Jafari-Sprott chaotic
system is accomplished by sliding mode control and the
frequency distribution model of the fractional-order integral
operator respectively.

II. DYNAMICS ANALYSIS OF INTEGER-ORDER
JAFARI-SPROTT CHAOTIC
A. INTRODUCTION TO MATHEMATICAL MODEL
The mathematical model of the integer-order Jafari-Sprott
chaotic system [49] is as following:

dx
dt
= y

dy
dt
= −x + yz

dz
dt
= −x − axy− bxz

(1)

In this three-dimensional system, x, y and z are system
variables, a and b are system parameters. When a = 15,
b = 1 and the initial values is (0, 0.5, 0.5), the system is in a
chaotic state. By using the Runge-Kutta method, phase space
diagram is shown in Figure 1.

FIGURE 1. Phase space diagram of each plan.

Time domain waveform of each variable is shown in
Figure 2.

B. B ANALYSIS OF DYNAMIC CHARACTERISTICS
1) LYAPUNOV EXPONENT
Lyapunov exponent is a quantitative criterion for describing
the state evolution of dynamical systems, and used tomeasure
the degree of attraction or separation of two adjacent trajecto-
ries with different initial conditions in phase space according
to the exponential law over time. This ratio of trajectory
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FIGURE 2. Time domain waveform of each variable.

convergence or divergence is called the Lyapunov exponent.
In a three-dimensional chaotic system, there is a Lyapunov
exponent greater than 0, which means that the system is in a
chaotic state.

For integer-order Jafari-Sprott chaotic system, when the
system parameters a = 15, b = 1 and the initial values
is (0, 0.5, 0.5), the Lyapunov exponent diagram is shown
in Figure 3. Fixed system parameter b = 1 and the system
parameter a ∈ [10, 20], its Lyapunov exponent is shown
in Figure 4.

FIGURE 3. Lyapunov exponent diagram.

FIGURE 4. Lyapunov exponent diagram with a ∈ [10, 20].

2) POINCARÉ SECTION
A section is selected in the multi-dimensional phase space.
This section is not tangent to the trajectory, and convenient

for observing the motion characteristics and changes of the
system. This section is called the Poincaré section. When
the system parameters a = 15, b = 1, h = 0.001, h is the
step length and the initial values is (0, 0.5, 0.5), the Poincaré
section of the integer-order Jafari-Sprott chaotic system is
shown in Figure 5. Figure 5 shows that the Poincaré section
is a dense cluster of slices, so it can be concluded that the
Jafari-Sprott chaotic system is in a chaotic state.

FIGURE 5. Poincaré section diagram.

3) BIFURCATION DIAGRAM
Bifurcation refers to the type of dynamic movement changed
when a parameter changes. When the system parameters
a ∈ [10, 20], the bifurcation diagram of the Jafari-Sprott
chaotic system is shown in Figure 6. It can be seen from
Figure 6 with the change of the system parameter a, the sys-
tem continuously branches between different states, and
finally the system reaches a chaotic state.

FIGURE 6. Bifurcation diagram.

III. NUMERICAL ANALYSIS OF FRACTIONAL-ORDER
JAFARI-SPROTT CHAOTIC SYSTEM BASED ON ADOMIAN
METHOD
A. COMMON DEFINITION OF FRACTIONAL CALCULUS
1) The Grünwald-Letnikov fractional differential is defined
as following [50]:

aD
q
t f (t)=

dqf (t)
d(t − a)q

= lim
N→∞

[
t − a
N

]−q

×

N−1∑
j=0

(−1)j
(
q
j

)
f (t − j[

t − a
N

]) (2)

where, aD
q
t is the fractional calculus operator. aD

q
t can simul-

taneously represent the derivative of the fractional order and
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the integral of the fractional order. When q > 0, aD
q
t repre-

sents the derivative. When q < 0, aD
q
t represents the integral.

2) The Riemann-Liouville fractional differential is defined
as following [51]:

aD
q
t f (t)


1

0(−q)

t∫
a

(t − τ )−q−1f (τ )dτ q < 0

f (t) q = 0
Dn[aD

q−n
t f (t)] q > 0

(3)

The power series and constant of q-order differential are
defined respectively as following:

Dqt0 t
r
=

0(r + 1)
0(r + 1− q)

(t − t0)r−q (4)

Dqt0C =
C

0(1− q)
(t − t0)−q (5)

where 0(·) is the Gamma function. This is the most basic
function in fractional calculus, which is defined as:

0(x) =

∞∫
0

tx−1e−tdt (6)

When x ∈ [−5, 5], the Gamma function is shown in
Figure 7. Places marked in Figure 7 are 0!, 1!, 2!, 3!.

FIGURE 7. Gamma function graph.

3) The Caputo fractional differential is defined as follow-
ing [52]:

aD
q
t0 f (t) =



1
0(m− q)

t∫
0

f (m)(τ )dτ
(t − τ )q+1−m

m− 1 < q < m
dm

dtm
f (t)

q = m

(7)

The q-order differential of constant and power function is
defined respectively as following:

Dqt0 t
r
=

0(r + 1)
0(r + 1− q)

(t − t0)r−q (8)

Dqt0C = 0 (9)

B. THE ADOMIAN DECOMPOSITION METHOD
The Adomian decomposition method [53] is the latest pro-
posed time-domain approximation algorithm, and suitable for
numerical solution of fractional-order chaotic system. This
algorithm does not require discrimination and takes up a
lot of computer memory, and can provide high-precision,
fast-convergent numerical analysis.

For fractional-order chaotic system

Dqt0x(t) = f (x(t))+ g(t) (10)

where, x(t) = [x1(t), x2(t), . . . , xn(t)]T is the corresponding
function variable, g(t) = [g1(t), g2(t), . . . , gn(t)]T is con-
stant. The system is divided into three parts as following:

Dqt0x(t) = Lx(t)+ Nx(t)+ g(t)
x(k)(t+0 ) = bk , k = 0, . . . ,m− 1
m ∈ N , m− m < q ≤ m

(11)

The nonlinear term is decomposed according to the follow-
ing formula: 

Aij =
1
i!
[
d i

dλi
N (vij(λ))]λ=0

vij =
i∑

k=0

(λ)kxkj
(12)

where the nonlinear term can be expressed as following:

Nx =
∞∑
i=0

Ai(x0, x1, x2, . . . , x i) (13)

The solution of the equation is as following:

x=
∞∑
i=0

x i = Jqt0L
∞∑
i=0

x i+Jqt0

∞∑
i=0

Ai+Jqt0g+8 (14)

where8 =
m−1∑
k=0

bk
(t−t0)k
k! is the initial condition to satisfy the

system, and its iterative relationship is as following:

x0 = Jqt0g+8
x1 = Jqt0Lx

0
+ Jqt0A

0(x0)
x2 = Jqt0Lx

1
+ Jqt0A

1(x0, x1)
...

x i = Jqt0Lx
i−1
+ Jqt0A

i−1(x0, x1, . . . , x i−1)
...

(15)

The mathematical model of the fractional-order Jafari-
Sprott chaotic system is as following:

Dqt0x1 = x2
Dqt0x2 = −x1 + x2x3
Dqt0x3 = −x1 − ax1x2 − bx1x3

(16)
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The linear and nonlinear terms in this system respectively
are as following:Lx1Lx2
Lx3

=
x2−x1
−x1

 ,
Nx1Nx2
Nx3

=
0x2x3
−ax1x2 − bx1x3

 (17)

Decompose the nonlinear term according to Equation (12).
The decomposition Nx2 process is as following:

A02 = x02x
0
3

A12 = [(λkxk2 )(λ
kxk3 )]

′

= [(kλk−1xk2)(λ
kxk3)+ (kλk−1xk3)(λ

kxk2)]

= x12x
0
3 + x

0
2x

1
3

A22 =
1
2!
[(kλk−1xk2 )(λ

kxk3 )+ (kλk−1xk3 )(λ
kxk2 )]

′

=
1
2!
[2x22x

0
3 + 2x12x

1
3 + 2x02x

2
3 ]

= x22x
0
3 + x

1
2x

1
3 + x

0
2x

2
3

A32 =
1
3!
[(k(k − 1)λk−2xk2 )(λ

kxk3 )+2(kλ
k−1xk2 )(kλ

k−1xk3 )

+ (λkxk2 )(k(k − 1)λk−2xk3 )]
′

=
1
3!
[6x32x

0
3 + 6x22x

1
3 + 6x12x

2
3 + 6x02x

3
3 ]

= x32x
0
3 + x

2
2x

1
3 + x

1
2x

2
3 + x

0
2x

3
3 (18)

Since each decomposition principle is the same,
Equation (18) only lists the specific decomposition process of
the previous three terms. The complete decomposition result
is as following:

A02 = x02x
0
3

A12 = x12x
0
3 + x

0
2x

1
3

A22 = x22x
0
3 + x

1
2x

1
3 + x

0
2x

2
3

A32 = x32x
0
3 + x

2
2x

1
3 + x

1
2x

2
3 + x

0
2x

3
3

A42 = x42x
0
3 + x

3
2x

1
3 + x

2
2x

2
3 + x

1
2x

3
3 + x

0
2x

4
3

A52 = x52x
0
3 + x

4
2x

1
3 + x

3
2x

2
3 + x

2
2x

3
3 + x

1
2x

4
3 + x

0
2x

5
3

(19)



A03=a(−x
0
1x

0
2 )− bx

0
1x

0
3

A13=a(−x
1
1x

0
2 − x

0
1x

1
2 )− b(x

1
1x

0
3 + x

0
1x

1
3 )

A23=a(−x
2
1x

0
2 − x

1
1x

1
2 − x

0
1x

2
2 )

−b(x21x
0
3 + x

1
1x

1
3 + x

0
1x

2
3 )

A33=a(−x
3
1x

0
2 − x

2
1x

1
2 − x

1
1x

2
2 − x

0
1x

3
2 )

−b(x31x
0
3 + x

2
1x

1
3 + x

1
1x

2
3 + x

0
1x

3
3 )

A43=a(−x
4
1x

0
2 − x

3
1x

1
2 − x

2
1x

2
2 − x

1
1x

3
2 − x

0
1x

4
2 )

−b(x41x
0
3 + x

3
1x

1
3 + x

2
1x

2
3 + x

1
1x

3
3 + x

0
1x

4
3 )

A53=a(−x
5
1x

0
2 − x

4
1x

1
2 − x

3
1x

2
2 − x

2
1x

3
2 − x

1
1x

4
2 − x

0
1x

5
2 )

−b(x51x
0
3 + x

4
1x

1
3 + x

3
1x

2
3 + x

2
1x

3
3 + x

1
1x

4
3 + x

0
1x

5
3 )

(20)

The initial condition is as following:
x01 = x1(t0)
x02 = x2(t0)
x03 = x3(t0)

(21)

Let c01 = x01 , c
0
2=x

0
2, c

0
3 = x03, we can obtain from

Equation (15):

Lx0 =


x02
−x01
−x01

 =

c02
−c01
−c01

 (22)

Jqt0Lx
0
=


x02
−x01
−x01

 (t − t0)q

0(q+ 1)
(23)

A0x0 =


A01(x

0)
A02(x

0)
A03(x

0)

 =

0
x02x

0
3

−ax01x
0
2 − bx

0
1x

0
3


=


0
c02c

0
3

−ac01c
0
2 − bc

0
1c

0
3

 (24)

Jqt0A
0(x0) =


0
c02c

0
3

−ac01c
0
2 − bc

0
1c

0
3

 (t − t0)q

0(q+ 1)
(25)

x1 = Jqt0Lx
0
+ Jqt0A

0(x0) =


c02
−c01
−c01

 (t − t0)q

0(q+ 1)

+


0
c02c

0
3

−ac01c
0
2 − bc

0
1c

0
3

 (t − t0)q

0(q+ 1)

=


c22
−c01 + c

0
2c

0
3

−c01 − ac
0
1c

0
2 − bc

0
1c

0
3

 (t − t0)q

0(q+ 1)
(26)


x11 = c02

(t − t0)q

0(q+ 1)

x12 = [−c01 + c
0
2c

0
3]
(t − t0)q

0(q+ 1)

x13 = [−c01 − ac
0
1c

0
2 − bc

0
1c

0
3]
(t − t0)q

0(q+ 1)

(27)

Assign the coefficient to the corresponding variable,
we can get: 

c11 = c02
c12 = [−c01 + c

0
2c

0
3]

c13 = [−c01 − ac
0
1c

0
2 − bc

0
1c

0
3]

(28)

The derivation method for the remaining 5 items is the
same as the above formula:

c21 = c12
c22 = [−c11 + c

1
2c

0
3 + c

0
2c

1
3]

c23 = [−c11 + a(−c
1
1c

0
2 − c

0
1c

1
2)

+b(−c11c
0
3 − c

0
1c

1
3)]

(29)



c31 = c22

c32 = [−c21 + c
2
2c

0
3 + c

1
2c

1
3
0(2q+ 1)
0(q+ 1)2

+ c02c
2
3]

c33 = [−c21 + a(−c
2
1c

0
2 − c

1
1c

1
2
0(2q+ 1)
0(q+ 1)2

− c01c
2
2)

+b(−c21c
0
3 − c

1
1c

1
3
0(2q+ 1)
0(q+ 1)2

)− c01c
2
3]

(30)
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c41 = c32

c42 = [−c31 + c
3
2c

0
3 + c

2
2c

1
3 + c

1
2c

2
3

0(3q+ 1)
0(q+ 1)0(2q+ 1)

+c02c
3
3]

c43= [−c
3
1 + a(−c

3
1c

0
2 − c

2
1c

1
2 + c

1
1c

2
2

0(3q+ 1)
0(q+ 1)0(2q+ 1)
−c01c

3
2)

+b(−c31c
0
3 − c

2
1c

1
3 + c

1
1c

2
3

0(3q+ 1)
0(q+ 1)0(2q+ 1)

)

−c01c
3
3]

(31)



c51 = c42

c52 = [−c41 + c
4
2c

0
3 + (c32c

1
3 + c

1
2c

3
3)

0(4q+ 1)
0(q+ 1)0(3q+ 1)

+c22c
2
3
0(4q+ 1)
0(2q+ 1)2

+ c02c
4
3]

c53 = [−c41 + a(−c
4
1c

0
2 − (c31c

1
2 + c

1
1c

3
2)

0(4q+ 1)
0(q+ 1)0(3q+ 1)

− c21c
2
2
0(4q+ 1)
0(2q+ 1)2

− c01c
4
2)

+b(−c41c
0
3 − (c31c

1
3 + c

1
1c

3
3)

0(4q+ 1)
0(q+ 1)0(3q+ 1)

)

−c21c
2
3
0(4q+ 1)
0(2q+ 1)2

− c01c
4
3]

(32)



c61 = c52

c62 = [−c51 + c
5
2c

0
3 + (c42c

1
3 + c

1
2c

4
3)

0(5q+ 1)
0(q+ 1)0(4q+ 1)

+(c32c
2
3 + c

2
2c

3
3)

0(5q+ 1)
0(2q+ 1)0(3q+ 1)

+ c02c
5
3]

c63 = [−c51 + a(−c
5
1c

0
2 − (c41c

1
2 + c

1
1c

4
2)

0(5q+ 1)
0(q+ 1)0(4q+ 1)

− (c31c
2
2 + c

2
1c

3
2)

0(5q+ 1)
0(2q+ 1)0(3q+ 1)

− c01c
5
2)

+b(−c51c
0
3 − (c41c

1
3 + c

1
1c

4
3)

0(5q+ 1)
0(q+ 1)0(4q+ 1)

)

−(c31c
2
3 +

2
1 c

3
3)

0(5q+ 1)
0(2q+ 1)0(3q+ 1)

− c01c
5
3]

(33)

At this time, the solution of the system equation can be
expressed as:

xj(t)= c0j +c
1
j
(t − t0)q

0(q+ 1)
+c2j

(t − t0)2q

0(2q+ 1)
+c3j

(t − t0)3q

0(3q+ 1)

+ c4j
(t − t0)4q

0(4q+ 1)
+c5j

(t − t0)5q

0(5q+ 1)
+c6j

(t − t0)6q

0(6q+ 1)
(34)

When a = 15, b = 1, q = 0.96, and the initial values is
(0, 0.5, 0.5), phase space diagram is shown in Figure 8.

The Adomian decomposition method has the advantages
of high precision, no occupy computer memory, no need of
discretization, etc. It is suitable for cases where the maxi-
mum number of nonlinear terms is less than 3. If the high-
est order of nonlinear terms is greater than or equal to 3,
then the calculation amount of its decomposition process
is large, and the Adomian decomposition method is not
recommended.

FIGURE 8. Phase space diagram of each plane.

IV. COMPLEXITY ANALYSIS OF FRACTIONAL-ORDER
JAFARI-SPROTT CHAOTIC SYSTEM
The complexity of chaotic characteristics is also a method
for analyzing the dynamic characteristics of chaotic system.
It has the same effect as the Lyapunov exponent, Poincaré
section, and bifurcation diagram. In a nutshell, complexity
is the degree to which a correlation algorithm is used to
calculate the approximate random sequence. The greater the
complexity, the closer the random sequence is, the higher the
security is. The complexity of chaotic sequences is divided
into behavioral complexity and structural complexity. Behav-
ioral complexity refers to using a certain method to measure
the probability of a sequence generating a new pattern in
a short time window from the chaotic sequence itself. The
larger the probability of generating a new pattern, the more
complex the sequence is. Structural complexity refers to
analyzing the complexity of a sequence by changing fre-
quency characteristics, energy spectrum characteristics, etc.
The more balanced the energy spectrum distribution of the
sequence, the more complex the sequence is.

A. FUZZY ENTROPY ALGORITHM
For judging the complexity of a sequence, fuzzy entropy is an
effective measurement algorithm, and it has lower sensitiv-
ity dependence on sequence length, phase space dimension,
and similarity tolerance. The algorithm process [54] is as
following:

Step 1: Perform phase space reconstruction of the
sequence. For a given sequence [u(1), u(2), . . . , u(N )],
the reconstructed phase space is:

X (i) = [u(i), u(i+ 1), . . . , u(i+ 1− m)]− u0(i) (35)

where, u0(i) = 1
m

m−1∑
j=0

u(i+ j).
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Step 2: Introduce fuzzy membership function. The fuzzy
membership function is defined as:

A(x) =

{
1, x = 0

exp[− ln (2)(
x
r
)2], x > 0

(36)

where, r is the similar tolerance. The fuzzy membership
function is given:

Amij =exp[− ln (2)(
dmij
r
)2], j=1, 2, . . . , N − m+ 1, j 6= i

(37)

where,

dmij = d[X (i),X (j)]

= maxp=1,2,...,m(|u(i+ p− 1)− u0(i)|

− |u(j+ p− 1)− u0(j)|) (38)

is the maximum absolute distance between the vectors
X (i),X (j).

Step 3: Calculate the fuzzy entropy. Average value each i
to get:

Cm
i (r) =

1
N − m

N−m+1∑
j=1,j 6=i

Amij (39)

8m(r) =
1

N − m+ 1

N−m+1∑
i=1

Cm
i (r) (40)

So the fuzzy entropy is:

Fuzzy(m, r,N ) = ln8m(r)− ln8m+1(r) (41)

where, m, r, N are the dimensions of phase space, similar-
ity tolerance, and number of selected data, select m = 2,
r = 0.2 ∗ SD, N = 15000, SD is the standard deviation
of N . When the system parameters b = 1, q = 0.96,
a ∈ [12, 20], the fuzzy entropy complexity of the fractional-
order Jafari-Sprott chaotic system is shown in Figure 9 (a).
When the system parameters a = 15, b = 1, q ∈ [0.2, 1],
the fuzzy entropy complexity of the fractional-order Jafari-
Sprott chaotic system is shown in Figure 9 (b). When the
system parameters a = 15, q = 0.96, b ∈ [0.2, 1.2],
the fuzzy entropy complexity of the fractional-order Jafari-
Sprott chaotic system is shown in Figure 9 (c).

A single parameter change is not as complicated as a multi-
parameter change. In the following, the chromatogram is
used to simulate and analyze the situation under the changes
of the two parameters. When a ∈ [12, 20], q ∈ [0.2, 1],
the chromatogram of the change of fuzzy entropy complexity
is shown in Figure 10 (a). When b ∈ [0.2, 1.2], q ∈ [0.2, 1],
the chromatogram of the change of fuzzy entropy complexity
is shown in Figure 10 (b). When a ∈ [12, 20], b ∈ [0.2, 1.2],
the chromatogram of the change of fuzzy entropy complexity
is shown in Figure 10 (c).

FIGURE 9. Fuzzy entropy complexity.

FIGURE 10. Fuzzy entropy complexity chromatogram.

B. SAMPLE ENTROPY ALGORITHM
Sample entropy is a method for measuring the complexity
of a sequence, and it is used in a variety of research fields,
especially medical biology. The algorithmic process [55] is
as following:

Step 1: Perform phase space reconstruction of the
sequence. For a given sequence [x(1), x(2), . . . , x(N )],
the reconstructed phase space is:

Xm(1) = {x1, x2, . . . , xm} − Xm1

Xm(2) = {x2, x3, . . . , xm+1} − Xm2

...

Xm(i) = {xi, xi+1, . . . , xi+m} − X
m+1
i

...

Xm(N − m) = {xN−m, xN−m+1, . . . , xN−1} − XmN−m

(42)
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Xm+1(1) = {x1, x2, . . . , xm+1} − X
m+1
1

Xm+1(2) = {x2, x3, . . . , xm+2} − X
m+1
2

...

Xm+1(i) = {xi, xi+1, . . . , xi+m} − X
m+1
i

...

Xm+1(N − m) = {xN−m, xN−m+1, . . . , xN } − X
m+1
N−m

(43)

where, Xmi ,X
m+1
i is the mean of the sequences {xi, xi+1,, . . . ,

xi+m−1} and {xi, xi+1, . . . , xi+m} respectively.
Step 2: Calculate the distance between the vectors. The

distance between the vectorsXm(i),Xm(j) is defined as d , then
the distance between the two vectors can be defined as:{

d[Xm(i),Xm(j)] = max |x(i+ k)− x(j+ k)|

d[Xm+1(i),Xm+1(j)] = max |x(i+ k)− x(j+ k)|
(44)

Step 3: Calculate the sample entropy. Given a similar
capacity r , count the number that the distance between the
vectors is less than the similarity capacity, and calculate the
ratio to the total number Amr (i) and A

m+1
r (i). It is specifically

defined as:
Amr (i) =

d[Xm(i),Xm(j)] ≤ r
N − m− 1

Am+1r (i) =
d[Xm+1(i),Xm+1(j)] ≤ r

N − m− 1

(45)

The average of the reconstructed m-dimensional and
m + 1-dimensional sequences is recorded as Bm(r) and
Bm+1(r), and the specifically defined is as following:

Bm(r) =
1

N − m

N−m∑
i=1

Amr (i)

Bm+1(r) =
1

N − m

N−m∑
i=1

Am+1r (i)

(46)

The sample entropy calculation formula is:

Samp(m, r,N ) = − ln
Bm+1(r)
Bm(r)

(47)

where, m, r, N are the dimensions of phase space, similar-
ity tolerance, and number of selected data, select m = 2,
r = 0.2 ∗ SD, N = 15000, SD is the standard deviation of N .
When the system parameters b = 1, q = 0.96, a ∈ [12, 20],
the sample entropy complexity of the fractional-order Jafari-
Sprott chaotic system is shown in Figure 11 (a). When the
system parameters a = 15, b = 1, q ∈ [0.2, 1], the sam-
ple entropy complexity of the fractional-order Jafari-Sprott
chaotic system is shown in Figure 11 (b). When the system
parameters a = 15, q = 0.96, b ∈ [0.2, 1.2], the sam-
ple entropy complexity of the fractional-order Jafari-Sprott
chaotic system is shown in Figure 11 (c).

When a ∈ [12, 20], q ∈ [0.2, 1], the chromatogram
of the change of sample entropy complexity is shown in
Figure 12 (a). When b ∈ [0.2, 1.2], q ∈ [0.2, 1], the chro-
matogram of the change of sample entropy complexity is
shown in Figure 12 (b). When a ∈ [12, 20], b ∈ [0.2, 1.2],

FIGURE 11. Sample entropy complexity.

FIGURE 12. Sample entropy chromatogram.

the chromatogram of the change of sample entropy complex-
ity is shown in Figure 12 (c).

C. DISPERSION ENTROPY ALGORITHM
The dispersion entropy algorithm process [56] is as follow-
ing:

Step 1: Map the sequence xj(j = 1, 2, . . . , N ) to
y =

{
yj, j = 1, 2, ... , N

}
by using a normal distribution,

and then use a linear transformation to map y to the range of
[1, 2, · · · , c]

zcj = round
(
cyj + 0.5

)
(48)

where round and c respectively represent integer function and
the number of categories.

Step 2: Calculate the embedded vector zm,ci

zm,ci =

{
zci , z

c
i+d , . . . , z

c
i+(m−1)d

}
(49)
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where i = 1, 2, . . . ,N − (m− 1) d , m and d respectively
represent embedding dimension and time delay.

Step 3: Create an embedding vector c with an embedding
dimensionm and a time delay d . Each time series c is mapped
to a decentralized pattern c, where x, y = {y1, y2, · · · , yN }.

Step 4: Calculate the probability p
(
πv0,v1,...,vm−1

)
for each

dispersion pattern πv0,v1,...,vm−1 :

p
(
πv0,v1,...,vm−1

)
=
Nb
(
πv0,v1,...,vm−1

)
N − (m− 1)d

(50)

where Nb
(
πv0,v1,...,vm−1

)
represents the number of zm,ci

mapped toπv0,v1,...,vm−1 . So p
(
πv0,v1,...,vm−1

)
can be expressed

as the ratio of the number of zm,ci mapped to πv0,v1,...,vm−1 to
the number of elements in zm,ci .
Step 5: According to the definition of Shannon, the disper-

sion entropy of original time series is defined as:

DE (x,m, c, d) = −
cm∑
π=1

p
(
πv0,v1,...,vm−1

)
× ln

(
p
(
πv0,v1,...,vm−1

))
(51)

where x is the number of selected data, m is the embed-
ding dimension, c is the category, and d is the time delay,
select x = 15000, m = 2, c = 3, d = 1. When
the system parameters b = 1, q = 0.96, a ∈ [12, 20],
the dispersion entropy complexity of the fractional-order
Jafari-Sprott chaotic system is shown in Figure 13 (a). When
the system parameters a = 15, b = 1, q ∈ [0.2, 1], the
dispersion entropy complexity of the fractional-order Jafari-
Sprott chaotic system is shown in Figure 13 (b). When the
system parameters a = 15, q = 0.96, b ∈ [0.2, 1.2], the
dispersion entropy complexity of the fractional-order Jafari-
Sprott chaotic system is shown in Figure 13 (c).

FIGURE 13. Dispersion entropy complexity.

When a ∈ [12, 20], q ∈ [0.2, 1], the chromatogram
of the change of dispersion entropy complexity is shown
in Figure 14 (a). When b ∈ [0.2, 1.2], q ∈ [0.2, 1], the chro-
matogram of the change of dispersion entropy complexity is

FIGURE 14. Dispersion entropy chromatogram.

shown in Figure 14 (b). When a ∈ [12, 20], b ∈ [0.2, 1.2],
the chromatogram of the change of dispersion entropy com-
plexity is shown in Figure 14 (c).

From Figure 9 (b), Figure 11 (b), and Figure 13 (b), the
complexity is the largest at the 0.6-order, especially compared
with the 1-order complexity, so we can conclude that the com-
plexity of the fractional-order Jafari-Sprott chaotic system is
greater than the integer-order Jafari-Sprott chaotic system.
The maximum complexity detected by using three types of
entropy when system parameter a, b and order q changed is
shown in Table 1.

TABLE 1. Comparison results of maximum complexity.

According to Table 1, when using a single parameter as
the independent variable, the complexity of the detection of
dispersion entropy is larger than that of fuzzy entropy and
sample entropy. In practical application, if the detection com-
plexity is too small, it is not conducive to actual application.

By comparing the chromatograms in Figure 10, Figure 12,
and Figure 14, we can obtain two conclusions:

1) Regardless of whether a, q, b, q or a, b are dual param-
eters, the color of the chromatogram of dispersion entropy is
deeper than that of fuzzy entropy and sample entropy, which
means that dispersion entropy can detect greater complexity
not only under a single parameter, but also under the dual
parameter.

2) By carefully observing the chromatograms of Figure 10,
Figure 12, and Figure 14, it can be seen that dispersion
entropy can detect areas where fuzzy entropy and sample
entropy can not be detected, which means that the detection
area of dispersion entropy is widest.
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In summary, comparing two aspects of the detection
complexity value size and the detection area size, it is con-
cluded that in the complexity detection of the fractional- order
Jafari-Sprott chaotic system, the detection performance of
dispersion entropy is the best.

V. SYNCHRONOUS CONTROL OF FRACTIONAL-ORDER
JAFARI-SPROTT CHAOTIC SYSTEM
A. SYNCHRONIZATION OF FRACTIONAL-ORDER
JAFARI-SPROTT CHAOTIC SYSTEM BASED ON SLIDING
MODE CONTROL
The mathematical model of the fractional-order Jafari-Sprott
chaotic system is:

Dqt0x1 = x2
Dqt0x2 = −x1 + x2x3
Dqt0x3 = −x1 − ax1x2 − bx1x3

(52)

Make (52) as the driving system, the response system is:
Dqt0y1 = y2
Dqt0y2 = −y1 + y2y3
Dqt0y3 = −y1 − ay1y2 − by1y3

(53)

The state error between the drive system and the response
system is: 

e1 = y1 − x1
e2 = y2 − x2
e3 = y3 − x3

(54)

Then the state error between the drive system and the
response system is:

Dqt0e1 = e2 + u1
Dqt0e2 = −e1 − e2e3 + e2y3 + e3y2 + u2
Dqt0e3 = −e1 + a(e1e2 − e1y2 − e2y1)
+b(e1e3 − e1y3 − e3y1)+ u3

(55)

The control law design steps are as following:
Step 1: Introduce the fractional-order slidingmode surface.
Three fractional-order sliding mode surfaces is:

s1(t) = (Dq + λ1)

t∫
0

e1(τ )dτ

s2(t) = (Dq + λ2)

t∫
0

e2(τ )dτ

s3(t) = (Dq + λ3)

t∫
0

e3(τ )dτ

(56)

The first-order derivative of the synovial surface is:
.

s1(t) = Dqe1(t)+ λ1e1(t)
.

s2(t) = Dqe2(t)+ λ2e2(t)
.

s3(t) = Dqe3(t)+ λ3e3(t)

(57)

When the error system moves on the synovial surface,
.

s1(t) = 0 is satisfied. So the dynamic equation of the synovial
surface is as follows:

Dqe1 = −λ1e1
Dqe2 = −λ2e2
Dqe3 = −λ3e3

(58)

Step 2: Design the control law.
Design the first Lyapunov function as:

V1(t) =
1
2
s21 (59)

Its first-order derivative can be obtained:
.

V1(t) = s1
.
s1

= s1(Dqe1 + λ1e1)

= s1(e2 + u1 + λ1e1) (60)

We can get u1 = −e2 − λ1e1 − k1sign(s1).
Design the second Lyapunov function as:

V2(t) =
1
2
s22 (61)

Its first-order derivative can be obtained:
.

V2(t)= s2
.
s2

= s2(Dqe2 + λ2e2)

= s2(−e1 − e2e3 + e2y3 + e3y2 + λ2e2 + u2) (62)

We can get u2 = e1+e2e3−e2y3−e3y2−λ2e2−k2sign(s2).
Design the third Lyapunov function as:

V3(t) =
1
2
s23 (63)

Its first-order derivative can be obtained:
.

V3(t) = s3
.
s3

= s3(Dqe3 + λ3e3)

= s3(−e1 + a(e1e2 − e1y2 − e2y1)

+ b(e1e3 − e1y3 − e3y1)+ λ3e3 + u3) (64)

We can get:
u3 = e1 − ae1e2 + ae1y2 + ae2y1 − be1e3 + be1y3 +

be3y1 − λ3e3 − k3sign(s3) where, λ1, λ2, λ3 are synovial
surface parameters, select λ1 = λ2 = λ3 = 4, and k1, k2, k3
are the gain of control law, select k1 = k2 = k3 = 1.
The error graph between the drive and the corresponding

system is shown in Figure 15.
From Figure 15, it can be seen that under the three control

laws, the drive-response systems of fractional-order Jafari-
Sprott chaotic system have completed synchronization, and
the error tends to 0 with time, which illustrates the three
control laws effectiveness and correctness.
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FIGURE 15. Synchronization error graph.

B. FRACTIONAL-ORDER JAFARI-SPROTT CHAOTIC SYSTEM
CONTROL BASED ON FREQUENCY DISTRIBUTION MODEL
OF FRACTIONAL-ORDER INTEGRAL OPERATOR
The mathematical model of the fractional-order Jafari-Sprott
chaotic system is:

Dqt0x1 = x2
Dqt0x2 = −x1 + x2x3
Dqt0x3 = −x1 − ax1x2 − bx1x3

(65)

Defining fractional-order systems Dqx(t) = y(t), where
0 < q < 1, it is equivalent to a linear continuous frequency
distribution model [57]:

∂z(w, t)
∂t

= −wz(w, t)+ y(t)

x(t) =

∞∫
0

µ(w)z(w, t)dw
(66)

where, weight function µ(w) = sin(qπ )
wqπ , system status

z(w, t) ∈ R.
The control law design steps are as follows:
Step 1: For the first equation in the mathematical model of

the fractional-order Jafari-Sprott chaotic system, define the
new coordinates as:

w1 = x1 (67)

The dynamic equation of the first new coordinate is:

Dqt0w1 = x2 (68)

According to the frequency distribution model of the frac-
tional integral operator, Equation (68) is equivalent to the
following equation:

∂z(w, t)
∂t

= −wz1(w, t)+ x2

w1(t) =

∞∫
0

µ(w)z1(w, t)dw
(69)

Select Lyapunov function as:

V1(t) =
1
2

∞∫
0

µ(w)z21(w, t)dw (70)

Its first-order derivative can be obtained:

.

V1(t) =

∞∫
0

µ(w)z1(w, t)
∂z(w, t)
∂t

dw (71)

Take Equation (69) into Equation (71) to get:

.

V1(t) =

∞∫
0

µ(w)z1(w, t)(−wz1(w, t)+ x2)dw

= −

∞∫
0

wµ(w)z21(w, t)dw+ x2

∞∫
0

µ(w)z1(w, t)dw

= −

∞∫
0

wµ(w)z21(w, t)dw+ x2w1

= −

∞∫
0

wµ(w)z21(w, t)dw− w
2
1 + w1(x1 + x2) (72)

Step 2: Define the second new coordinate as:

w2 = x1 + x2 (73)

The dynamic equation of the second new coordinate is:

Dqt0w2 = x2 − x1 + x2x3 (74)

According to the frequency distribution model of the frac-
tional integral operator, Equation (74) is equivalent to the
following equation:

∂z(w, t)
∂t

= −wz2(w, t)+ x2 − x1 + x2x3

w2(t) =

∞∫
0

µ(w)z2(w, t)dw
(75)

Select Lyapunov function as:

V2(t) = V1(t)+
1
2

∞∫
0

µ(w)z22(w, t)dw (76)

Its first-order derivative can be obtained:

.

V2(t) =
.

V1(t)+

∞∫
0

µ(w)z2(w, t)
∂z(w, t)
∂t

dw (77)

By taking Equation (75) into Equation (77), we can get:

.

V2(t)=
.

V1(t)+

∞∫
0

µ(w)z2(w, t)
∂z(w, t)
∂t

dw
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=
.

V1(t)+

∞∫
0

µ(w)z2(w, t)[−wz2(w, t)+ x2 − x1

+ x2x3]dw

=
.

V1(t)−

∞∫
0

wµ(w)z22(w, t)dw+ (x2 − x1 + x2x3)

×

∞∫
0

µ(w)z2(w, t)dw

=
.

V1(t)−

∞∫
0

wµ(w)z22(w, t)dw+ w2(x2 − x1 + x2x3)

=−

∞∫
0

wµ(w)z21(w, t)dw−

∞∫
0

wµ(w)z22(w, t)dw− w
2
1

+w1(x1 + x2)+ w2(x2 − x1 + x2x3)

=−

∞∫
0

wµ(w)z21(w, t)dw−

∞∫
0

wµ(w)z22(w, t)dw− w
2
1

−w2
2 + w2(x1 + 2x2 + x2x3) (78)

Step 3: Define the third new coordinate as:

w3 = x1 + 2x2 + x2x3 (79)

The dynamic equation of the third new coordinate is
obtained:

Dqt0w3 = x2 − 2x1 + 2x2x3 − x1x3 − x1x2 + x2x23
− ax1x22 − bx1x2x3 + u (80)

where, u is the required of control law. According to the fre-
quency distribution model of the fractional integral operator,
Equation (80) is equivalent to the following equation:

∂z(w, t)
∂t

= −wz3(w, t)+ x2 − 2x1 + 2x2x3 − x1x3

−x1x2 + x2x23 − ax1x
2
2 − bx1x2x3 + u

w3(t) =

∞∫
0

µ(w)z3(w, t)dw

(81)

Select Lyapunov function as:

.

V3(t) =
.

V2(t)+

∞∫
0

µ(w)z3(w, t)
∂z(w, t)
∂t

dw (82)

Its first-order derivative can be obtained:

.

V3(t) =
.

V2(t)+

∞∫
0

µ(w)z3(w, t)
∂z(w, t)
∂t

dw (83)

Take Equation (81) into Equation (83), we can get:

.

V3(t) =
.

V2(t)+

∞∫
0

µ(w)z3(w, t)
∂z(w, t)
∂t

dw

FIGURE 16. Control effect of each variable.

=
.

V2(t)+

∞∫
0

µ(w)z3(w, t)[−wz3(w, t)+ x2 − 2x1

+ 2x2x3 − x1x3 − x1x2 + x2x23 − ax1x
2
2

− bx1x2x3 + u]dw

=
.

V2(t)−

∞∫
0

wµ(w)z23(w, t)dw+ (x2 − 2x1 + 2x2x3

− x1x3 − x1x2 + x2x23 − ax1x
2
2 − bx1x2x3 + u)

×

∞∫
0

µ(w)z3(w, t)dw

=
.

V2(t)−

∞∫
0

wµ(w)z23(w, t)dw+w3(x2 − 2x1 + 2x2x3

− x1x3 − x1x2 + x2x23 − ax1x
2
2 − bx1x2x3 + u)

= −

∞∫
0

wµ(w)z21(w, t)dw−

∞∫
0

wµ(w)z22(w, t)dw

−

∞∫
0

wµ(w)z23(w, t)dw− w
2
1 − w

2
2

+w2(x1 + 2x2 + x2x3)

+w3(x2 − 2x1 + 2x2x3 − x1x3 − x1x2 + x2x23
− ax1x22 − bx1x2x3 + u)

= −

∞∫
0

wµ(w)z21(w, t)dw−

∞∫
0

wµ(w)z22(w, t)dw

−

∞∫
0

wµ(w)z23(w, t)dw− w
2
1 − w

2
2 − w

2
3

+w3(4x2 + 3x2x3 − x1x2 − x1x3 + x2x23 − ax1x
2
2

− bx1x2x3 + u) (84)
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From Equation (84) we get the law of control u = −4x2−
3x2x3+ x1x2+ x1x3− x2x23 +ax1x

2
2 +bx1x2x3, and the effect

of each variable control is shown in Figure 16.
From Figure 16, we can see that under the action of the

control law:

u=−4x2 − 3x2x3+x1x2 + x1x3 − x2x23 + ax1x
2
2 + bx1x2x3,

each state variable approaches, which illustrates the effec-
tiveness and correctness of the design of the control law.
Compared with other control methods, the control method
based on the frequency distribution model of the fractional
integral operator has the advantage that it only needs to design
a control law to complete the control of each state variable.

VI. CONCLUSION
Based on the Adomian decomposition method, this
paper combines fuzzy entropy algorithm, sample entropy
algorithm, and dispersion entropy algorithm by compar-
ing detection complexity value size and detection area
size, and the dispersion entropy algorithm in analyzing
the complexity of fractional-order Jafari-Sprott chaotic
system is the best. In addition, the complexity of the
fractional-order Jafari-Sprott chaotic system is greater than
the integer-order Jafari-Sprott chaotic system, and the com-
plexity is the highest especially at 0.6-order. Compared with
the integer-order Jafari-Sprott chaotic system, the fractional-
order Jafari-Sprott system has more research significance
and it provides relevant theoretical basis for the application
of fractional chaotic system in the fields of cryptography,
confidential communication, and information security. Syn-
chronization and control of fractional-order Jafari-Sprott
chaotic system is accomplished by sliding model control
and frequency distribution model of fractional-order integral
operator respectively. In particular, the control effect of each
variable is accomplished by designing a control law based
on the frequency distribution model of fractional integral
operator. The advantage of this method is that you only need
to design a control law to complete the control of three state
variables, at the same time the designed control law contains
only state variables, and does not include integer or fractional
order derivatives of state variables, so it is easy to implement.
The system studied in the synchronization control in this
paper is ideal, but in practice, many systems have external
interference. How to complete the system’s synchronous
control in the presence of external interference is worthy of
further study.
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