
SPECIAL SECTION ON CLOUD - FOG - EDGE COMPUTING
IN CYBER-PHYSICAL-SOCIAL SYSTEMS (CPSS)

Received January 30, 2020, accepted February 16, 2020, date of publication March 16, 2020, date of current version March 26, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2980891

A Choreography Analysis Approach
for Microservice Composition in
Cyber-Physical-Social Systems
FEI DAI 1,3, QI MO 2,3, ZHENPING QIANG1, BI HUANG1, WEILI KOU1, AND HONGJI YANG4
1School of Big Data and Intelligent Engineering, Southwest Forestry University, Kunming 650224, China
2School of Software, Yunnan University, Kunming 650091, China
3Key Laboratory of Software Engineering of Yunnan Province, Kunming 650091, China
4Department of Informatics, University of Leicester, Leicester LE1 7RH, U.K.

Corresponding author: Qi Mo (moqiyueyang@163.com)

This work was supported in part by the Project of National Natural Science Foundation of China under Grant 61702442 and Grant
61862065, and in part by the Application Basic Research Project in Yunnan Province under Grant 2018FB105.

ABSTRACT Choreography-driven microservice composition has provided a better way to integrate com-
ponents in the Cyber-physical-Social System (CPSS). Choreography is a global contract that specifies
interactions among microservices participating in a composite service. After modeling a choreography,
a problem arises here is whether the choreography specification at design time can be implemented correctly
by generated microservices that interact with each other via exchanging messages. In this paper, we propose
a novel approach for choreography analysis. Specifically, a choreography is specified using a Labeled
Transition Systems (LTSs); then, the microservices participating in a composite service can be generated
from the given choreography via projection and ε-remove; finally, the analysis of the choreography can be
checked for both synchronous and asynchronous compositions using refinement checking. Our approach is
completely automated under the support of our developed tool and the Process Analysis Toolkit (PAT) tool.

INDEX TERMS Service composition, microservice, choreography, cyber-physical-social system, peer to
peer communication.

I. INTRODUCTION
Cyber-physical-Social System (CPSS) comprises physical,
cyber, and social worlds with various resources as services
[1]–[4]. On one hand, CPSS emphasizes a huge number
of deep interactions among the three worlds, so many
approaches are proposed to manage these complex interac-
tions at design time, such as planning based approaches,
synthesis based approaches, and model-driven approaches
[5]–[7]. On the other side, with the rapid development
of edge computing [8], [13], [14], 5G [12], [15], [41],
and mobile computing [16], [17], cloud applications have
undergone a shift from monolithic applications to microser-
vices [18]. Microservice architecture [18] is an architectural
style that is a variant of service-oriented architecture (SOA)
structural style, where microservices are fine-grained and
lightweight. Duo to the characteristics of microservices,

The associate editor coordinating the review of this manuscript and
approving it for publication was Xiaokang Wang

choreography-driven microservice composition approach
is considered to provide a better way to integrate
these CPSS services than traditional service composition
approaches] [19]–[21].

It is well known that service composition is hot research
in cloud computing paradigm. It not only considers the func-
tional attributes of a composite service to match CPSS users’
demands but also considers the nonfunctional attributes (e.g.,
Quality of Service) to satisfy CPSS users’ requirements
[9]–[11]. In this paper, we only focus on interactions among
microservices from the functional attributes perspective.

Choreography is a global contract that each microservice
should adhere to [22]. Service architect uses choreographies
to model interactions amongmicroservices from a global per-
spective when designing a composite service. After modeling
a choreography, a problem arises here is whether the chore-
ography specification at design time can be implemented
correctly by a set of microservices from different words that
interact with each other via exchanging messages. If we can

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 53215

https://orcid.org/0000-0001-6469-357X
https://orcid.org/0000-0002-3438-5303

F. Dai et al.: Choreography Analysis Approach for Microservice Composition in CPSS

find interaction faults from choreographies at design time,
composition microservices may encounter a failure (e.g.,
deadlockor malfunction) during its execution. The process
of finding interaction faults of choreographies is known as
choreography analysis.

A large number of approaches have been proposed to
analyze choreographies based on various formalisms such as
automata-theory [26]–[29], process algebras [33], [34], and
Petri nets [35], [36]. However, few approaches focus on ana-
lyzing choreographies under peer-to-peer communication.
Besides, CPSSs bring two new challenges for microservice
composition.

1) The complexity of choreography analysis grows rapidly
with the number of CPSS services participating in a compos-
ite microservice. Usually, a composite service often consists
of thousands of microservices [23].

2) In the context of microservice composition, the
asynchronous communication model can either peer-to-peer
communication or mailbox communication [24]. However,
existing research mainly focuses on mailbox communica-
tion. Compared with mailbox communication, peer-to-peer
communication is much more complex due to the increasing
number of buffers.

To address the above two issues, we propose a chore-
ography analysis approach for microservice composition in
CPSSs. Our contribution can be summarized as follows.

1) Problem: we propose the problem of choreography anal-
ysis for microservice composition in CPSSs for the first time.

2) Approach: our approach considers choreography anal-
ysis for both synchronous and peer-to-peer composition for
the first time.

3) Implementation: our approach can be completely auto-
mated by we developed a tool and the Process Analysis
Toolkit (PAT) tool [25].

The rest of this paper is organized as follows. Section II
introduces the problem definition and related work.
Section III introduces the details of our approach. Section IV
discusses the implementation of our approach and some
experimental results. Section V concludes the paper.

II. PROBLEM DEFINITION AND RELATED WORK
A. PROBLEM DEFINITION
In the context of microservice composition, choreography
analysis is to check whether this choreography can be imple-
mented correctly by a set of microservices that are generated
from this choreography such that the interactions of these
generated microservices can exactly match this choreography
specification. This problem can be formulated as follows,

MS1||MS2|| . . . ||MSn
?
=Chor (1)

where chor denotes the choreography specification, MSi
denotes the generated i-th microservice, || denotes microser-
vice composition under synchronous and asynchronous com-
munication models, and = denotes equivalence.
If the equation is not satisfied, it means that the choreog-

raphy specification cannot be implemented correctly. Thus,

the service architect should not further advance the design
process of microservice composition and should repair the
choreography.

B. RELATED WORK
There have been earlier works on choreography analysis
based on automata-theory. In [26], Bultan et al. proposed a
framework to model interactions of e-service compositions,
where the notion of conservations is used to describe mes-
sage sequences. Under this framework, peers (components)
that are using Büchi automaton can interact with each other
asynchronously and maintain a buffer for storing incoming
messages. In [27], Fu et al. proposed three realizability con-
ditions and proved that conversation protocols based onBüchi
automaton which satisfy these three properties are realizable.
The realizability refers to check whether the synthesized
peers from a conversation protocol from projection can pro-
duce the same set of conservations that exactly match this
conversation protocol. In [28], Fu et al. proposed a technique
called synchronizability analysis to analyze the interactions
among web services. The synchronizability means that the
conservation set among web services under synchronous
communication remains the same under asynchronous com-
munication. In [29], Bultan presented a tool for checking
the realizability of collaboration diagrams under the sup-
port of the Web Service Analysis Tool (WSAT) [30]. The
WAST can be used to check the three realizability condi-
tions. In [31], Basu et al. proposed necessary and sufficient
conditions for realizability of choreographies. These chore-
ographies include web service choreographies, Singularity
OS channel contracts and UML collaboration diagrams based
on synchronizability analysis.

Some works used process algebras to analyze
choreographies. In [22], Slaün et al. proposed an approach for
analyzing the realizability of choreographies using process
algebra encodings. This approach can be automated under the
support of the Construction and Analysis of Distributed Pro-
cesses (CADP) toolbox [33]. In [34], Poizat et al. transformed
BPMN 2.0 choreographies into LOTOS NT process algebras
and then checked the realizability of these choreographies
using equivalence checking.

Other works used Petri nets to check the realizability of
choreographies. In [35], Decker et al. proposed a Petri net
extension called interaction Petri nets to check the realizabil-
ity of choreographies. However, this work depends on the
synchronous assumption, i.e., interaction Petri nets can only
be used to check the realizability problem for synchronous
communication. In [36], Hélouët et al. used stochastic time
Petri nets STPNs to check the realizability of production sys-
tems’ schedules. The realizability can further refined into two
types: boolean realizability and probabilistic realizability.

To sum up, our work is different from the above works
in two aspects. First, existing works focus on the problem
of choreography analysis under the mailbox communica-
tions while our approach focuses on analyzing choreogra-
phies under the peer-to-peer communications. Second, our

53216 VOLUME 8, 2020

F. Dai et al.: Choreography Analysis Approach for Microservice Composition in CPSS

FIGURE 1. Overview of our approach.

approach is supported by tools for synchronous composition,
asynchronous composition, and refinement checking in a
completed automated way.

III. OUR PROPOSED APPROACH
A. OVERVIEW OF OUR APPROACH
In this section, our proposed approach is illustrated
in Figure 1. The whole process of choreography analysis
includes four steps:

Step 1: generate microservices from the given choreogra-
phy.

Step 2: integrate these generated microservices under the
synchronous composition.

Step 3: integrate these generated microservices under the
asynchronous composition.

Step 4: compare the choreography specification with the
composite service using refinement checking.

Labeled Transition Systems (LTSs) are used as the chore-
ography specification language due to their simplicity and
visualization.
Definition 1 (Choreography): A choreography Chor = (S,

M , 1, s0, F) is a LTS, where
(1) S is a set of states.
(2) M is a message set.
(3) 1 ⊆ S ×M × S is a transition relation.
(4) s0 ∈ S is the initial state.
(5) F ⊆ S is a set of final states.
Definition 2 (Message Set): A message set M is a tuple

(6, p, src, dst).
(1) 6 is a finite set of letters.
(2) p ≥ 1 is a non-negative integer number which denotes

the numbers of participating microservices.
(3) src and dst are functions that associate message

m ∈ 6 nonnegative integer numbers src(m) 6= dst(m) ∈
{1, 2, . . . , p}.
We often write mi→j for a message m such that src(m) = i

and dst(m) = j.
Figure 2 (a) shows a LTS choreography for online shopping

that comes from in [web 06]. This is used as a running exam-
ple throughout this paper. The initial states are subscripted
with 0 andmarkedwith incoming half-arrows. The final states
are marked with double circles. The label of each transition
is a message of the form mi→j, where i denotes the message
sender and j denotes the message receiver.
This choreography shown in Figure 2 includes three

microservices: Customer, Vendor, and Warehouse, that
describes interactions as follows:

FIGURE 2. Choreography specification of online shopping.

The customer sends a ‘‘order message’’ to the Vendor and
then the Vendor sends a shipReq message to the Warehouse.
If the ordered item is in stock, the warehouse sends a ‘‘ship-
Info message’’ to the vendor and then the vendor sends a ‘‘bill
message’’ to the customer. If not, the warehouse sends an
‘‘out-of-stock message’’ to the vendor and then the vendor
sends a ‘‘notAvailable message’’ to the customer.

B. MICROSERVICE GENERATION
Definition 3 (Microservice): A microservice MS = (S, A, s0,
F, δ) is a LTS, where:

(1) S is the finite set of states.
(2) A is a set of actions
(3) s0 is the initial state.
(4) F ⊆ S is the finite set of final states.
(5) δ ⊆ S × (A∪{tau}) × S is the transition relation.
An action over M is either send message action !mi→j or

receive message action ?mi→j, with m ∈. A trace γ ∈ M∗ is
a finite sequence of actions.

In a microservice, a transition t ∈ δ can be one of the
following three types:

(1) a send message transition (s1, !m1→2, s2) denotes that
themicroserviceMS1 sends amessagem to anothermicroser-
vice MS2 where m ∈.

(2) a receive message transition (s1, ?m1→2, s2) denotes
that the microservice MS1 consumes a message m from the
microservice MS2 where m ∈.
(3) an ε-transition (s1, ε, s2) denotes that the invisible

action of MS1.

We often write sm
!m1→2

−→ sk to denote that (sm, !m1→2, sk).
Given a choreography, microservices participating in a

composite service can be generated from the choreography
via projection and ε -remove.
Definition 4 (Projection): The projection of a choreogra-

phy Chor = (S, M , 1, s0, F) on one of the microservices
MSi is generated by performing the following operations.
(1) If a transition is (sm, mi→j, sk) then replace it with (sm,
!mi→j, sk), i.e., this transition denotes microservices MSi is
the sender of message m.

(2) If a transition is (sm, mj→i, sk) then replace it with
(si, ?mj→i, sj), i.e., this transition denotes microservices MSi
is the receiver of message m.
(3) Otherwise, replace the transition (sm, mx→y, sk) with

(sm, ε, sk).
For the resulting Chor, we can remove ε transitions and

determines the Chor to obtain the generated microservice
[27], [31].

VOLUME 8, 2020 53217

F. Dai et al.: Choreography Analysis Approach for Microservice Composition in CPSS

FIGURE 3. Microservices generated from the choreography shown in
Figure 1: (a) customer, (b)vendor, and (c) warehouse.

Figure 3 shows three microservices that are generated from
our running example.

Once microservices are generated, it’s very difficult to
judge the interactions among these microservices are the
same as the given choreography specification. In the fol-
lowing sections, we answer this question using refinement
checking.

C. SYNCHRONOUS COMPOSITION
In synchronous communication, every send message action is
consumed followed by a receive message action [31], i.e., the
send messages action and the corresponding receive message
actions are executed simultaneously.

Below we define the synchronous composition through
synchronous communication.
Definition 5 (Synchronous Composition): Given a set of

microservices MSs = (MS1, MS2, . . . ,MSn) where MSi =
(Si,Ai, δi, s0i, Fi,) and Ai over Mi = (6i, pi, srci, dsti),
the synchronous composition (MS1||s MS2||s . . . ||s MSn) is
a labeled transition system Is = (C , M , c0,1,) where:

• C ⊆ S1 × S2. . .× Sn is the set of states.
• M = ∪iMi is the set of messages.
• c0 ∈ C is the initial state.
• 1 ⊆ C × (M∪{ε}) × C for c = (s1, s2, . . . , sn) and
c′ = (s′1, s

′

2, . . . , s
′
n).

(a) c
mi→j

−→ c′ ∈ 1 if ∃i, j ∈ {1, 2, . . . ,n} ∧ m ∈ M :
(i) src(m) = i∧ dst(m) = j,

(ii) si
!mi→j

−→ s′i ∈ δi,

(iii) sj
?mi→j

−→ s′j ∈ δj,
(iv) ∀k ∈ {1, 2, . . . , n} : k 6= i ∧ k 6= j⇒ s′k = sk.
[synchronous send-receive message action]
(b) c

ε
−→ c′ ∈ 1 if ∃i, j ∈ {1, 2, . . . ,n}:

(i) si
ε
−→ s′i ∈ δi,

(ii) ∀k ∈ {1, 2, . . . , n} : k 6= i⇒ s′k = sk.
[internal action]

D. ASYNCHRONOUS COMPOSITION
In asynchronous communication, microservices interact
with each other asynchronously through unbound buffers.

FIGURE 4. Peer-to-peer communication vs mailbox communication.

A microservice can either send messages to the buffers
of other microservices or receive messages from its
buffers.

There are two different semantics for asynchronous
communication: peer-to-peer communication and mail-
box communication. The mailbox communication shown
in Figure 4(b) requires all messages sent to MS1 from the
other microservices are stored in a buffer (i.e., a message
queue) that is specific to MS1. The peer-to-peer communi-
cation shown in Figure 4 (a) requires each message sent
from a microservice MS1 to another microservice MS2 is
stored in a buffer in a FIFO fashion which is specific to
the pair (MS1, MS2). In this paper, we focus on peer-to-peer
communication.

In the peer-to-peer semantics, each participating microser-
vice of a composite service is equipped with buffers for
different incoming messages from other microservices [32].
A microservice MS1 either sends a message to the buffer
buffer1j of another microservice MSj, or consume a message
from its buffers Q1 = (bufferj1) where j 6= 1, or perform an
internal action.

Below we define the asynchronous composition through
peer-to-peer communication.
Definition 6 (Asynchronous Composition): Given a set of

microservices MSs = (MS1, MS2, . . . , MSn) where MSi =
(Si,Ai, δi, s0i, Fi,) and Qi being its buffers, the asynchronous
composition (MS1||a MS2 ||a . . . ||a MSn) is a labeled transi-
tion system Ia = (C , M , c0, 1) where:

53218 VOLUME 8, 2020

F. Dai et al.: Choreography Analysis Approach for Microservice Composition in CPSS

• C ⊆ Q1 × S1 × Q2 × S2. . .Qn × Sn is the set of states
such that ∀i ∈ {1, 2, . . . , n} : Qi = (bufferji), where
∀j ∈ {1, 2, . . . , n} ∧ i 6= j∧ bufferji ⊆ (Mj)∗.

• M = ∪iMi is the set of messages.
• c0 ∈ C is the initial state such that c0 = (({}, {}, . . . {})︸ ︷︷ ︸

n−1

,

c01, ({}, {}, . . . {})︸ ︷︷ ︸
n−1

, c02, . . . ,({}, {}, . . . {})︸ ︷︷ ︸
n−1

, c0n) where c0i

= MSi. s0i.
• 1 ⊆ C× (M∪{ε})×C for c = (Q1, s1, Q2, s2, . . . ,Qn,
sn) and c′ = (Q′1, s

′

1, Q
′

2, s
′

2, . . . ,Q
′
n, s
′
n)

(a) c
!mi→j

−→ c′ ∈ 1 if ∃i, j ∈ {1, 2, . . . ,n} ∧ m ∈ M :
(i) src(m) = i∧ dst(m) = j,

(ii) si
!mi→j

−→ s′i ∈ δi,
(iii) ∀k ∈ {1, 2, . . . , n} : k = i⇒ buffer’kj = bufferkjm,
(iv) ∀k ∈ {1, 2, . . . , n} : k 6= i⇒ s′k = sk,
(v) ∀k, l ∈ {1, 2, . . . , n} : k 6= i∧l 6= j∧k 6= l ⇒ buffer’kl
= bufferkl .

[send message action]

(b) c
?mi→j

−→ c′ ∈ 1 if ∃i, j ∈ {1, 2, . . . , n} ∧ m ∈ M :
(i) src(m) = i∧ dst(m) = j,

(ii) sj
?mi→j

−→ s′j ∈ δj,
(iii) ∀k ∈ {1, 2, . . . , n} : k = i⇒ buffer ′kj = mbufferkj,
(iv) ∀k ∈ {1, 2, . . . , n} : k 6= j⇒ s′k = sk,
(v) ∀k, l ∈ {1, 2, . . . , n} : k 6= i∧ l 6= j∧k 6= l ⇒ buffer ′kl
= bufferkl .

[receive message action]
(c) c

ε
−→ c′ ∈ 1 if ∃i, j ∈ {1, 2, . . . ,n}:

(i) si
ε
−→ s′i ∈ δi,

(ii) ∀k ∈ {1, 2, . . . , n} : k 6= i⇒ s′k = sk,
(iii) ∀k ∈ {1, 2, . . . , n} : Q′k = Qk.
[internal action]
According to Definition 6, there are three following inter-

action types in a composite service under the peer-to-peer
semantics.

(1) a send message action c
!mi→j

−→ c′ denotes that microser-
vice MSi sends a message m to another microservice MSj
where m ∈ Mi (6-i). After that, the state of the sender is
changed (6a-ii), the message will be inserted to the tail of the
bufferj of the receiver (6a-iii), the other microservices’ states
do not change (6a-iv), and the other buffers do not change
(6a-v).

(2) a receive message action c
?mi→j

−→ c′ denotes that
microserviceMSj consumes a messagem sent frommicroser-
vice MSi where m ∈ Mi (6b-i). After that, the state of the
receiver is changed (6b-ii), the message at the head of the
bufferj of the receiver will be consumed (9b-iii), the other
microservices’ states do not change (9b-iv), and the other
buffers do not change (9b-v).

(3) an internal action c
ε
−→ c′ denotes that microservice

MSi executes an internal action (6c-i). After that, the other
microservices’ states do not change (6c-ii) and the other
buffers also do not change (6c-iii).

FIGURE 5. The 1-bounded asynchronous composite service.

In the asynchronous composition, the interactions among
microservices depend on the order the send and receive
actions as well as the size of the buffers associated with each
microservice [29]. When buffers are unbounded, the interac-
tions may be infinite.

We define the bounded asynchronous composition in the
following.
Definition 7 (k-Bounded Asynchronous Composition):

Given a set of microservices MSs = (MS1, MS2, . . . ,MSn)
where MSi = (Si,Ai, δi, s0i, Fi,) and Qi being its
buffers of size k , the k-bounded asynchronous composition
(MS1||ka MS2 ||

k
a
. . . ||k

a
MSn) is a labeled transition system

I ka = (C , M , c0, 1) and described by augmenting condition
6(a) in Definition 6 to include the condition Qj = (q1, qj−1,
qj+1, . . . , qn): |qj| < k, where |qi| denotes the length of the
buffers for microservice MSi.

In the k-bounded asynchronous composition, the send
message actions are blocked if the receiver’s buffer contains k
messages. Comparedwith the unbounded asynchronous com-
posite service, the interactions of a k-bounded asynchronous
composite service are finite.

For our running example, Figure 5 shows the 1-bounded
asynchronous composite service.

E. REFINEMENT CHECKING
In this section, we analyze choreographies by comparing
the choreography specification with the composite service
composed of interacting microservices using refinement
checking. A choreography specification can be implemented
correctly if the interaction traces of the composite service are
the same as in the given choreography.

Therefore, analyzing choreography includes three steps:
1) generate all the interaction traces of the

choreography Chor.
2) generate all the interaction traces of a composite service

I under synchronous or asynchronous composition.

VOLUME 8, 2020 53219

F. Dai et al.: Choreography Analysis Approach for Microservice Composition in CPSS

TABLE 1. Analysis results for some cases.

3) refinement checking between traces(Chor) and
traces(I).
Definition 8 (Trace Refinement): Let I = (C , M , c0,1) be

a LTS for a choreography implementation, i.e., a composite
service, and Chor = (S, M , 1, s0, F) be a LTS for a
choreography specification, I refines Chor if traces(I) ⊆
traces(Chor).

Based on the refinement relations, the analysis of the
choreography can be checked for both synchronous and
bounded asynchronous compositions.

A choreography Chor = (S, M , 1, s0, F) is implemented
correctly under synchronous composition iff Is refines Chor
and Chor refines(Is), i.e., traces(Is) = traces(Chor), where Is
= (MS1,MS2, . . . ,MSn) and all microservices are generated
from the Chor.

A choreography Chor = (S, M , 1, s0, F) is implemented
correctly under asynchronous composition iff I ka refines Chor
and Chor refines I ka , where I

k
a = MS1||ka MS2 ||

k
a
. . . ||k

a
MSn

and all microservices are generated from the Chor and are
equipped with buffers of size k.

Note that during the process of refinement checking,
we only consider the send message actions, ignoring the
receive message actions, because the receive message actions
refer to local consumptions by microservices from their
buffers [37] and can be considered as invisible actions.

IV. TOOL SUPPORT AND EXPERIMENTS
The four steps of our approach are completely automated. For
step 1 in Fig.1, we have developed a tool named chor2ms
to generates the participating microservices from a given
choreography. For steps 2 and 3 in Fig.1, The synchronous
and asynchronous compositions are achieved using the PAT
simulator in the PAT tool. For step 4 in Fig.1, the refinement
checking is achieved using the PAT verifier in the PAT tool.

FIGURE 6. The screenshot of the analysis results.

The screenshot of the analysis results is shown in Fig. 6,
where the running example in this paper is checked.

Our approach was validated on 50 cases obtained from
research papers. All cases were carried out on a PC with
2.50GHz Processor and 8GB of RAM, running Windows 10.

Table 1 shows some experimental results. For each case,
the table gives the choreography’s description (description),
the choreography’s size (Chor), and the number participating
microservices (MSs). Next, the table gives the synchronous
composite service’s size (Is), the 1-bounded asynchronous

53220 VOLUME 8, 2020

F. Dai et al.: Choreography Analysis Approach for Microservice Composition in CPSS

composite service’s size (I1a), and the 2-bounded asyn-
chronous composite service’s size (I2a). Last, the table gives
analysis results for both synchronous and bounded asyn-
chronous compositions, where ‘‘×’’ denotes that the chore-
ography cannot be implemented correctly sound and ‘‘+’’
denotes that the choreography can be implemented correctly.

During the experiments, the case-27 faces the state space
explosion problem. In case-27, the state space of 2-bounded
asynchronous composition increases exponentially with the
size of buffers. ‘‘Too large" means that the PAT simulator is
forced to stop due to the huge state space size (>300 states)
Out of the 10 cases presented in Table 1, 6 choreographies

(case-2, case -15, case-18, case-27, case-42 and case 45)
cannot be implemented correctly. This means that designing
choreography for microservice composition is error-prone,
especially in the context of CPSS.

V. CONCLUSION
In this paper, we have investigated the problem of choreogra-
phy analysis. Analyzing refers to check whether a choreogra-
phy can be implemented correctly by a set of microservices
generated from the given choreography via projection and ε
-remove. In our approach, LTSs are used as the choreography
specification language. Our approach can analyze choreogra-
phies under synchronous and asynchronous compositions
using refinement checking and be automated by the use of
the tool we developed and the PAT tool.

The future work is to investigate the relationships between
finite interaction sequences and unbound buffers in the case
of asynchronous composition.

REFERENCES
[1] S. Wang, A. Zhou, M. Yang, L. Sun, C. Hsu, and F. Lee, ‘‘Service

composition in cyber-physical-social systems,’’ IEEE Trans. Emerg. Topics
Comput., vol. 8, no. 1, pp. 82–91, Jan./Mar. 2020.

[2] H. Song, R. Srinivasan, T. Sookoor, and S. Jeschke, Smart Cities: Foun-
dations, Principles, and Applications. Hoboken, NJ, USA: Wiley, 2017,
pp. 1–906.

[3] H. Song, S. Jeschke, and G. A. Fink, Security and Privacy in Cyber-
Physical Systems: Foundations, Principles and Applications. Chichester,
U.K.: Wiley, 2017, pp. 1–472.

[4] L. Qi, Y. Chen, Y. Yuan, S. Fu, X. Zhang, and X. Xu, ‘‘A QoS-aware
virtual machine scheduling method for energy conservation in cloud-based
cyber-physical systems,’’WorldWideWeb J., vol. 23, no. 2, pp. 1275–1297,
Mar. 2020, doi: 10.1007/s11280-019-00684-y.

[5] K. Sangsanit, W. Kurutach, and S. Phoomvuthisarn, ‘‘REST Web service
composition: A survey of automation and techniques,’’ in Proc. Int. Conf.
Inf. Netw. (ICOIN), Chiang Mai, Thailand, 2018, pp. 116–121.

[6] S. Dustdar and W. Schreiner, ‘‘A survey on Web services composition,’’
Int. J. Web Grid Services, vol. 1, no. 1, pp. 1–30, 2005.

[7] Y. Jiang, H. Song, Y. Yang, H. Liu, M. Gu, Y. Guan, J. Sun, and L. Sha,
‘‘Dependable model-driven development of CPS: From stateflow simula-
tion to verified implementation,’’ ACM Trans. Cyber-Phys. Syst., vol. 3,
no. 1, 2019, Art. no. 12.

[8] X. Xu, R. Mo, F. Dai, W. Lin, S. Wan, and W. Dou, ‘‘Dynamic
resource provisioning with fault tolerance for data-intensive meteorologi-
cal workflows in cloud,’’ IEEE Trans Ind. Informat., to be published, doi:
10.1109/TII.2019.2959258.

[9] H. Liu, H. Kou, C. Yan, and L. Qi, ‘‘Link prediction in paper citation net-
work to construct paper correlation graph,’’EURASIP J.Wireless Commun.
Netw., vol. 2019, no. 1, pp. 1–12, Dec. 2019, doi: 10.1186/s13638-019-
1561-7.

[10] W. Gong, L. Qi, and Y. Xu, ‘‘Privacy-aware multidimensional mobile
service quality prediction and recommendation in distributed fog environ-
ment,’’Wireless Commun. Mobile Comput., vol. 2018, pp. 1–8, Apr. 2018.

[11] L. Qi, X. Zhang, W. Dou, C. Hu, C. Yang, and J. Chen, ‘‘A two-stage
locality-sensitive hashing based approach for privacy-preserving mobile
service recommendation in cross-platform edge environment,’’ Future
Gener. Comput. Syst., vol. 88, pp. 636–643, Nov. 2018.

[12] M. A. Rahman, M. M. Hasan, A. T. Asyhari, and M. Z. A. Bhuiyan,
‘‘A3D-collaborative wireless network: Towards resilient communication
for rescuing flood victims,’’ in Proc. IEEE 15th Int. Conf Depend-
able, Auton. Secure Comput., 15th Int. Conf Pervas. Intell. Comput.,
3rd Int. Conf Big Data Intell. Comput. Cyber Sci. Technol. Congr.
(DASC/PiCom/DataCom/CyberSciTech), Nov. 2017, pp. 385–390.

[13] M. A. Rahman, M. Y. Mukta, A. Yousuf, A. T. Asyhari, M. Z. A. Bhuiyan,
and C. Y. Yaakub, ‘‘IoT based hybrid green energy driven highway lighting
system,’’ in Proc. IEEE Int. Conf. Dependable, Auton. Secure Comput.,
Int. Conf. Pervas. Intell. Comput., Int. Conf. Cloud Big Data Comput., Int.
Conf. Cyber Sci. Technol. Congr. (DASC/PiCom/CBDCom/CyberSciTech),
Aug. 2019, pp. 587–594.

[14] W. Wei, M. A. Rahman, I. F. Kurniawan, A. T. Asyhari, S. M. N. Sadat,
and L. Yao, ‘‘Immune genetic algorithm optimization and integration of
logistics network terminal resources,’’ in Proc. 3rd IEEE Int. Conf. Robot.
Comput. (IRC), Naples, Italy, Feb. 2019, pp. 435–436.

[15] X. Xu, Y. Xue, L. Qi, Y. Yuan, X. Zhang, T. Umer, and S. Wan, ‘‘An edge
computing-enabled computation offloading method with privacy preser-
vation for Internet of connected vehicles,’’ Future Gener. Comput. Syst.,
vol. 96, pp. 89–100, Jul. 2019.

[16] X. Xu, C. He, Z. Xu, L. Qi, S.Wan, andM. Z. A. Bhuiyan, ‘‘Joint optimiza-
tion of offloading utility and privacy for edge computing enabled IoT,’’
IEEE Internet Things J., to be published, doi: 10.1109/JIOT.2019.2944007.

[17] X. Xu, Q. Liu, X. Zhang, J. Zhang, L. Qi, and W. Dou, ‘‘A blockchain-
powered crowdsourcing method with privacy preservation in mobile envi-
ronment,’’ IEEE Trans. Comput. Social Syst., vol. 6, no. 6, pp. 1407–1419,
Dec. 2019.

[18] A. Balalaie, A. Heydarnoori, and P. Jamshidi, ‘‘Microservices architecture
enables DevOps: Migration to a cloud-native architecture,’’ IEEE Softw.,
vol. 33, no. 3, pp. 42–52, May 2016.

[19] X. Wang, L. T. Yang, X. Xie, J. Jin, and M. J. Deen, ‘‘A cloud-edge
computing framework for cyber-physical-social services,’’ IEEE Commun.
Mag., vol. 55, no. 11, pp. 80–85, Nov. 2017.

[20] X. Wang, W. Wang, L. T. Yang, S. Liao, D. Yin, and M. J. Deen, ‘‘A dis-
tributed HOSVD method with its incremental computation for big data in
cyber-physical-social systems,’’ IEEE Trans. Comput. Social Syst., vol. 5,
no. 2, pp. 481–492, Jun. 2018.

[21] X. Wang, L. T. Yang, Y. Wang, X. Liu, Q. Zhang, and M. J. Deen, ‘‘A dis-
tributed tensor-train decomposition method for cyber-physical-social ser-
vices,’’ ACM Trans. Cyber-Phys. Syst., vol. 3, no. 4, pp. 1–15, Oct. 2019,
doi: 10.1145/3323926.

[22] G. Salaün, T. Bultan, and N. Roohi, ‘‘Realizability of choreographies using
process algebra encodings,’’ IEEE Trans. Services Comput., vol. 5, no. 3,
pp. 90–302, Feb. 2012.

[23] X. Zhou, X. Peng, T. Xie, J. Sun, C. Ji, W. Li, and D. Ding, ‘‘Delta
debugging microservice systems with parallel optimization,’’ IEEE Trans.
Services Comput., to be published.

[24] X. Zhou, X. Peng, T. Xie, J. Sun, C. Ji, W. Li, and D. Ding, ‘‘Fault analysis
and debugging of microservice systems: Industrial survey, benchmark
system, and empirical study,’’ IEEE Trans. Softw. Eng., to be published.

[25] J. Sun, Y. Liu, and J. Dong, ‘‘Model checking CSP revisited: Introducing
a process analysis toolkit,’’ in Proc. Int. Symp. Leveraging Appl. Formal
Methods, Verification Validation, 2008, pp. 307–322.

[26] T. Bultan, X. Fu, R. Hull, and J. Su, ‘‘Conversation specification: A new
approach to design and analysis of E-service composition,’’ inProc.WWW,
Budapest, Hungary, May 2003, pp. 403–410.

[27] X. Fu, T. Bultan, and J. Su, ‘‘Conversation protocols: A formalism for spec-
ification and verification of reactive electronic services,’’ Theor. Comput.
Sci., vol. 328, nos. 1–2, pp. 19–37, Nov. 2004.

[28] X. Fu, T. Bultan, and J. Su, ‘‘Synchronizability of conversations among
Web services,’’ IEEE Trans. Softw. Eng., vol. 31, no. 12, pp. 1042–1055,
Dec. 2005.

[29] T. Bultan, C. Ferguson, and X. Fu, ‘‘A tool for choreography analysis using
collaboration diagrams,’’ in Proc. IEEE Int. Conf. Web Services, Jul. 2009,
pp. 856–863.

VOLUME 8, 2020 53221

http://dx.doi.org/10.1007/s11280-019-00684-y
http://dx.doi.org/10.1109/TII.2019.2959258
http://dx.doi.org/10.1186/s13638-019-1561-7
http://dx.doi.org/10.1186/s13638-019-1561-7
http://dx.doi.org/10.1109/JIOT.2019.2944007
http://dx.doi.org/10.1145/3323926

F. Dai et al.: Choreography Analysis Approach for Microservice Composition in CPSS

[30] X. Fu, T. Bultan, and J. Su, ‘‘WSAT: A tool for formal analysis of Web
services,’’ in Proc. Int. Conf. Comput. Aided Verification, in Lecture Notes
in Computer Science, 2004, pp. 510–514.

[31] S. Basu, T. Bultan, and M. Ouederni, ‘‘Deciding choreography realizabil-
ity,’’ ACM SIGPLAN Notices, vol. 47, no. 1, pp. 191–202, Jan. 2012.

[32] A. Finkel and É. Lozes, ‘‘Synchronizability of communicating finite state
machines is not decidable,’’ in Proc. 44th Int. Colloq. Automat., Lang.,
Program. (ICALP), vol. 122, 2017, pp. 1–14.

[33] H. Garavel, R. Mateescu, F. Lang, andW. Serwe, ‘‘CADP 2006: A toolbox
for the construction and analysis of distributed processes,’’ in Proc. 19th
Int. Conf. Comput. Aided Verification (CAV), 2007, pp. 158–163.

[34] P. Poizat and G. Salaün, ‘‘Checking the realizability of BPMN 2.0 chore-
ographies,’’ in Proc. 27th Annu. ACM Symp. Appl. Comput. (SAC), 2012,
pp. 1927–1934.

[35] G. Decker and M. Weske, ‘‘Local enforceability in interaction Petri nets,’’
in Proc. 5th Int. Conf. Bus. Process. Manage., 2007, pp. 305–319.

[36] L Hélouët and K. Kecir, ‘‘Realizability of schedules by stochastic time
Petri nets with blocking semantics,’’ Sci. Comput. Program., vol. 157,
pp. 71–102, Jun. 2018.

[37] L. Akroun, G. Salaün, and L. Ye, ‘‘Automated analysis of asynchronously
communicating systems,’’ in Proc. 23rd Int. Symp. Model Checking Softw.,
2016, pp. 1–18.

[38] T. Bultan, ‘‘Modeling interactions of Web software,’’ in Proc. 2nd
Int. Workshop Automat. Specification Verification Web Syst. (WWV),
Nov. 2006, pp. 45–52.

[39] M. Güdemann, G. Salaün, and M. Ouederni, ‘‘Counterexample guided
synthesis of monitors for realizability enforcement,’’ in Proc. Int. Symp.
Automat. Technol. Verification Anal., in Lecture Notes in Computer Sci-
ence, vol. 7561, 2012, pp. 238–253.

[40] M. Ouederni, G. Salaün, and T. Bultan, ‘‘Compatibility checking for
asynchronously communicating software,’’ in Formal Aspects of Com-
ponent Software FACS (Lecture Notes in Computer Science), vol. 8348,
J. Fiadeiro, Z. Liu, and J. Xue, Eds. Cham, Switzerland: Springer, 2014.

[41] X. Wang, L. T. Yang, Y. Wang, L. Ren, and M. J. Deen, ‘‘ADTT:
A highly-efficient distributed tensor-train decomposition method for IoT
big data,’’ IEEE Trans Ind. Informat., to be published, doi: 10.1109/
TII.2020.2967768.

FEI DAI received the Ph.D. degree from Yunnan
University, Kunming, China, in 2011.

He is currently a Professor and a Full
Professor with School of Big Data and Intel-
ligent Engineering, Southwest Forestry Univer-
sity, Kunming. He has authored or coauthored
more than 80 peer-reviewed research articles,
including the IEEE TRANSACTIONS ON INDUSTRIAL
INFORMATICS, the IEEE INTERNETOF THINGS JOURNAL,
the IEEE TRANSACTIONS ON SERVICES COMPUTING,

the IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE,
COMPLEXITY, and IEEE ACCESS. His research interests include service com-
puting, edge computing, business process management (BPM), and software
engineering.

QI MO received the Ph.D. degree from Yunnan
University, Kunming, China, in 2015. He is cur-
rently a Lecturer with the School of Software,
Yunnan University, China. His research inter-
ests are in formal methods and business process
management (BPM).

ZHENPING QIANG received the Ph.D. degree
from Yunnan University, Kunming, China,
in 2018. He is currently an Associate Professor
with the School of Big Data and Intelligent Engi-
neering, Southwest Forestry University, China.
His research interests are in machine learning,
artificial intelligence, and big data.

BI HUANG received the M.S. degree in software
engineering from Yunnan University, Kunming,
in 2013. She is currently a Lecturer with the School
of Big Data and Intelligent Engineering, South-
west Forestry University, China. Her research
interests are in machine learning, artificial intel-
ligence, and big data.

WEILI KOU received the Ph.D. degree from
the Kunming University of Science and Technol-
ogy, Kunming, China, in 2015. He is currently a
Professor with the College of Big Data and Intelli-
gent Engineering, Southwest Forestry University,
China. His research interests are in image intelli-
gent processing and analysis and temporal spatial
big data.

HONGJI YANG received the B.S and M.S.
degrees in computer science from Jilin University,
China, in 1982 and 1985, respectively, and the
Ph.D. degree in computer science from Durham
University, U.K., in 1994. He is currently a Pro-
fessor with the University of Leicester, U.K.
He has published well over 400 refereed jour-
nal articles and conference papers. His research
interests include creative computing, software
engineering, and internet computing. In 2010, he

became a member of the IEEE Computer Society Golden Core. He is the
Editor-in-Chief of the International Journal of Creative Computing.

53222 VOLUME 8, 2020

http://dx.doi.org/10.1109/TII.2020.2967768
http://dx.doi.org/10.1109/TII.2020.2967768

	INTRODUCTION
	PROBLEM DEFINITION AND RELATED WORK
	PROBLEM DEFINITION
	RELATED WORK

	OUR PROPOSED APPROACH
	OVERVIEW OF OUR APPROACH
	MICROSERVICE GENERATION
	SYNCHRONOUS COMPOSITION
	ASYNCHRONOUS COMPOSITION
	REFINEMENT CHECKING

	TOOL SUPPORT AND EXPERIMENTS
	CONCLUSION
	REFERENCES
	Biographies
	FEI DAI
	QI MO
	ZHENPING QIANG
	BI HUANG
	WEILI KOU
	HONGJI YANG

