SPECIAL SECTION ON ARTIFICIAL INTELLIGENCE IN
PARALLEL AND DISTRIBUTED COMPUTING

IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received January 12, 2020, accepted February 21, 2020, date of publication March 16, 2020, date of current version March 25, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2980852

Toward Bio-Inspired Auto-Scaling Algorithms: An
Elasticity Approach for Container Orchestration
Platforms

JOSE HERRERA"” AND GERMAN MOLTO

Instituto de Instrumentacién para Imagen Molecular (I3M), Centro mixto CSIC-Universitat Politécnica de Valéncia (UPV), 46022 Valencia, Spain
Corresponding author: José Herrera (jherrera@upv.es)

This work was supported by the Ministerio de Economia, Industria y Competitividad, Spanish Government, for the Project BigCLOE
under Grant TIN2016-79951-R.

ABSTRACT The wide adoption of microservices architectures has introduced an unprecedented
granularisation of computing that requires the coordinated execution of multiple containers with diverse
lifetimes and with potentially different auto-scaling requirements. These applications are managed by means
of container orchestration platforms and existing centralised approaches for auto-scaling face challenges
when used for the timely adaptation of the elasticity required for the different application components.
This paper studies the impact of integrating bio-inspired approaches for dynamic distributed auto-scaling
on container orchestration platforms. With a focus on running self-managed containers, we compare
alternative configuration options for the container life cycle. The performance of the proposed models is
validated through simulations subjected to both synthetic and real-world workloads. Also, multiple scaling
options are assessed with the purpose of identifying exceptional cases and improvement areas. Furthermore,
a nontraditional metric for scaling measurement is introduced to substitute classic analytical approaches.
We found out connections for two related worlds (biological systems and software container elasticity
procedures) and we open a new research area in software containers that features potential self-guided

container elasticity activities.

INDEX TERMS Auto-scaling, bio-inspired, sofware containers.

I. INTRODUCTION
The widespread adoption of Linux containers, and in partic-
ular Docker [1], as a mechanism for convenient application
delivery has paved the way in the last years for the surge of the
microservices architectural pattern [2] in which monolithic
applications coded in a single programming language can be
broken down into multiple polyglot services exposing inter-
faces. These are typically delivered and executed as contain-
ers managed by a Container Orchestration Platform (COP)
such as Kubernetes [3] or Apache Mesos [4]. A COP acts as
a scheduler for the execution of container-based workloads
and provides secure access management to the pool of shared
computing resources which are typically delivered in the
shape of a cluster of computing nodes.

Previous literature agrees on the performance advantages
of applications running on containers when compared to other
virtualization technologies (see for example Felter et al. [5]).

The associate editor coordinating the review of this manuscript and

approving it for publication was Songwen Pei

VOLUME 8, 2020

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Indeed, an application running in a container can deliver a
similar performance to when executed directly on bare metal.
In addition, server density can be higher because no extra
Operating System services are executed and, therefore, more
containers can be executed per machine. However, microser-
vices applications lead to faster creation, operation and
removal of computing entities (containers) when compared to
using Virtual Machines. This imposes a serious challenge for
auto-scaling where more adaptable, precise and capable sys-
tems are required to manage the elasticity of large-scale fleets
of containers belonging to multiple application architectures
with dynamic elasticity requirements.

Adapting computational systems to the dynamic workload
has been widely studied in previous works based on virtual
machines and containers (Qu et al. [6], Hoenisch et al. [7]).
Indeed, auto-scaling systems are already available for cer-
tain platforms, but the requirements of emerging application
architectures requires a review of the methods used to per-
form auto-scaling in heterogeneous platforms of containers.
In particular, it is important to understand the implications of

52139

https://orcid.org/0000-0002-9820-0937
https://orcid.org/0000-0002-8049-253X
https://orcid.org/0000-0003-0810-1458

IEEE Access

J. Herrera, G. Molt6: Toward Bio-Inspired Auto-Scaling Algorithms: Elasticity Approach for Container Orchestration Platforms

current research in other areas, for the field of elasticity of
container-based computing platforms.

One of these areas is bio-inspired algorithms, where
lifelike biological evolution is used as an inspiration source
to solve a complex problem in computer science by finding
an optimal solution, and a set of meta heuristics that mimic a
biological process are adopted, typically to address optimisa-
tion issues [8]. Coding a system using an algorithm based on
natural living sometimes introduces a convenient approach to
solve the challenge [9]. Addressing auto-scaling of containers
by means of bio-inspired algorithms may produce a viable
option to quickly respond to changing requirements or load
peaks.

To this aim, this paper introduces a set of novel
bio-inspired algorithms aimed at supporting auto-scaling in
container-based computing platforms. After the introduction,
the remainder of the paper is structured as follows. First,
section II provides an overall overview of the related state
of the art. Next, section III underpins the similarities and
relations between auto-scaling and bio-inspired algorithms.
Then, section I'V proposes two models for auto-scaling based
on cell modeling. Later, section V incorporates a proposed
model evaluation to assess options, parameters and perfor-
mance. It also includes experiments using the best proposed
model versus well-known algorithms using synthetic and real
world workloads. Finally, section VI summarizes the main
achievements of the paper and concludes the paper with
future work.

Il. RELATED WORK

This section summarizes the related work in the area of
auto-scaling focusing on container orchestration platforms
and bio-inspired algorithms.

A. AUTO-SCALING

A key feature of cloud computing is elasticity (Mufioz-Escoi
and Bernabéu-Auban [10]), where applications can dynami-
cally adjust the computing and storage resources. On the one
hand, vertical elasticity involves increasing or decreasing the
amount of computing and memory resources of a single com-
puting entity (typically a virtual machine in a cloud provider).
On the other hand, horizontal elasticity requires changing the
architecture of the application to run on a distributed fleet of
computing nodes that can grow and shrink according to the
values of certain metrics, such as the average CPU usage in
the last ¢ seconds across the available nodes.

If no human intervention is required to adjust those
resources, then auto-scaling is taking place [11]. Well-known
examples of auto-scaling services are ECS Service Auto Scal-
ing [12], autoscaling groups of instances for Google Cloud
[13] or Microsoft Azure Autoscale [14]. A rich taxonomy of
auto-scaling systems is described in the work by Qu ef al.
[6] and in the work by Al-Dhuraibi et al. [15]. Dynamic
vertical scaling has also been addressed in the past through
the dynamic allocation of memory to Virtual Machines,
as described in the work by Molt6 et al. [16]. Even public

52140

Cloud providers are starting to provide this functionality to
some extent, as is the case of Jelastic [17].

It is common to find centralised auto-scalers that have an
overall view of the state of the platform and provide scaling
methods, resource estimation or scaling timing. Other studies
based on containerisation such as the proposal by Kukade
and Kale [18] or the one proposed by Kan [19] also involve
centralised systems. Autonomic resource provisioning has
appeared recently as a rich research field. Some examples
are explained in Calcavecchia et al. [20] proposing a com-
plex architecture and requiring agents relations. Najjar et al.
[21] proposes a double type of modules that run as agents
while An et al. [22] focused on allocating network resources
in dynamic environments. Chieu and Chan [23] describe a
complex system with centralized data structures for coor-
dination without any type of evaluation and Son and Sim
[24] proposed agent-based testbeds focused on Server Level
Agreements (SLAs) negotiation, price metric and time-slot
utilities.

In an auto-scaling system, scaling decisions such as deploy
or terminate a node in horizontal scaling are taken at a
certain point of time and are typically followed by a cool
down period in which no scaling actions are taken to avoid
oscillations in the system. Therefore, scaling decisions are not
continuous. In fact, the time between two consecutive scaling
actions depends on the monitoring interval (slot time), and it
is important to measure the optimal time distance between
reconfiguration actions. On the one hand, a bigger distance
between actions causes a worse adaptation of the system
to the arising workloads. On the other hand, a lower time
between scheduling actions may introduce an overload in
the elasticity system. Some mixed methods are explored. For
instance, Rad et al. [25] expose a vertical scaling procedure
mixed with live container migration.

A new era of auto-scaling systems based on a wide vari-
ety of variables recently appeared. Examples of high-level
metrics, such as request service time, appear in the work
by Al-Dhuraibi et al. [26], whereas adjusting the estimation
of service time is described in Kaur and I. Chana [27].
This suggests that the system must be capable of process-
ing event-based workload prediction, provisioning using new
pricing models, energy and carbon-aware systems (environ-
mentally friendly) and more that will appear in the next years,
considering previous variables too (classic economic cost
and/or system performance). Although this work is focused
on the reactive auto-scaling model [28], it is important to
analyse that different nodes could use different values to
evaluate options for auto-scaling.

A biological proposal for autoscaling is included in
Moore et al. [29] where they evaluate a combination of
time series prediction with an evolutionary algorithm using a
centralized auto-scale architecture that start and stop virtual
machines in a cloud computing platform. The reconfiguration
interval or slot time elapsed 1 h according to most cloud
infrastructure providers minimum period of charge, at the
time when the study was carried out.

VOLUME 8, 2020

J. Herrera, G. Molto: Toward Bio-Inspired Auto-Scaling Algorithms: Elasticity Approach for Container Orchestration Platforms

IEEE Access

Virtual machine and software containers exhibit different
values for resource provisioning, as demonstrated by previous
works in the literature. The difference between provisioning a
Container or a Virtual Machine has been assessed in Messias
[30], in the work by Hussain [31] or in the work by Gupta
et al. [32]. Indeed, containers are just processes executed
by the underlying OS with some visibility restrictions and,
therefore, do not involve the resource provisioning and boot
up times required by VMs. Actually, it is very common to run
containers (application delivery) on top of Virtual Machines
(infrastructure provision).

B. BIO-INSPIRED MODELS AND CELL AUTOMATON

A cellular automaton is a mathematical model for a dynamic
system composed of a set of cells that acquire different
states or values. These states are altered from one moment
to another in units of discrete time, i.e., that can be quantified
with integer values at regular intervals. In this way this set of
cells evolves according to a certain mathematical expression,
which is sensitive to the states of neighbour cells, and is
known as the local transition rule [33], [34]. Models based
on individual agents allow personalised ‘““learn”, adaptation
and reproduction [35].

Swarm intelligence is based on group behaviour of
species like ants, bees, etc. These species have an intel-
ligent behaviour without a centralized authority. Simple
agents or bodies interacting individually with the environ-
ment or among them generate a global desired behaviour
(see [36, Chapter 9]).

lIl. RELATING BIO-INSPIRED MODELS TO
AUTO-SCALING

In this section, we analyse important underlying paral-
lelisms and similarities between bio-inspired algorithms and
auto-scaling actions. In both scenarios, decisions are taken
at certain time intervals that affect the size of the population
either by adding new individuals (i.e. deploying a compute
node, which can be a container or a Virtual Machine) or
killing individuals (i.e. shutting down a compute node).

The basic elements in a cellular automaton can be related to
auto-scaling of containerised applications. A state set is pos-
sible both in cellular automata, and in auto-scaling systems.
The initial configuration would be the same in both systems,
and a transition function must be defined in both cases.
Auto-scaling systems typically define a transition function
for a centralised system. However, in cellular automata a tran-
sition function is defined for every single cell. By adopting the
behaviour of cellular automata distributed auto-scaling can be
performed without requiring a single centralised entity taking
decisions about the scaling behaviour.

Some extrapolated advantages are: evolutionary algo-
rithms are intrinsically parallel. They are a representation of
an independent entity operating autonomously and, therefore,
actions are taken individually. They work especially well for
solving problems whose space of potential solutions is large
and non-linear. They do well in problems with a complex
adaptive landscape, such as those in which the fitness function

VOLUME 8, 2020

p) 3

Load Balancer

Http Server Http Server Http Server ‘

Self
Auto-scaling
module

Scale actions
In, Out, Up, Down:

Self
Auto-scaling
module

Scale actions
In, Out, Up, Down

Self
Auto-scaling
module

Scale actions
In, Out, Up, Down

Container instance
Container instance

Container instance

Container orchestration platform

FIGURE 1. Logical distributed architecture proposal.

is discontinuous, noisy, changes over time, or it has many
local optima [37]. They have the ability to manipulate many
parameters simultaneously and exhibit a reduced time lapse
for decision making. Also, decision in time ¢ is faster and
easier to take than in complex algorithms.

The main expected disadvantages are: Time taken for
convergence; Configuration fine-tuning complexity; Muta-
tion parameter definition; Fitness normalization or selection
parameter configured sometimes by trial and error. Also,
the algorithm may obtain incomprehensible solutions. The
results could be out of scope, inefficient or incomprehensible
from an engineering point of view. As a result of these dis-
advantages, the fitness function should be carefully designed
and optimized.

The fitness function measures the differences between
individuals and, therefore, decides which one is better. Some
important characteristic are explained by Rebecca J. Parsons
[38, Chapter 9], indicating that the fitness function is the
way to discriminate between individuals and internal states,
and it is desirable that similar fitness values are obtained for
individuals with similar shared characteristics.

We do not aim to reach a fitness function where parameters
are calculated and optimized with an evolutionary algorithm.
Our proposal tries to distribute auto-scaling actions among
existing containers to prove, in a preparatory work, that
distributed auto-scaling represents a potential solution that
mimics what happens in some living ecosystems.

IV. PROPOSED MODELS
For testing purposes, an application is a group of loosely cou-
pled, fine-grained stateless services that communicate among
them using a lightweight protocol. Requests are distributed
into the application by means of a load balancer (Figure 1),
which receives the user requests. Unless otherwise stated,
experimental simulations use a round-robin load balancing
algorithm, though this is changed for other distribution mech-
anisms to analyze the system behavior in other circumstances.
The initial proposed model has five possible environ-
ment adaptation actions on a classic scalable web architec-
ture, as shown in Figure 2: horizontal scaling - scale out
(denoted by SO), horizontal scaling - scale in (SI), vertical

52141

IEEE Access

J. Herrera, G. Molt6: Toward Bio-Inspired Auto-Scaling Algorithms: Elasticity Approach for Container Orchestration Platforms

CELL Adaptation
+ Resources
Scale Up

€< Horizontal Scaling »»»

CELL Dead
- Machines

CELL Reproduction

+ Machines
Scale Out
SO

Scale In
S

N

CELL Adaptation
- Resources
Scale Down

SD

FIGURE 2. Relations for scaling actions, cell actions and provisioning
actions.

scaling - scale up (SU), vertical scaling - scale down (SD)
and no action (N).

Furthermore, probability functions are used in order to
decide whether an action should be applied or not. This
converts our system into a stochastic process. After a decision
is selected (SO, SI, SU or SD), each cell performs the defined
adaptation, for a time ¢, only if the probability is greater than
a random value generated internally at the time for every
defined action. Therefore, four probabilities are defined for
four potential actions. Slp is the probability to become dead
in horizontal scaling (scale in), SDp is the probability of
adaptation in the case of vertical scaling (scale down), SUp
probability for vertical scaling, but in scale up and SOp is the
probability to perform an action of horizontal scaling (scale
out), as described in Figure 2. Notice that the probability of
these actions prevents an action to be concurrently taken by
all the containers, as it would happen, for example, during
a spiky workload increase. Therefore, it can be interpreted
as the ability to adapt the system for every action. See
Algorithm 1 for a cell algorithm for auto-scaling decision.

A. NORMALIZED EXTENDED RESOURCE METRICS (NOX)
Normalisation is required in order to compare different metric
values, which are referenced as X; in time instant ¢. This NOX
(NOrmalized eXtended resource metric) is created based on
the original metric values as described in equation 1.

X = ap * fo(Po,) + a1 x fi(P1,) + ... +ap x fu(Py,) (1)

where a, >= 0 indicates the participation of every function
(fu) in NOX, ap +a; + ... + a, = 1, Py, represents the
parameters for sub-functions in time instant ¢ and function
fc <= 100, x € [0..n] (n represents the total number
of components in the equation). It takes values from 0 to
100 allowing us to compare systems in the way we desire.
This sub-function represents a part of the NOX function
with different treatments according to the variables defined
(e.g.fi = %CPUload, f> = %RAMuse, f3 = 10 operations *
100 / max 10 operations, etc.).

52142

Algorithm 1 Cell Algorithm for Every Decision in
Auto-Scaling Module

1: while true do

2: Wait (T)

3: p=GetRandomNumber(0,1)

4: NOX=GetNOXValue()

5. if (NOXbetween(SOr, 100)) A (p >= SOp) then
Scale-out

6: Action

7. elseif (NOXbetween(SUyL, SOp)) A (p >= SUp) then
Scale-up

8: Action

9: else if (NOXbetween(SIy, SD1)) A (p >= SDp) then
Scale-down

10: Action
11: elseif (NOXbetween(0, SI1.)) A (p >= SIp) then
Scale-in

12: Action

13: else

14: No Action
15: endif

16: end while

The desirable features for NOX values are described by
Khurana [39] for software metrics, among others: Consistent
and objective, easy to calibrate, easy to obtain and robust.

B. AUTO-SCALING SELF-SUFFICIENT CELL MODEL (SCM)
A first analysis is made trying to maintain cells as inde-
pendent as possible. The main feature of this model is the
lack of direct interaction among the cells. The two main
characteristics of the SCM algorithm are the NOX function
applied (see section IV-A) and the transition function used.
This initial model is interesting because if we define a NOX
function that uses only local parameters, the model would
reduce container data interchange and network traffic.

The SCM model has multiple options relaying on the NOX
function, action limits or data from the previous status. Some
initial alternatives are explained as follows:

o SCM-A option. The transition function is composed of

a NOX value that only considers %CPU used (X; =
%CPU) and a simple transition function (see Table 1)
where X; represents the NOX function. In this table
every line represents a range of response and pos-
sible action depending on the NOX value. The col-
umn “Likely cell reaction” represents the name in a
bio-inspired scenario whereas the “Auto-scaling name”
column is the action name in an auto-scaling scenario.
The last column (“Action”) is a representation of the
activity carried out.

After the NOX evaluation and the transition function,
an action is obtained (SO, SI, N, SU or SD), and the
probabilistic correction explained at the beginning of
section IV is carried out to prevent that every cell per-
forms the same action. In Table 1, the variables SI; , SD;y ,

VOLUME 8, 2020

J. Herrera, G. Molto: Toward Bio-Inspired Auto-Scaling Algorithms: Elasticity Approach for Container Orchestration Platforms

IEEE Access

TABLE 1. Transition function definition for SCM-A option.

Function leely. Auto-scaling Action
cell reaction name
_ _ . Horizontal scaling
SO <= Xt <= 100 Reproduction (scale out) SO
_ . Vertical scaling
SUL <= X < SO, Adaptation (scale up) SU
SD;, <= X: < SUL Not action - N
- . Vertical scaling
SIp, <= X < SDyp, Adaptation (scale down) SD
0<=X, <SI, Dead Horizontal :s‘cahng S7
(scale in)
TABLE 2. Transition function definition for the SCM-B option.
Function leely. Auto-scaling Action
cell reaction name
- - . Horizontal scaling
SO <= Xt <=100 Reproduction (scale out) SO
(SI, <= X <SOp) o Vertical scaling
and(Xi—1 <= Xy) Adaptation (scale up) SU
(SI, <= X¢ < SOy) . Vertical scaling
and(Xi—1 > Xt) Adaptation (scale down) SD
0<=X, < SIL Dead Horizontal scaling SI

(scale in)

SUL, SO, represent the thresholds defined in the model
in order to take actions. SIz, is the upper limit of dead
range action. Values of X; between SI;, and SDj cause
scale down actions and SUy is the lower limit for scale
up whereas SOy, is the upper limit. The upper limit is
defined by SOy, that is the lower threshold for scale out
actions.

« SCM-B option. In order to simplify the possible actions
applied to the managed system, the “Not action” (N) is
removed. This case is an adaptation of SCM-A, where
the range Not Action disappears and vertical scaling
actions are joined to create alternative options using the
NOX value from the previous iteration (X;_1). The tran-
sition function is defined in Table 2. Variables SO, and
SI;, maintain the same meaning and vertical actions are
made according to the previous NOX function. There-
fore, we are prioritizing horizontal scaling and keeping
limited the vertical scaling actions.

e SCM-C option. The transition function is the one
defined for SCM-B in Table 2 and the NOX function is
X; = 100 x QQI%Z In scenarios involving a web applica-
tion where requests are demanded not periodically (with
an unpredictable not periodic pattern in time), Qyize is
the number of pending FLOPS and Qy;,,i; is the value of

the maximum number of pending requests.
More complex NOX and transition function can be defined

depending on the system response that we need, but these
cases explain the typical behaviour of an auto-scaling system
with well-known system parameters.

For the sake of clarity and simplicity, all the references to
SCM will correspond to the SCM-B option.

C. AUTO-SCALING INTERACTIVE CELL MODEL (ICM)
Auto-scaling Interactive Cell Model is an example of a sys-
tem where cells/containers know information about adja-
cent cells/containers directly. This requires data interchange
among cells, directly or through a mediator service.

VOLUME 8, 2020

Action probabilities and transition functions are similar to
the ones described in the SCM models. However, the NOX
function definition is different from ICM models. We need a
function that joins information about nearby cells and local
information. The set of cells closer to a given one is denoted
as S;.

Xt — o X[gcal + ,3 % theighbour (2)

- t

X[— g % fo(SO) 4 ar % fi(S) + . .+ an # f(ST)
3)

where a, >= 0 is the participation of every sub-function in
the neighbour part of the NOX function, ap+a;+. . .+a, = 1,
a+pf=1a>=0and B >=0, f, <= 100, x € [0..n] and
S/ represents a set of cells defined at time instant . When 8 =
0 this equals to the SCM model. X/ is equal to the SCM
model in equation 1. The transition function is the same used
for the SCM-B option (Table 2) and the probabilities defined
in the interval maintain the same interpretation. The neigh-
bour function X"¢/¢"bo4r is based on a linear representation of
cell space. This is built with only one dimension, the easiest
representation for a n-dimensional space to render cells.

V. MODELS EVALUATION

After explaining our proposal, we run several simulations to
evaluate the accuracy of the models. Tests were performed
under controlled conditions explained in the following para-
graphs.

In this case, we rely on simulation techniques to show
the best performance cases and to avoid error configurations
that would render the model unusable. Running these models
in a production infrastructure (using real workload, actual
hardware and real total number of elements) would involve
a large-scale number of resources that are not justified for
a first problem approach. In a stochastic system, such as this
one, we run simulations several times in order to validate out-
put values with multiple combinations of input parameters.
This technique requires a lot of computational power to be
executed a relevant number of times, thus discouraging the
use of a real production infrastructure.

The first feature observed is that the transition function is
related to the NOX function. In our case, the NOX function
reviews node execution values and the transition function
changes the total number of nodes (horizontal scaling) or
node execution parameters (vertical scaling). Relationship
between NOX function and transition function must be well
designed to prevent wrong behaviours. A well-known case
is an incorrect horizontal scaling action in cases of network
bottlenecks.

All models were run using a self-implemented code acces-
sible in GitHub [40]. This simulator emulates every node as a
class instance that adjusts its parameters using the previously
defined transition function.

The following sections validate the models through simula-
tions and verify how the system responds to load changes with
the proposed algorithms. After that, we define the process

52143

IEEE Access

J. Herrera, G. Molt6: Toward Bio-Inspired Auto-Scaling Algorithms: Elasticity Approach for Container Orchestration Platforms

variables that will be used to compare the proposed models.
Finally, relationships among variables and the results are
confirmed or belied using graphical methods.

A. GLOBAL CONDITIONS

The general conditions for testing are described in the
following paragraphs together with the methods used for data
collecting, monitoring and analyzing.

1) MEASURING ELASTICITY

Generally, auto-scaling is done to optimize the system in
terms of cost and/or performance like the response time
or throughput. Indeed, in the work by Ai er al. [41] the
authors propose an extended list of values that can be used
to evaluate scalability proposals. Workloads in a production
system are highly unpredictable and do not typically exhibit
clear patterns [42]. Furthermore, without regarding prediction
systems, all scalability systems have a non-defined time delay
between action and response. Therefore, we needed some
strategy to adjust a correct evaluation in addition to a correct
response.

We have four statistical metrics for evaluation:

1) MAE (Mean Absolute Error). It is a measure of
difference between two continuous variables.

1 n
MAE = =3 el)
t=1

2) RMSE (Root Mean Squared Error). Larger errors have
a larger effect on this value. Thus, it is very sensitive to
outliers.

&)

3) EVS (Explained Variance Score). The best possible
value is 1. Lower values are worse.
Z’;:l(ez - é)z
o1 = 3))?
4) R2S (Coefficient of Determination or R-Squared

value). The best possible value is 1 and it can be nega-
tive (because the model can be worse).

Z?:l et2
D1 =)

Vexpected.ts Yt = Vreal t and y =

EVS =1—)

R2S =1-— @)

where: ¢, = Viearr —
mean(yseries)

Alternatively, Dynamic Time Warping (DTW) is a time
series alignment algorithm developed originally for speech
recognition by Sakoe and Chiba [43]. It aims at aligning
two sequences of feature vectors by warping the time axis
iteratively until an optimal match between the two sequences
are found. According to our purposes, the best match between
two sequences is obtained by measuring the DTW distance.
It is proposed as an alternative to e; calculus for MAE
(Equation. 4).

52144

In order to compare two time series, DTW distance per-
fectly fits our purpose. The first time series represents the
resources needs in a ¢ time in comparison with a sec-
ond real-time series equal to our available resources. Then,
the DTW distance between the two series is a measure
of the adaptive capacity for the system designed (available
resources) and system desired (resource needs). When it is
near to zero, it is a proper value. Therefore, the greater
the value the worst it is considered. However, the DTW
algorithm only provides modulus (]x|) values comparative
(positive distances) for best fitting points. An additional prob-
lem is that using modulus values no difference exists when
resource load values are greater or lower than the reference
series. This implies no evaluation of under-provisioned or
over-provisioned behavior, like MAE or RMSE do.

When the load of total requests exceeds the system capac-
ity, the served requests must wait until there is processing
time available. The DTW algorithm does not distinguish
between over-provisioned and under-provisioned scenarios.
To model overload, we introduce a store for requests that are
partially processed. The size of this store indicates resource
needs to finish the jobs in container (e.g., if 10 MFLOPS
of CPU resources are pending, the store size will be 10).
To prevent under-provisioned system times from not being
analyzed in our study, we included a new result value for all
simulations called queue size. In this case, the total queue
size (Qysize) s the value selected for system evaluation. This
experiment was designed for testing purposes, validating that
over-provisioned systems have Qs = 0 values for all the
executions and under-provisioned show Qyiz. > 0.

2) ALGORITHMS FOR TESTING AND COMPARATION
Together with our bio-inspired algorithm proposal, we used
two well-known centralized algorithms too:

o Common. This simple algorithm allows adapting capac-
ity depending on CPU ijizarion like Amazon’s Simple
and Step Policies EC2 Auto Scaling feature (SS) [44].
It is simple and easy to code, but beneficial and efficient
for simple applications. When CPU jjizarion 1S under
30%, we reduce the total number of containers running;
over 70% we create a new container.

o Prediction. This algorithm is similar to the previ-
ous one, but we tried to estimate future values using
SARIMA(5,1,0), also known as seasonal ARIMA,
implemented in Python’s statsmodels library to forecast
the CPU usage in the next time slot instead of using the
actual CPU gijization. SARIMA prediction uses all series
of data available in order to estimate the next value. After
this calculus, we use similar limits to those used for
the Common algorithm introducing proportionality to
container creation. If the load predicted by the algorithm
is not satisfied by adding only one node then it will create
the necessary additional nodes.

3) SERVERS LOAD FOR MEASURING
We analyze our proposal using three time series. The first
load used is a synthetic proposal -SYNTLoad- (see Figure 3),

VOLUME 8, 2020

J. Herrera, G. Molto: Toward Bio-Inspired Auto-Scaling Algorithms: Elasticity Approach for Container Orchestration Platforms

IEEE Access

>

-% j ’ﬁ‘ R & \ m , — Requests
H Ry R i
el J UML) /UL
E 0 25 50 75 Tlme i??> 125 150 175 200

FIGURE 3. Synthetic load series (SYNTLoad).

1e9

°

— Requests

s &L 5 @

FLOPS requested -->

°

[2000 4000 6000 8000

Time -->
FIGURE 4. 1995 NASA series (NASA95).

1e10

FLOPS requested -->

[2000 4000 6000 8000 10000 12000

Time -->

FIGURE 5. 1998 FIFA World Cup series (FIFA98).

where different web-based workload patterns across time are
shown. Based on the work by McNaughton [45] and Gill et al.
[46], we take several workload patterns for testing purposes.
This creates a non-cyclic and non-seasonal time series that
will serve us to better evaluate the models and configura-
tions with unpredictable workloads. The second one is a log
from August 04 to 31, 1995 of HTTP requests to the NASA
Kennedy Space Center WWW server in Florida -NASA95-
(see Figure 4) [47]. Finally, we have a log from France FIFA
World Cup Series 1998 -FIFA98- (see Figure 5) [48]. With
the aim of reducing real load extension from FIFA98 and
NASAO9S, the total lines are grouped in a single request for
each 10 minutes. Therefore, the number of requests is the
same, but they are grouped in longer time periods.

To assess the models, in the simulator, load requests are
transformed as resource load using configuration variables.
All executions carried out were configured to use FLOPS as
the basic measurement unit for output values, summaries and
visualization data for the sake of better understanding.

B. SELECTING BEST PROPOSED ALGORITHM
So far, we have presented models and the way to measure
and compare them. Firstly, to validate our proposal, we eval-
uate models with SYNTLoad in this section. After that,
in section V-C, we will compare the best proposed model
with real loads (FIFA98 and NASA95) and well-known auto-
scaling algorithms (common and prediction).

Previously to experiment validation, we tried to relate
parameters provided on simulation and outputs (see Figure 6).

VOLUME 8, 2020

000
Scale In-Dead hoooo -
Actions os 5200 - | |
(Sl Ll AR
20 L &0 o 20 40 60 80
5000
Scale In-Dead '°1 0000 -
Probability 0s 4 w00
(Slp)
2 ® o o —y 2 © @ w
Scale Out 101 10000
Reproduction s | i | |
Prob. (SO,)
.1}] 1) S’] — 2’0 40 1] 21
Scale Out 10 g 8 ’ 10000 - [
Reproduction . | s
Prob. (SO,) |
20 [&0 8 i 2:3 .lvﬂ N‘l é
Adaptation 104 | |1 O O O T
Probability 5
5000 +
(Su,, or SDy)
= T T T T . T T T T
10 20 20 &0 1) o 20 40 @ 1]
08 A
i hoooo . 2’
0 GFLOPS
- 5000
- 00 012 C"-\ QIG :"E 10 10 ‘\::D Q;S 050 3'75 I‘IDD 1I25
10 4 e .2
06 .
os | .| #Containers
i 02
a T T 00 T T T T

T T T T T
0 2500 5000 7500 10000 12500 15000 0o 02 04 06 08 10

FIGURE 6. First multivariable analysis for SCM simulation.

In this case, varying five input simulation parameters (SIf,,
SIy, SOL, SO, and SD), or SU,) the range of parameters are
Sip e [0..100], SI, e [0..1], SOr €]S1;..100], SO, €
[0..1], SD, or SU, € [0..1] (see Table 5 compared with
Table 4). We produced two outputs in a controlled environ-
ment, aggregate DTW distance and #containers, both shown
as columns. All other possible parameters in the simulation
were maintained with constant values. As we use percentage
variables (S1,, SO, and SD), or SU,,) to obtain a result, we run
ten times the same simulation and the result was the average
of all the executions. Rows are identified as limits (SI; and
SO) or probabilities (SI,, SO, and SD,, or SU,). Limits use
steps of 10 whereas probabilities have a step of 0.1 and both
are represented in the X-axis and normalized in ranges from
1 to 100. Y-axis is normalized too. By varying parameter
values in the X-axis, we created all the combinations for
DTW distance and #containers (represented in the Y-axis).
The relation between DTW distance and #containers can be
obtained as the result of previous variations and is represented
in the lower part of the multivariate analysis.

Also, we generate Figure 7 with a multivariate
analysis of independent interval variables MinCellsRunning,
MinVerticalLimit and MaxVerticalLimit related to the depen-
dent variables DTW distance difference (measured in
GFLOPS) and total number of containers (#containers)
produced in the simulation.

52145

I E E E ACC@SS J. Herrera, G. Molt6: Toward Bio-Inspired Auto-Scaling Algorithms: Elasticity Approach for Container Orchestration Platforms

TABLE 3. Compilation of featured experiment results.

Min.Cells ™ B I NI Tot. Tot. Ratio Total
Running s | I | I o | I l : Experiment DTW processing Qsize ,
=10 l % | [distance | containers | /#containers Qsize
R T A I ™ O A A SCM1 194 4,986 1.492 7,440
o150 aid SCM2 57 1,125 0.005 6
Min. Vertical ;07 ¢ i SCM3 418 7,493 0.021 158
Lt e ICM1 519 11,884 0.072 864
o TP PR e P R W TABLE 4. ICM1 experiment limits and values. Including variables options.
0125 . : i A .) : .
Max. Vertical awyi j 1 O Action code ST SD or ST SO
Limit e | | | ‘ ‘ | I | I | NOX limits | 0 <—> SIp, <> SO, < 100
ey wid Act.percentage S1p, SDy, or SU, SO,

10000 15000 20000 25000 30000 35000 40000 45000 50000 1200 15000 20000 25000 30000 35000 40000 45000 50000

o
06 e

GFLOPS

00 02 04 06 08 10 004 006 008 010 012 0l4 016

Queue

1 2 3 4 5 & 71 8
108

FIGURE 7. Second Multivariable analysis for SCM simulation.

-

MFLOPS requested

0 25 50 75 100 125 150 175

Time (sec.) --->

FIGURE 8. DTW distance results for SCM-B simulation.

Multivariate analysis involves observation of more than
one outcome variable at a time in order to reduce a large num-
ber of variables to a smaller number of factors. The relation
between variables and results (aggregate DTW distance and
#containers) are not clear in most cases. Only Sy, SI, and
MinCellsRunning variables have an influence on the results
(dependent variables). It looks a good variable related to
Scale-in actions (SI). Only with a low value of S/ a good
auto-scaling response is achieved with an appropriate number
of containers. The best value of MinCellsRunning is around 9.

1) MEASURING SCM EXPERIMENTS

This section validates the SCM model for auto-scaling sys-
tems in order to gain better understanding about its behavior
under SYNTLoad situations (Figure 3). The dynamic con-
tainer provisioning output for executions is shown in Figure 8.
In the same way, for all experiments, we capture the DTW
distance (total distance lines between the load applied and the
system capacity obtained) as the main approach to compare
experiments.

52146

TABLE 5. SCM1 experiment limits and values.

Action code SI SD or SU SO
NOX limits 0 <—> 30 <—> 90 <—> 100
Act.percentage 70% 50% 10%

The SCM1 experiment runs the SCM-B model with con-
stant variables. Steady values are presented in Table 5. The
first line shows three actions that can be performed (SI -
scale in | SD - scale down or SU - scale up | SO - scale
out). The second line displays function limits (0, SI;, = 30,
SO;, = 90, 100) and the last row includes final action per-
centage (SIp - Dead Probability (70%), SUp = SDp (50%),
SOp - probability of scale out (10%)). The limit between the
SD and SU actions is explained in Table 2. Reading Table 5
by columns: ST action (scale in) is triggered when NOX value
is from 0 to 30 with a probability of 70%. SU or SD action is
triggered when NOX value is between values 30 and 90, with
a probability of 50%. Finally, the SO action (scale out) is trig-
gered with values of NOX between 90 and 100 and only 10%
of the times. These values are selected initially as a starting
point for the system in a heuristic way. The following experi-
ments adapt these values. The decision for vertical scaling is
made based on previous resource load. If the preceding load is
less that the current resource load requested then the vertical
decision aims at increasing the capacity (SU). Conversely,
the decision is to decrease (SD) the resources allocated to the
cell. Figure 3 (SYNTLoad) shows the total load demanded
for total requests in our experiment. See Table 3 for detailed
results of SCM1 experiment.

In the SCM2 experiment, the load balancing algorithm is
modified. Preceding experiments involved simulations using
a round-robin load balancing algorithm. In this experiment,
an agent based algorithm for load balancing is integrated in
the simulator. It distributes requests based on the container
load. With this approach, even if we assume the same load in
every request, not all container will receive the same number
of requests. Instead, we use the processing capacity for all
nodes as a heuristic to distribute the requests among the
least loaded cells. Using only horizontal scaling, no capacity
differences among nodes exists. All the nodes feature the
same processing capacity. To enable nodes capacity variation,
we need vertical scaling that does not exist if the dead superior
limit variable (S1;) and horizontal lower limit variable (SOy.)

VOLUME 8, 2020

J. Herrera, G. Molto: Toward Bio-Inspired Auto-Scaling Algorithms: Elasticity Approach for Container Orchestration Platforms

IEEE Access

are the same (center range is reduced to zero). See Table 3 for
detailed results of SCM2 experiment.

SCM3 experiment. For this experiment, we created a sys-
tem with improved characteristics in vertical scaling. Indeed,
scaling up/down (vertical scaling) is sometimes more effi-
cient than scaling in/out (horizontal scaling) (see Rad et al.
[25]). Indeed, adding a new node requires more time than
allocating further CPU, memory or other resources to an
existing one. Therefore, we design the experiment favouring
additional vertical scaling actions compared to the previous
experiment. The parameters used in this experiment will
reduce the range for SI and SO as much as possible, setting
Sy, to 5 and SOp, to 95. This creates a wider range for vertical
scaling (from 95 to 5). The request time series is the same one
used in all the previous experiments: SYNTLoad.

2) MEASURING ICM EXPERIMENTS
This section introduces the ICM model under basic setup
conditions.

ICM1 experiment tries to improve the results obtained in
the SCM experiments and apply the ICM model explained
in section IV-C with new external data sources. ICM cells
collaborate directly with other cells to improve total through-
put and reduce total Qy;.. In this case, we use a straight line
(one dimension) living space where cells remain until death.
Every cell has only cells to the left side and to the right side
because the space is continuously configured where the last
cell has the first cell as neighbour and vice versa. When a
cell looks for cells adjacently it is possible to see a distance
greater than 1. The parameter icm_size indicates the total cells
seen on both sides used for the computations. Other options,
such as a two-dimensional space or a multidimensional
mesh are possible, but they are not addressed in this doc-
ument because the resulting analysis is more complex.This
experiment brings in a major problem when we consider
intercommunication between neighbour containers. The use
of a simulation environment allows us to evaluate models
independently from the communication strategy among the
cells, which can be achieved by a message bus or a service
mesh.

We focus on whether horizontal scaling is enough to adjust
to workloads and compare the results against other experi-
ments. Therefore, in this model, no vertical scaling (up or
down) is produced, all adaptation is made using horizontal
scaling (using in/out scaling), SI or SO decisions. The NOX
formula is similar to the one used for SCM-B but now the
value is a combination of local data and neighbour’s informa-
tion. All information about local resources used can be mixed
with all average information from then right side and then left
side cells using a weights formula (see equation 2 parameters
Xlocal and X7“"°“"y Value for %Local is « = 15, this
means a %neighborhood value for 8 = 85.

For testing purposes, all the information from neighbours
is obtained from a centralised database periodically populated
with the information from the neighbours themselves. See
Table 3 for detailed results of the ICM1 experiment.

VOLUME 8, 2020

TABLE 6. Summary table comparing Bio algorithms with vertical scaling
(SCM2) and without vertical scaling (SCM3).

Load Name FIFA98 NASA95
Vertical Auto-scaling With Without With Without
Total Distance DTW 11,165,275 10,782,642 15,425,883 2,759,028
Total Qgize 4,603 16,505 1,598,359 2,188
Total Container Used 446,390 2,203,148 3,357,354 576,863

3) RESULTS ANALYSIS

The results in Table 3 highlight important details compar-
ing the four data experiments. According to the Tot. DTW
distance column, the best algorithm is SCM2, where the
result obtained is the closest to 0. The experiment that
uses the lowest number of containers to run the workload
is SCM2 as well, using 1,125 containers across all the
experiment. Considering the Qsj;e column, the lowest size
is achieved in experiment SCM2. Therefore, SCM2 stands
out as the best approach in the model proposed. ICM1 uses a
large number of containers (11,884), a 58% more than SCM3
(7,493). SCM1 was significantly worse at Qgi;e. The ratio
Qsize/#containers, highlights a similar situation: the best ratio
is obtained for SCM2, whereas SCM3 and ICM1 show simi-
lar response times and the worst is SCM 1. Therefore, mixing
a bio-inspired approach with a local balancing strategy stands
out as the best approach.

C. COMPARING WITH REAL WORLD LOADS

This subsection describes the results obtained as a combina-
tion among loads (explained in previous section V-A.3) and
algorithms (two exposed in section V-A.2 and models pro-
posal of section IV-B). Trying to explain the most important
data in Table 7 by columns.

SYNTLoad: Notice that, in Table 7, the Total Container
Used in Bio (running SCM2 option) is higher than the
one used in other real world algorithms used (Common or
Prediction) but Total Q. is lower. This offers an expla-
nation of why a lower Qs is obtained for this proposal.

Using DTW, instead of evaluating error = Veypecteda —
Vactuai to calculate MAE, we get similar values for three
proposals.

FIFA98 Load: Bio algorithm was run using a combination
of Vertical and Horizontal Scaling (see V-C.1). The values
shown for other variables are similar to the Bio algorithm.
MAE DTW, MAE and RMSE are similar too, but EVS
and R2S not. The value of Qyi,., related to response time,
is better for our Bio algorithm. Predictive worst results are
justified for a poor forecast and not performing optimal sea-
sonal adjustment of time series analysis with outliers. Indeed,
Common is a very simple algorithm to adjust to a complex
workload.

NASA95Load: Bio algorithm was run using only Hori-
zontal Scaling (see V-C.1). This load shows differences with
respect to other two loads. It is true that Bio uses twice as
many containers, but Qs is very low compared with other
algorithms. MAE DTW has the worst values for Bio too. The
Predictive algorithm is better in this case, but Common also
obtains a good result.

52147

IEEE Access

J. Herrera, G. Molt6: Toward Bio-Inspired Auto-Scaling Algorithms: Elasticity Approach for Container Orchestration Platforms

TABLE 7. Summary table comparing loads and auto-scaling algorithms results.

Load Name SYNTLoad FIFA98 NASA95

Auto-scaling algorithm | Common | Bio | Predic. | Common | Bioc® | Predic. Common | Bio | Predic.
Auto-scaling # points 197 12,528 8,199

Total Distance DTW 5,710 7,006 5,778 11,144,499 11,165,275 11,121,795 1,380,128 2,759,028 1,412,102
Total Container Used 5,767 17,596 5,780 1,104,654 466,390 1,108,445 295,180 576,863 291,925
Total Qsize 196 5 193 3,095,636 4,603 2,956,310 750,523 2,188 823,881
MAE DTW a ¢ 29.0 35.6 29.3 889.6 891,2 887.8 168.3 336.5 172.2
MAE a ¢ 31.4 42,2 31,6 908.5 911.5 906.5 174.1 381.6 177.2
RMSE a ¢ 37,2 61,4 37,2 1,792.6 2,001.1 1,789.9 228.9 588.6 232.6
EVS 0.048 -0.872 0.029 0.140 0.631 0.142 0.282 -2.952 0.254
R2S -0.039 -1.825 -0.035 0.129 -0.084 0.132 0.225 -4.123 0.199
Capacity Coef.b 244 0.35 2.33 6,83 0.66 6.81 3.40 0.32 3,45

@ x1.000.000, ? Coefficient for Maximum Requests/Maximun Processing Capacity , © Using Vertical and Horizontal Auto-scaling

1) CONFIRM HORIZONTAL OR VERTICAL SCALING

BEST RESULTS IN REAL WORLD

In previous sections and Table 3, we compared models using
a SYNTLoad. To confirm the results, we run the best modes
(SCM2 and SCM3) with real loads. This generates Table 6
where the most important values are presented. For FIFA98,
the best results correspond to vertical-horizontal mix scaling
option (SCM2) but, for NASA9S, the best results are without
vertical scaling (only horizontal) using SCM3. We estimate
that this is due to the load peaks in FIFA9S that are not present
in NASA9S5. Our best performance hypothesis for Vertical
Scaling, tested on SCM3, is not confirmed and performance
is clearly subordinate to load type.

2) LOAD/ALGORITHM COMBINATION OUTCOMES

The best results for our proposed model are accomplished in
loads with unpredictable series points called outliers. Most
predictable loads are better for other two algorithms. DTW
used, as error measure, is useful to compare the shapes of
series in unpredictable cases. Our Bio algorithms are always
over-provisioned, and they have better measures for response
times that need be validated in further research.

By putting response time first, using a Bio algorithm is the
best option. Contrasting loads, if it is foreseeable, a Prediction
algorithm or a Common algorithm are better selections, but if
we have a non-cyclic and non-seasonal time series load, Bio
options would be a possible selection as a result of a better
system performance adjustment using an over-dimensioned
number of containers but it clearly increases the cost of the
solution.

3) FEASIBILITY OF SCALE ACTIONS
If we want an agile response to change, we need to estimate
the workload according to previous data or design a fast
response time system (with Qs low). As a final assess-
ment of our Bio proposal, we need to analyze the economics
of scale. On Table 8, we reference not only the containers
used, from Table 7, but also variations and peaks in the
simulation.

Adding, removing or modifying container characteristics is
a task that we need to measure when using a high number of
containers in our proposal. We need an appraisal of the cost of
running containers taking into account that the Bio algorithm
increases the total adaptation actions made as well.

52148

TABLE 8. Scale cost for Bio algorithm.

Experiment SYNTLoad FIFA98 NAS_A95
Bio Bio Bio
Auto-scaling points 197 12,528 8,199
Total container used 17,596 466,390 576,863
Mean containers 89.31 37.22 70.35
Container peak 351 2,911 910
Max # scale-out/in actions 92/280 1,354/1,379 440/748
Mean container lifetime 48 1,566 132

Vertical scaling is an elementary response action for a
temporary lack of resources, adding more CPU capacity or
memory to our under-provisioned node. Being a very limited
action in time, this has not an effective cost for computing
platforms, but vertical scalability has a limit and the cost
gradually increases (see Henderson [49], Openshift and [50]).
In container platforms with pay-per-use model some vertical
resizing is made using a stop-start model with no possibil-
ity of live vertical scaling. For example, Amazon does not
support live vertical scaling of EC2 instances. In contrast,
we have Jelastic [17] that define a vertical scaling like our
proposal based in a scaling limit of resources in two parts,
reserved and dynamic.

The cost of horizontal scaling includes the total number
of containers running in a time period and our solution
sometimes doubles the number of containers with respect
to other strategies. But bio-inspired reduces the total time
that a container is up. This means that it creates a large
number of short-lived containers. Using a Bio algorithm with
loads based on peaks, we ensure right scaling and controlled
cost.

Another important issue is container creation times.
In [51], authors create 1 million containers in 266.7 s. This
is a rate of nearly 3,750 containers per second. Greater con-
tainer scale-out demand is 1,354 containers for a slot time
(similar for scale-in). Focusin on Container Orchestration
Platforms there was no noticeable difference in the launch
time using 30,000 containers in Docker Swarm or Kubernetes
(see [52]-[54]).

Sharper load peaks or series with greater number of outliers
are solved better with horizontal scaling and repetitive load
are conveniently solved with vertical scaling. To put the
two possibilities together, a possible solution is to equip our
models with a peak detection in request series.

VOLUME 8, 2020

J. Herrera, G. Molto: Toward Bio-Inspired Auto-Scaling Algorithms: Elasticity Approach for Container Orchestration Platforms

IEEE Access

VI. CONCLUSION

An early study was made to handle a bio-inspired distributed
algorithm in a container orchestration platform by employing
a simulation software, introducing two experimental models
that help to distribute decision making across the involved
nodes.

Achieving low Q.. values, whereas exhibiting a high
processing capacity (low DTW distance) are opposite goals.
In some cases, attempting to improve a metric by config-
uring certain parameters results in worsening other metrics.
A compromise solution is the most appropriate solution.
Oscillation problems of auto-scaling algorithms are limited in
bio-inspired models and appear to be controlled by configura-
tion parameters. Suitable models mix vertical and horizontal
scaling, joining all actions in an easy way and allowing
other potential scaling actions. NOX functions are defined
as a tool to engage reactive algorithms or self-sufficient with
cell-related models. An algorithm, designed initially for time
series alignment in speech recognition (DTW), is used to
compare multiple options. We perceive it as a good alterna-
tive to equate complex time series produced in auto-scaling
actions (very long sets or very detailed sequences).

Bio-inspired models do not offer an upper bound for the
number of containers running at a ¢ time. Scale up opera-
tions (SU) can be done indefinitely until the total capacity
of the hardware is exceeded. Furthermore, scale out (SO)
operations can be unlimitedly performed for all cells. Dead
prevention for an inferior limit of total containers (to avoid
selection of SI action for all cells) is complex too. The SCM
model reveals features of a very sensitive system to multiple
parameters. A proper configuration is a multiple parame-
ter combination where it is not easy to calibrate dynamic
response to multiple situations. The correct configuration of
a multiple parameter combination can lead us to a proper
response to unpredictable loads. However, adaptive capacity
is one of the fundamental appended values of a bio-inspired
auto-scaling system. A matching among real scaling algo-
rithms and bio-inspired, using real-world load series, allowed
us to identify the suitability for specific workloads. In two
cases Bio-inspired are better: in response to an not predictive
and no temporal load or when the requests produce outliers
(sudden load increases).

The model introduced exhibits an over-provisioned behav-
ior, with a trend to exceed the requirements, a situation
which usually implies a higher cost. There is no cost for
creating/stopping actions for software containers in some
container services such as Amazon Elastic Container Ser-
vice (ECS). Thus, Bio model is not penalized in this area
since only running resources involve a cost. Indeed, a higher
number of nodes for an extended period of time is costly.
Our proposal limits peak time and at the same time reduces
application response time. More evidences are required to
confirm a cost increase, if it is produced.

Finally, additional research lines arise as a result of
this work. The first goal is to enhance NOX functions,

VOLUME 8, 2020

introducing predictive analysis, pricing models or green
computation options. The second line would be focused on
understanding and design optimized ways for cells/containers
communications and mutual discovery, upgrading the ICM
model.

REFERENCES

[1] (2018). Dockers. Accessed: Jan. 11, 2020. [Online]. Available:
http://www.docker.com

[2] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi,
R. Mustafin, and L. Safina, ““Microservices: Yesterday, today, and tomor-
row,” in Present and Ulterior Software Engineering. Berlin, Germany:
Springer, 2017, pp. 195-216.

[3] G.LLC. (2018). Kubernetes. Accessed: Oct. 1, 2018. [Online]. Available:
https://kubernetes.io/

[4] A.S.Fundation. (2018). Apache Mesos. Accessed: Jan. 11,2020. [Online].
Available: http://mesos.apache.org/

[S] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated per-
formance comparison of virtual machines and linux containers,” in
Proc. IEEE Int. Symp. Perform. Anal. Syst. Softw. (ISPASS), Mar. 2015,
pp. 171-172.

[6] C. Qu, R. N. Calheiros, and R. Buyya, “Auto-scaling Web applications
in clouds: A taxonomy and survey,” 2016, arXiv:1609.09224. [Online].
Available: http://arxiv.org/abs/1609.09224

[7] P.Hoenisch, I. Weber, S. Schulte, L. Zhu, and A. Fekete, ‘“Four-fold auto-
scaling on a contemporary deployment platform using docker containers,”
in Proc. Int. Conf. Service-Oriented Comput. Berlin, Germany: Springer,
2015, pp. 316-323.

[8] S. Binitha and S. S. Sathya, “A survey of bio inspired optimization algo-
rithms,” Int. J. Soft Comput. Eng., vol. 2, no. 2, pp. 137-151, May 2012.

[9]1 A. K. Kar, “Bio inspired computing—A review of algorithms and scope
of applications,” Expert Syst. Appl., vol. 59, pp. 20-32, Oct. 2016.

[10] F. D. Muiioz-Escoi and J. M. Bernabéu-Aubdn, “A survey on elasticity
management in PaaS systems,” Computing, vol. 99, no. 7, pp. 617-656,
Jul. 2017.

[11] T.Lorido-Botran, J. Miguel-Alonso, and J. A. Lozano, “A review of auto-
scaling techniques for elastic applications in cloud environments,” J. Grid
Comput., vol. 12, no. 4, pp. 559-592, Dec. 2014.

[12] Amazon. (2019). ECS Auto-Scaling. Accessed: Jan. 11, 2020.
[Online]. Available: https://docs.aws.amazon.com/AmazonECS/latest/
developerguide/service-auto-scaling.html

[13] Google. (2019). Google Auto-Scaling. Accessed: Jan. 11, 2020. [Online].
Available: https://cloud.google.com/compute/docs/autoscaler/

[14] Microsoft. (2019). Azure Autoscale. Accessed: Jan. 11, 2020. [Online].
Available: https://azure.microsoft.com/en-us/features/autoscale/

[15] Y. Al-Dhuraibi, F. Paraiso, N. Djarallah, and P. Merle, “Elasticity in cloud
computing: State of the art and research challenges,” IEEE Trans. Services
Comput., vol. 11, no. 2, pp. 430-447, Mar. 2018.

[16] G. Molt6, M. Caballer, and C. de Alfonso, ‘“Automatic memory-based
vertical elasticity and oversubscription on cloud platforms,” Future Gener.
Comput. Syst., vol. 56, pp.1-10, Mar. 2016. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S0167739X15003155,
doi: 10.1016/j.future.2015.10.002.

[17] Jelastic. (2019). Jelastic Web Page. Accessed: Jan. 11, 2020. [Online].
Available: https://jelastic.com

[18] P.P. Kukade and G. Kale, “Auto-scaling of micro-services using container-
ization,” Int. J. Sci. Res., vol. 4, no. 9, pp. 1960-1963, 2015.

[19] C.Kan, “DoCloud: An elastic cloud platform for Web applications based
on docker,” in Proc. 18th Int. Conf. Adv. Commun. Technol. (ICACT),
Jan. 2016, pp. 478-483.

[20] N. M. Calcavecchia, B. A. Caprarescu, E. Di Nitto, D. J. Dubois, and
D. Petcu, “DEPAS: A decentralized probabilistic algorithm for auto-
scaling,” Computing, vol. 94, nos. 8-10, pp. 701-730, Sep. 2012.

[21] A. Najjar, X. Serpaggi, C. Gravier, and O. Boissier, ‘““Multi-agent nego-
tiation for user-centric elasticity management in the cloud,” in Proc.
IEEE/ACM 6th Int. Conf. Utility Cloud Comput., Dec. 2013, pp. 357-362.

[22] B. An, V. Lesser, D. Irwin, and M. Zink, “Automated negotiation with
decommitment for dynamic resource allocation in cloud computing,”
in Proc. 9th Int. Conf. Auto. Agents Multiagent Syst., vol. 1, 2010,
pp. 981-988.

52149

http://dx.doi.org/10.1016/j.future.2015.10.002

IEEE Access

J. Herrera, G. Molt6: Toward Bio-Inspired Auto-Scaling Algorithms: Elasticity Approach for Container Orchestration Platforms

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]
[34]

[35]

[36]

[37]

[38]

[39]
[40]

[41]

[42]

[43]

[44]

T. C. Chieu and H. Chan, “Dynamic resource allocation via distributed
decisions in cloud environment,” in Proc. IEEE 8th Int. Conf. e-Bus. Eng.,
Oct. 2011, pp. 125-130.

S. Son and K. Mong Sim, “A price- and-time-slot-negotiation mecha-
nism for cloud service reservations,” IEEE Trans. Syst., Man, Cybern. B,
Cybern., vol. 42, no. 3, pp. 713-728, Jun. 2012.

Y. Al-Dhuraibi, F. Paraiso, N. Djarallah, and P. Merle, ““Autonomic vertical
elasticity of docker containers with ELASTICDOCKER,” in Proc. IEEE
10th Int. Conf. Cloud Comput. (CLOUD), Jun. 2017, pp. 472-479.

P. D. Kaur and I. Chana, ““A resource elasticity framework for QoS-aware
execution of cloud applications,” Future Gener. Comput. Syst., vol. 37,
pp. 14-25, Jul. 2014.

D. Jiang, G. Pierre, and C.-H. Chi, “Autonomous resource provisioning for
multi-service Web applications,” in Proc. 19th Int. Conf. World Wide Web
(WWW), 2010, pp. 471-480.

L. R. Moore, K. Bean, and T. Ellahi, “Transforming reactive auto-scaling
into proactive auto-scaling,” in Proc. 3rd Int. Workshop Cloud Data Plat-
forms (CloudDP), 2013, pp. 7-12.

V. R. Messias, J. C. Estrella, R. Ehlers, M. J. Santana, R. C. Santana,
and S. Reiff-Marganiec, ““Combining time series prediction models using
genetic algorithm to autoscaling Web applications hosted in the cloud
infrastructure,” Neural Comput. Appl., vol. 27, no. 8, pp. 2383-2406,
Nov. 2016.

A. Hussain. (2014). Performance of Docker vs VMs. Accessed:
Jan. 11, 2020. [Online]. Available: https://es.slideshare.net/Flux7Labs/
performance-of-docker-vs-vms

V. Gupta, K. Kaur, and S. Kaur, “Performance comparison between light
weight virtualization using docker and heavy weight virtualization,” Int. J.
Adv. Technol. Eng. Sci., vol. 1, no. 5, pp. 509-514, 2017.

B. B. Rad, H. J. Bhatti, and M. Ahmadi, “An introduction to docker and
analysis of its performance,” Int. J. Comput. Sci. Netw. Secur., vol. 17,
no. 3, p. 228, 2017.

J. Von Neumann and A. W. Burks, Theory Self-Reproducing Automata.
Urbana, IL, USA: Univ. of Illinois Press, 1996.

J. Byl, “Self-reproduction in small cellular automata,”” Phys. D, Nonlinear
Phenomena, vol. 34, nos. 1-2, pp. 295-299, Jan. 1989.

M. Gardner, ‘“Mathematical games: The fantastic combinations of John
Conway’s new solitaire game ‘life,”” Sci. Amer., vol. 223, no. 4,
pp. 120-123, 1970.

A. Deshpande and M. Kumar, Artificial Intelligence for Big Data: Com-
plete Guide to Automating Big Data Solutions Using Artificial Intelligence
Techniques. Birmingham, U.K.: Packt, 2018.

A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing,
vol. 53. Berlin, Germany: Springer, 2003.

S. Salzberg, D. Searls, and S. Kasif, “Computational methods in
molecular biology,” in New Comprehensive Biochemistry. Amsterdam,
The Netherlands: Elsevier, 1999.

R. Khurana, Software Engineering (WBUT), 4th ed. Vikas Publishing
House, 2016, ch. 8.

J. Herrera. (2018). Cobeats—Container Bio-Inspired Enhanced Autoscal-
ing System. [Online]. Available: https://github.com/grycap/cobeats

W. Ai, K. Li, S. Lan, F. Zhang, J. Mei, K. Li, and R. Buyya, “On
elasticity measurement in cloud computing,” Sci. Program., vol. 2016,
2016, Art. no. 7519507, doi: 10.1155/2016/7519507.

A. Kochut and K. Beaty, “On strategies for dynamic resource man-
agement in virtualized server environments,” in Proc. 15th Int. Symp.
Modeling, Anal., Simulation Comput. Telecommun. Syst., Oct. 2007,
pp. 193-200.

H. Sakoe and S. Chiba, “Dynamic programming algorithm optimization
for spoken word recognition,” IEEE Trans. Acoust., Speech, Signal Pro-
cess., vol. ASSP-26, no. 1, pp. 43-49, Feb. 1978.

Amazon. (2018). Amazon Step Scaling. Accessed: Jan. 11, 2020. [Online].
Available: https://docs.aws.amazon.com/autoscaling/ec2/userguide/as-
scaling-simple-step.html

52150

(45]

[46]

[47]
(48]
(49]

[50]

[51]

(52]

(53]

[54]

M. McNaughton, “Predictive pod auto-scaling in the kubernetes container
cluster manager,” M.S. thesis, Williams College, Williamstown,
MA, USA, 2016, p. 49. [Online]. Available: https://github.com/rootsongjc/
cloud-native-slides-share/blob/master/kubernetes/Predictive-Pod-Auto-
scaling-in-the-Kubernetes-Container-Cluster-Manager-by-Matt-
McNaughton.pdf

P. Gill, M. Arlitt, Z. Li, and A. Mahanti, “Youtube traffic characterization:
A view from the edge,” in Proc. 7th ACM SIGCOMM Conf. Internet Meas.
(IMC), 2007, pp. 15-28.

(1995). NASA. Accessed: Jan. 11, 2020.
ftp://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html
(1998). World Cup Web Site Access Logs. Accessed: Jan. 11, 2020.
[Online]. Available: ftp://ita.ee.lbl.gov/html/contrib/WorldCup.html

C. Henderson, Building Scalable Web Sites. Newton, MA, USA: O’Reilly
Media, 2006.

OpenShift. 2013. Best Practices for Horizontal Application Scaling.
Accessed: Jan. 11, 2020. [Online]. Available: https://blog.openshift.
com/best-practices-for-horizontal-application-scaling/

Nomad. (2019). The Million Container Challenge. Accessed:
Jan. 11, 2020. [Online]. Available: https://www.hashicorp.com/clm

D. Blog. (2015). Scale Testing Docker Swarm to 30,000 Contain-
ers. Accessed: Oct. 1, 2020. [Online]. Available: https://blog.docker.
com/2015/11/scale-testing-docker-swarm-30000-containers/

O. Docker. (2016). Evaluating Container Platforms at Scale.
Accessed: Jan. 11, 2020. [Online]. Available: https://medium.com/on-
docker/evaluating-container-platforms-at-scale-5¢7b44d93f2c
Kubernetes. (2015). Kubernetes Performance Measurements and
Roadmap. Accessed: Jan. 11,2020. [Online]. Available: https://kubernetes.
io/blog/2015/09/kubernetes-performance-measurements-and

[Online]. Available:

JOSE HERRERA received the master’s degree
in parallel and distributed computing from the
Universitat Politécnica de Valéncia (UPV). He is
currently pursuing the Ph.D. degree with the
Grid and High Performance Computing Research
Group (GRyCAP). He worked as a Predoctoral
Researcher with the National Institute of Infor-
matics (Tokyo), in 2016. He is also a Software
Engineer with the Business Intelligence Team,
Regional Government of Valencia (DGTIC-GVA),

Spain. His research interests include big data infrastructures, scalability,
business intelligence, and cloud computing.

«f

GERMAN MOLTO received the B.Sc. and Ph.D.
degrees in computer science from the Universitat
Politecnica de Valencia (UPV), Spain, in 2002 and
2007, respectively. He has been a member of the
Grid and High Performance Computing Research
Group (GRyCAP), Institute for Molecular Imag-
ing (I3M), since 2002. He is also an Associate Pro-
fessor with the Department of Computer Systems
and Computation (DSIC), UPV. He has partici-
pated in several H2020 European projects related

a)‘

to cloud computing (INDIGO-DataCloud, EOSC-HUB, DEEP Hybrid-
DataCloud, and EOSC-SYNERGY) and led national research projects in
the area of cloud computing. His broad research interests include cloud
computing and scientific computing.

VOLUME 8, 2020

http://dx.doi.org/10.1155/2016/7519507

