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ABSTRACT This work presents a robust finite-time output feedback control method for a number of non-
linear systems that suffer unpredictable time-varying disturbances. The developed method takes advantage
of control techniques based on a finite-time state observer used to estimate the lumped disturbance, where
the estimator plays an important role in online compensation after being transmitted to a corresponding
controller. Besides, with the state estimation provided by the finite-time state observer, the finite-time output
feedback controller can guarantee the finite-time stability of the closed-loop system. The experimental results
validate the effectiveness of the developed method on the trajectory tracking control of a robot manipulator.

INDEX TERMS Disturbance compensation, finite-time state observer, robust finite-time output feedback
control, time-varying disturbance.

I. INTRODUCTION
In many industrial applications, such as robotics systems
[1]–[3], servo-control systems [4], [5], and power commu-
tators [6], the performance of control systems mainly suf-
fers from uncertainties like parameter uncertainties, external
disturbances, and unmodeled dynamics. To cope with this
issue, a number of approaches have been explored, where the
concept of uncertainty estimation, disturbance compensation,
and observer-based control strategies, have been increasingly
studied and employed successfully in a wide range of this
fields [7]–[9], [10], [11]. These control algorithms aim to
estimate the uncertainties and disturbances that exerts on
uncertain nonlinear systems (UNS). Meanwhile, the esti-
mation plays an important role in the on-line feedforward
compensation of a controller, which directly and effectively
eliminates the unexpected effects caused by disturbances.
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Thus, disturbance estimation techniques are vital to distur-
bance compensation.

In recent years, multiple methods for estimating dis-
turbances have been proposed, such as disturbance
observer [12], [13], perturbation observer [14], unknown
input observer [15], and equivalent input disturbance
approach [16]. Notice that all these methods are based on
the design of plant models. Hence, the accuracy of dynamic
models is highly-related to the used observers and control
systems. Furthermore, most of the modern feedback con-
trollers rely on the availability of the system states, though
multiple aforementioned disturbance observers may perform
disturbance compensation. Furthermore, measuring all states
is sometimes impossible or costly, inspiring us to design a
new state observer for alleviating this issue.

The concept of extended state observer (ESO) has recently
gained increasing attention in research and industrial appli-
cations due to their capabilities on the estimation of uncer-
tainties, disturbances, and system states, under the knowledge
of the number of system order [17]–[19]. ESO considers
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all uncertainties as a lumped disturbance [20] and estimates
this disturbance for disturbance compensation in the con-
troller design. Although ESO-based control methods are
well employed in multiple actual plants, the performance of
ESO is unsatisfied while facing time-varying perturbations
because the basic design of ESO can only estimate constant
or slow-changing disturbances [21], [22]. In many applica-
tions, industrial control systems are subject to time-varying
disturbances that ESO-based control method cannot allevi-
ate, including changing environmental disturbances, internal
parameter uncertainties, and unmodeled dynamics, which
can be the forms of step disturbance, ramp disturbance,
and parabolic disturbance. To observe such time-varying
disturbances, the generalized proportional integral observer
(GPIO) was proposed [23], [24], where the observer treats
the estimated lump disturbance as a form of time polynomial
function. The GPIO -based control method can successfully
suppress time-varying disturbances, which has been widely
used in various systems [25]–[28]. However, GPIO can only
estimate the disturbances in an asymptotic manner, and the
corresponding feedback control method is an asymptotically
stable controller for a system.

With the increasing needs of higher precision control,
the design of novel controllers based on high-performance
disturbance observers becomes a challenging task for practi-
tioners. Since the finite-time stable systems have many useful
properties [29]–[31], [32], [33], such as faster convergence,
higher precision, better anti-disturbance capability. Refer-
ence [34]–[36] proposed a finite-time disturbance observer
(FTDO) that can estimate the time-varying disturbance in a
finite-time. This kind of FTDO, however, brings computing
costs due to the discontinuity of the observer state. These
facts inspire us to design a robust finite-time controller,
which will consist of a finite-time observer and a finite-time
feedback controller, and the anti-disturbance performance of
such a controller will superior to that of the aforementioned
GPIO-based control scheme.

This brief studies the robust finite-time output feed-
back (FTOF) control problem for UNS with unpredictable
time-varying disturbances. The developed method is intu-
itive, summarized as follows. First of all, based on the system
output and studied perturbation, a simplified model is pro-
posed to reduce the design complexity of the observer and
controller. The lump disturbances mainly include parameter
uncertainty and external disturbance and unmodeled dynam-
ics, which are approximated to a time-varying polynomial
model. Next on, a finite-time state observer (FTSO) is pro-
posed to estimate the system time-varying disturbances and
system states. A design of the FTSO-based feedforward com-
pensation and related control techniques are used to con-
struct a robust FTOF controller, which eliminates the adverse
effects caused by unknown disturbances and ensures the
finite-time stability of the closed-loop system. To verify the
effectiveness of the developed robust control method, a robot
manipulator is used for the experiments on the trajectory

tracking control. Compared with the basic GPIO-based con-
trol method, the results show the superiority of the controller.

The remainder of this paper is organized as follows.
Section II briefly introduces the dynamic model and the
solution to the problem. Section III gives the design of the
robust controller, including an FTSO, an FTOF control law,
and a related stability analysis. Section IV gives the experi-
mental application of the control method on the manipulator.
Section V summarizes the paper.

II. BACKGROUND AND PRELIMINARY KNOWLEDGE
A. PROBLEM FORMULATION
Consider an n-dimensional single-input single-output (SISO)
nonlinear system [24], [36], [37]:

x(n) = ψ(x, t)u+ ϕ(x, ẋ, . . . , x(n−1), t)+ w(t), (1)

where ψ(x, t) 6= 0 is a nonlinear term, and u refers to the
control input, ϕ(·) refers to the dynamics of the plant, which
is completely unknown, x refers to the system output, w(t)
refers to an unknown disturbance (contains external distur-
bance and unmodeled dynamics). Let xr be the desired output
and it is assumed that ẋr , ẍr , . . ., x

(n)
r exist.

This work aims to use an FTSO and finite-time control
techniques to develop a robust feedback controller which
can solve the nonlinear uncertainty/time-varying disturbance
suppression problem of the system (1).

B. DEFINITIONS AND LEMMAS
Definition 1: dzcρ = sign(z) | z |ρ, ρ > 0,∀z ∈ R.
Definition 2 [38]: Consider a system

ż = f (t, z, u), (2)

where f : [0,∞)×Rn
×Rm

→ Rn is piece-wise continuous
in t and locally Lipschitz in z and u. The input u(t) is a
piece-wise continuous, bounded function of t for all t ≥ 0.
If there exist a class KL function β and a class K function γ
such that for any initial state z(t0) and any bounded input u(t),
the solution z(t) exists for all t ≥ t0 and satisfies

‖z(t)‖ ≤ β(‖z(t0)‖, t − t0)+ γ
(

sup
ε∈[t0,t]

‖u(ε)‖
)
, (3)

the system (2) is said to be input-to-state stable (ISS).
Lemma 1 [39]: Consider a system:{

żi = zi+1, i = 1, . . . , n− 1,
żn = u, y = z1,

(4)

where z = (z1, z2, . . . , zn)T ∈ Rn is the desired system states;
u ∈ R and y ∈ R are control input and system output,
respectively. Besides, in the following observer{
˙̂zi = ẑi+1 + ln−i+1dz1 − ẑ1ciι+1, i = 1, . . . , n− 1,
˙̂zn = u+ l1dz1 − ẑ1cnι+1,

(5)

for any ι = −p/q ∈ (−1/n, 0) with a positive even
number p and a positive odd number q, there exist con-
stant gains (l1, . . . , ln) such that the states (ẑ1, ẑ2, . . . , ẑn) of
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the observer (5) will converge to the desired system states
(z1, z2, . . . , zn) in finite-time.
Lemma 2 [40]: Consider the system (4) with the following

control:

u = −cndzncρn − . . .− c2dz2cρ2 − c1dz1cρ1 , (6)

where ρ1, ρ2, . . ., ρn satisfy the following conditions:ρ1 = ρ, n = 1

ρn−1 =
ρiρi+1

2ρi+1 − ρi
, i = 2, . . . , n, ∀n ≥ 2

(7)

with ρn+1 = 1, ρn = ρ, ρ ∈ (1− δ, 1), δ ∈ (0, 1). If ci > 0,
then the system (4) is finite-time stable.

III. CONTROLLER DESIGN AND STABILITY ANALYSIS
A. PLANT PRE-PROCESSING
For better understanding, we rewrite the UNS (1) into (8).
Considering various sources of the system disturbances,
we use a so-called lumped disturbance ξ (t) to represent mod-
eling errors, external disturbance, and unmodeled dynamics.
The studied system (1) can be rewritten in a state-space form:

x(n) = ϕ(x, ẋ, . . . , x(n−1), t)+ w(t)+1ψ(x, t)u︸ ︷︷ ︸
lumped time-varying disturbance ξ (t)

+ψ0(x, t)u

= ψ0(x, t)u+ ξ (t), (8)

where ψ0(x, t) = ψ(x, t) − 1ψ(x, t) refers to the estima-
tion; 1ψ(x, t) refers to the uncertainties; ξ (t) is the lumped
time-varying disturbance that is completely unknown, repre-
senting internal dynamics, model uncertainties, and external
disturbances of the system. The same treatment of (8) has
been applied and reported in literature such as [27], [36], [37].
Assumption 1: Suppose that the first m time derivative of

the lumped disturbance ξ (t) of system (8) exits, and ξ (t) can
be represented in the following time-varying form [41]:

ξ (t) =
m−1∑
i=0

ait i, (9)

where all of the coefficients ai, i = 0, 1, . . . ,m − 1 are
completely unknown, and m is a positive integer.
Remark 1: As shown in (9), the lumped disturbance ξ (t)

can be modeled locally using Taylor polynomials of degree
m − 1. This model can be regarded as an unknown internal
model for application in the observer design. The order m
can be determined according to the nature of disturbances
ξ (t). For example, it is easy to verify that the unknown step
disturbance, ramp disturbance, and parabolic disturbance can
be expressed by (9) with m = 1, 2, and 3, respectively.
In general, a higher order m can guarantee a better estimation
accuracy, but the computing cost is increased accordingly.
Therefore, in practical applications, there is a trade-off
between the accuracy of observers and the computing
resource [27], [28], [41].

According to (9), an extended state-space model (8) can be
constructed by

ẋi = xi+1, i = 0, 1, . . . , n− 2,
ẋn−1 = ξ0 + ψ0(x, t)u,
ξ̇j = ξj+1, j = 0, 1, . . . ,m− 2,
ξ̇m−1 = 0,

(10)

where xi = x(i), i = 0, 1, . . . , n − 1 and ξj = ξ (j)(t),
j = 0, 1, . . . ,m− 1.
With (10), the following section illustrates the detailed pro-

cess of our control scheme design: an FTSO and a finite-time
controller.

B. FTSO
Enlightened by the developed method in Lemma 1, we design
a FTSO for system (10):

˙̂xi = x̂i+1 + lm+n−idx − x̂0c%m+n−i ,
i = 0, 1, . . . , n− 2,
˙̂xn−1 = ξ̂0 + ψ0(x, t)u+ lm+1dx − x̂0c%m+1 ,
˙̂
ξj = ξ̂j+1 + lm−jdx − x̂0c%m−j ,
j = 0, 1, . . . ,m− 2,
˙̂
ξm−1 = l1dx − x̂0c%1 ,

(11)

where x̂0, x̂1, . . . , x̂n−1 refer to the estimations of x0, x1,
. . ., xn−1, respectively; ξ̂0, ξ̂1, . . ., ξ̂m−1 refer to the estima-
tions of ξ0, ξ1, . . ., ξm−1, respectively; l1, l2, . . . , ln+m refer
to the parameters of the observer, respectively, which are
well-chosen so that the roots of the characteristic polynomial

po(s) = sn+m + lm+nsn+m−1 + · · · + l2s+ l1,

are situated in the left-hand side of the complex plane s;
[%1, %2, . . . , %m+n−1, %m+n] = [(m+ n)ι+ 1, (m+ n− 1)ι+
1, . . . , 2ι+1, ι+1] with ι = −p/q ∈ (−1/(n+ m), 0), where
p and q are positive even and odd numbers, respectively.

The developed FTSO is constructed to estimate the distur-
bances and its m time derivatives, as well as the states of
the system, which is quite similar to the traditional GPIO.
However, compared with the asymptotic performance of the
GPIO, all of the estimations under the FTSO converge to a
real value in finite-time. This advantage improves the per-
formance of closed-loop systems because the lumped distur-
bance can be estimated and then compensated in finite-time
by the following developed robust control method.

C. FTOF CONTROLLER
With the estimations of (11) and Lemma 2, we design a robust
FTOF controller:

u = ψ−10 (x, t)
[
x(n)r −

n−1∑
i=0

(
ci+1dx̂i − x(i)r c

ρi+1
)
− ξ̂0

]
, (12)

where c1, c2, . . . , cn are the coefficients of the controller,
which can be chosen to guarantee that the roots of the
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following characteristic equation pc(s) in the complex
variable s,

pc(s) = sn + cnsn−1 + · · · + c2s+ c1, (13)

are situated in the left-hand side of the complex plane, and
ρ1, ρ2, . . . , ρn satisfy (7).

The developed FTOF controller (12) is composed of an
FTSO and finite-time feedback control techniques, where the
FTSO is used to estimate and suppress the time-varying dis-
turbance ξ (t), and the finite-time feedback control techniques
are employed to achieve the finite-time stability of the studied
system. Next, we will show the finite-time stability of the
closed-loop system under this control method while facing
an unpredictable time-varying disturbance.

D. STABILITY ANALYSIS
Herein, the closed-loop stability of the studied system (10)
under the developed finite-time controller is established,
where the observer is described by (11) and the controller is
described by (12).

To this end, we define exi = xi − x̂i and eξj = ξj − ξ̂j. With
(10) and (11) in mind, the error dynamics of the observer can
be written by

ėxi = exi+1 − lm+n−idex0c
%m+n−i ,

i = 0, 1, . . . , n− 2,
ėxn−1 = eξ0 − lm+1dex0c

%m+1 ,

ėξj = eξj+1 − lm−jdex0c
%m−j ,

j = 0, 1, . . . ,m− 2,
ėξm−1 = −l1dex0c

%1 .

(14)

Letting ei = xi− x
(i)
r , i = 1, 2, . . . , n and e = x− xr = e0,

the error dynamics is given after substituting (12) to (10):
ėi = ei+1,

ėn−1 = −
n−1∑
i=0

(
cidei − exic

ρi+1
)
+ eξ0 .

(15)

Then, combining (15) and (14), the closed-loop system is
governed by {

System (15),
System (14).

(16)

Theorem 1: Considering the system (10) under the unpre-
dictable time-varying disturbances that satisfy Assumption 1,
a robust finite-time control scheme in the form of (11) and
(12) is given. If the gains of li in (11) and ci in (12) satisfy
li > 0 and ci > 0, respectively, the error system (16) will
converge to the desired equilibrium in finite-time.

Proof: Given the following system,
ėi = ei+1,

ėn−1 = −
n−1∑
i=0

(
ci+1deicρi+1

)
.

(17)

According to Lemma 2, the system (17) is stable in finite-
time. Meanwhile, due to Lemma 1, the system (14) is also sta-
ble in finite-time. Based on the aforementioned knowledge,
we know that exi and eξ0 are bounded. Then, by the Lemma 2
in [42], the system (16) is ISS with respect to the input exi and
eξ0 . By the stability of (14) and the ISS of (15), there exists
γ ∈ K and α, β ∈ KL such that for any t0 ≥ 0 and all t ≥ t0,

‖eo(t)‖ ≤ α(‖eo(t0)‖, t − t0),

‖ec(t)‖ ≤ β(‖ec(t0)‖, t − t0)+ γ
(
‖ sup
ε∈[t0,t]

eo(ε)‖
)
,

where eo is the state of (14) and ec is the state of (15). We
have the estimates supε≥0 ‖eo(ε)‖ ≤ α(‖eo(0)‖, 0), and then

‖ec(t)‖ ≤ β(‖ec(0)‖, 0)+ γ (α(‖eo(0)‖, 0)).

Finally, denoting ‖(ec, eo)‖ = ‖ec‖ + ‖eo‖, we find that

‖(ec(t), eo(t))‖ ≤ β(‖ec(0)‖, 0)+ α(‖eo(0)‖, 0)

+γ (α(‖eo(0)‖, 0)).

From the above formula, the system (16) is ISS. Then,
the finite-time convergence of the system (16) is a direct result
for the finite-time convergence of the observer error eo and
the finite-time convergence of the system (17).
Remark 2: In this work, the finite-time stabilization is

achieved by using finite-time control scheme based on a
FTSO. Since the FTSO can estimate the information of all
states and the time-varying disturbance in finite-time, mean-
while, by delivering the estimations to the FTOF control
law, the finite-time stability of the closed-loop system can
be guaranteed. However, the control law developed in [24],
[26], [27], which is so-called GPI control (GPIC) method,
only obtain the asymptotic stabilization for a system in the
presence of the time-varying disturbance. This promising
property will be shown in the following experiments through
the comparison of these two methods.
Remark 3: It is known that the existing finite-time con-

trol methods mainly include terminal sliding mode control
(TSMC) [43], finite-time control using adding a power inte-
grator technique [44], and finite-time control mentioned in
Lemma 2. However, TSMC can cause a chattering phe-
nomenon for a system due to its design structure, adding a
power integrator technique-based control will increase the
computational burden, and the method in Lemma 2 is a
feedback controller for systems without uncertainties. The
proposed controller in this paper is continuous and can reduce
the computational burden rather than adding a power inte-
grator technique-based controller. Moreover, it consists of a
finite-time observer-based feedforward item and a finite-time
controller-based feedback item, and the anti-disturbance per-
formance of such a controller is superior to that in Lemma 2.

IV. EXPERIMENTAL RESULTS
A. DESCRIPTION OF DYNAMIC MODEL
The general dynamics for an n−link manipulator is formed
by

M(q)q̈+ C(q, q̇)q̇+ G(q) = τ + w(t), (18)
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where q = [q1, q2, . . . , qn]T ∈ Rn refers to the measurable
robot’s joint positions; M(q) ∈ Rn×n refers to its inertia
matrix; C(q, q̇) ∈ Rn×n refers to its centripetal-Coriolis
matrix; G(q) ∈ Rn refers to the exerted gravitational torques;
τ ∈ Rn refers to its control torques; w(t) refers to modeling
error and external disturbances. The objective of this exper-
iment is to develop a robust finite-time control strategy for
unpredictable time-varying disturbance rejection problem,
where the developed controller can drive a manipulator (18)
to track the desired trajectory qr efficiently and accurately. It
is known that q̇r and q̈r exist according to the aforementioned
information.

B. DESIGN OF CONTROLLER
To design the observer and controller, the used system (18) is
rearranged to the form of (8):

q̈ =M−1
0 (q)τ + ξ (t), (19)

where ξ (t) = 1M−1(q)τ + M−1(q)(w(t) − C(q, q̇)q̇ −
G(q)) refers to the lumped time-varying disturbance, includ-
ing unknown system dynamics, parameter uncertainties, and
external disturbances.

Next, the developed robust FTOF controller is given as
follows.

τ =M0(q)
(
q̈r − c0dq̂0 − qrcρ1

−c1dq̂1 − q̇rcρ2 − ξ̂0
)
,

˙̂q0 = q̂1 + l0dq− q̂0c%1 ,
˙̂q1 = ξ̂0 +M−1

0 (q)τ + l1dq− q̂0c%2 ,
˙̂
ξj = ξ̂j+1 + l2+jdq− q̂0c%2+j+1 ,

˙̂
ξm−1 = l2+m−1dq− q̂0c%2+m . (20)

In order to verify the performance of the developed con-
troller, the basic GPIC method developed is given for later
comparison:

τ =M0(q)
(
q̈r − c0[q̂0 − qr ]

−c1[q̂1 − q̇r ]− ξ̂0
)
,

˙̂q0 = q̂1 + l0(q− q̂0),
˙̂q1 = ξ̂0 +M−1

0 (q) τ + l1(q− q̂0),
˙̂
ξj = ξ̂j+1 + l2+j(q− q̂0),

˙̂
ξm−1 = l2+m−1(q− q̂0). (21)

In this experiment, the used controller parameters,
the developed controller (20) and the basic GPIC (21), are
in a second-order polynomial form:

pc(s) = s2 + 2ζcωcs+ ω2
c ,

with [c0, cc] = [ω2
c , 2ζcωc], where ωc = 60 and

ζc = 1. Then, considering a trade-off between the accu-
racy of observers and the computing resource mentioned
on Remark 1, the time-varying disturbance is chosen as a

FIGURE 1. Configuration of experimental setup.

FIGURE 2. Scenario of experimental prototype.

third-order form for the second-order system (19), so the used
observer gains in (20) and (21) are correspondingly set as a
fifth-order form:

po(s) = (s+ κo)(s2 + 2ζoωos+ ω2
o)

2,

with

[l0, l1, l2, l3, l4]

= [κo + 5ζoωo, 2ω2
o + 4ζ 2oω

2
o + 4ζoωoκo,

4ζoω3
o + 2ω2

oκo + 4ζ 2oω
2
oκo, 4ζoω

3
oκo + ω

4
o, ω

4
oκo],

where κo = ωo = 120 and ζo = 1. The others are ρ1 =
7/13, ρ2 = 7/10, m = 3, [%1, %2, %3, %4, %5] = [ι + 1, 2ι +
1, 3ι+1, 4ι+1, 5ι+1], and ι = −2/15. The following three
experiments are implemented to validate the effectiveness of
the proposed control approach.

C. EXPERIMENTAL RESULTS
The experimental results validate the effectiveness of the
developed control method. The RFTC and GPIC are used in
a single-link rigid manipulator, which has 0.45 m and 0.20 kg
on dimension andmass. The nominal parametersM0(q) used
in the experiment is selected as 4.15× 10−6 kg·m2.

The configuration of the experimental setup and scenario
of the experimental prototype are shown in Fig. 1 and Fig. 2,
respectively. The experimental device comprises a robot
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FIGURE 3. Tracking performance of GPIC (Offload). FIGURE 4. Tracking performance of RFTC (Offload).
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FIGURE 5. Tracking performance of GPIC (Onload). FIGURE 6. Tracking performance of RFTC (Onload).
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FIGURE 7. Robustness with respect to the control input gain under the RFTC scheme: Top row (f = 0.85), second row (f = 0.9), third row
(f = 1), bottom row (f = 5).

arm, a dSPACE hardware kit, an Elmo Harmonica 12/60
motor driver, and a personal computer. We use a dSPACE
DS1007 real-time hardware kit for implementation, where the
sampling period is set to be 0.1 ms for the two control meth-
ods. We design three experiments to evaluate and validate the
performance of the developed RFTC.

1) RFTC V.S. GPIC DESIGN STRATEGY (Offload)
In the first experiment, we use experimental results to com-
pare the control performance of the developed RFTC method
(20) against the GPIC method (21). Joint position trajectory
tracking curve, position tracking error, control torque, q and
its estimation, and disturbance estimation ξ̂0 are shown in
Fig. 3 and Fig. 4, where the desired output is chosen as
(5◦, 1 Hz). As shown in Fig. 3(a) and Fig. 4(a), when the two
control methods are used separately, the joint position of the
robot can converge to the required trajectory. Nevertheless,
it is obvious in Fig. 3(b) and Fig. 4(b) that the tracking error
at steady state is in the interval [−0.0326, 0.0328] under
the RFTC method, which is significantly better than the
GPICmethod which is in the interval [−0.3812, 0.2605]. The

reason is that the estimation of the time-varying disturbance
ξ̂0 is observable by the FTSO, facilitating the online dis-
turbance compensation through the feedforward mechanism
in the designed controller. This validates that the developed
RFTC is better than GPIC.

2) RFTC V.S. GPIC DESIGN STRATEGY (Onload)
In the second experiment, the robustness of the manipulator
for external disturbances is studied. The trajectory track-
ing curves of joint position, position tracking error, control
torque, q and its estimation, and disturbance estimation ξ̂0 are
given in Fig. 5 and Fig. 6. Herein, external disturbances on the
end of the manipulator are generated by the end-effector. It is
obvious that both the anti-disturbance ability and trajectory
tracking performance can be validated when the developed
RFTC method is used.

3) CONTROL GAIN ROBUSTNESS OF RFTC
In the third experiment, we demonstrate the robustness of
the RFTC method in controlling gain (20). For the previous
two experimental results, the control gain µ = M0(q)

VOLUME 8, 2020 52275



H. Wang et al.: Robust FTOF Control for Systems With Unpredictable Time-Varying Disturbances

was assumed to be known. If the control gain µ cannot be
obtained accurately, it can be substituted by an estimation
µ̂ that is available in advance. For experimental purposes,
the following estimated gain µ̂ = f µ is employed in the
FTSO and RFTC of (20). It can be easily discovered that
f = 1 represents the exact knowledge of the control gain.
In this experiment, the accurate trajectory tracking of the
desired profile qr (chosen as 8◦, 1 Hz) is verified in Fig. 7
when f changes in the scope [0.85, 5]. However, from the
response curves of tracking error (see Fig. 7(b), Fig. 7(e),
Fig. 7(h), Fig. 7(k)) and control torque (see Fig. 7(c), Fig. 7(f),
Fig. 7(i), Fig. 7(l)), the experiment shows that the smaller
f is chosen, the larger the initial tracking error is induced;
the bigger f is chosen, the higher noise is induced in control
torque. Hence, there is a trade-off for the choice of f between
the tracking error and the noise of control torque in practice.

V. CONCLUSION
In this work, a robust FTOF control method is developed
for a number of UNS with unpredictable time-varying dis-
turbances. The developed method uses an FTSO to esti-
mate the states and disturbances of the system. To design a
robust controller that can eliminate the lumped time-varying
disturbances in finite-time and guarantee the stability of
closed-loop systems, a combination of FTOF control tech-
niques and the feedforward compensation based on the FTSO
are employed. Experiments on the robotic trajectory tracking
control is conducted. The experimental results under three
different testing conditions show that the developed method
is better than the basic GPIC method on the effectiveness.
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